Skip to main content

Biopesticides: An Eco-Friendly Approach for the Control of Soilborne Pathogens in Peanut

  • Chapter
  • First Online:
Microbial Inoculants in Sustainable Agricultural Productivity

Abstract

The peanut (Arachis hypogaea L.) is a widespread oilseed crop of great agricultural significance. Argentina is one of the major peanut producers in the world, and about 90 % of its production takes place in the province of Córdoba. During the last 20 years, peanut production has not only been increasing in yield but also in the quality of the harvested product because consumers tend to require high-quality products. Therefore, research and dissemination of technologies constitute essential elements for growing peanuts.

Peanut is susceptible to several diseases which are caused by the confluence of a susceptible cultivar, a pathogen (fungus, bacteria, or virus), and a favorable environment. Soilborne fungal diseases of peanut are spreading throughout Argentina, causing such losses that they are being considered as one of the most important factors in the decrease of peanut yield. Fungicides are the main tool for controlling such diseases, but their use has been shown to bring important ecological adverse consequences for human health and the natural balance of the soil microflora. An alternative disease management option is biological control. It consists mainly in using microorganisms to control harmful microorganisms that cause plant diseases without disturbing the ecological balance. Several scientists around the world have described different Pseudomonas and Trichoderma strains that are able to significantly control a number of fungal diseases. Here, we review the main researches conducted using these organisms as well as the mechanisms involved in their biocontrol activity. We hope that this work will contribute to future research programs that aim to promote strains of Pseudomonas and/or Trichoderma as potential biopesticides for biological control of many diseases of agricultural relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alper CM, Mattes RD (2002) Effects of chronic peanut consumption on energy balance and hedonics. Int J Obesity 26:1129–1137

    Article  CAS  Google Scholar 

  • Altomare C, Norvell WA, Björkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295–22. Appl Environ Microbiol 65:2926–2933

    PubMed  PubMed Central  CAS  Google Scholar 

  • Andrés JA, Correa NS, Rosas SB (1998) Survival and symbiotic properties of Bradyrhizobium japonicum in the presence of thiram. Isolation of fungicide resistant strains. Biol Fertil Soils 26:141–145

    Google Scholar 

  • Andrés JA, Correa NS, Rosas SB (1999) El potencial mutagénico del fungicida thiram. Rev Arg Microbiol 31:82–86

    Google Scholar 

  • Awad AB, Chan KC, Downie AC, Fink CS (2000) Peanuts as a source of beta-sitosterol, a sterol with anticancer properties. Nutr Cancer 36:238–241

    Article  PubMed  CAS  Google Scholar 

  • Backman PA, Brenneman TB (1997) Stem rot. In: Kokalis-Burelle N, Porter DM, Rodriguez-Kabana RD, Smith H, Subrahmanyam P (eds) Compendium of peanut diseases. APS Press, St. Paul, pp 36–37

    Google Scholar 

  • Bano N, Musarrat J (2004) Characterization of a novel carbofuran degrading Pseudomonas sp. with collateral biocontrol and plant growth promoting potential. FEMS Microbiol Lett 231:13–17

    Article  PubMed  CAS  Google Scholar 

  • Bell DK, Sumner DR (1984a) Rhizoctonia diseases. In: Porter DM, Smith DH, Rodriguez-Kabana R (eds) Compendium of peanut diseases. American Phytopathological Society, St. Paul, pp 23–25

    Google Scholar 

  • Bell DK, Sumner DR (1984b) Unharvested peanut pods as a potential source of inoculum of soilborne plant pathogens. Plant Dis 68:1039–1042

    Article  Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  • Bergsma-Vlami M, Prins ME, Raaijmakers JM (2005) Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp. FEMS Microbiol Ecol 52:59–69

    Article  PubMed  CAS  Google Scholar 

  • Birthal PS, Rao PP, Nigam SN, Bantilan CS, Bhagavatulu S (2010) Groundnut and soybean economies in Asia: facts, trends and outlook. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, 96 pp

    Google Scholar 

  • Bishi SK, Kumar L, Mahatma MK, Khatediya N, Chauhan SM, Misra JB (2015) Quality traits of Indian peanut cultivars and their utility as nutritional and functional food. Food Chem 167:107–114

    Article  PubMed  CAS  Google Scholar 

  • Bitancourt AA, Jenkins AE (1940) Novas especies de Elsinoe e Sphaceloma sobre hospedes de importancia economica. Arq Inst BioI 11:46–58

    Google Scholar 

  • Bockus WW, Shroyer JP (1998) The impact of reduced tillage on soilborne plant pathogens. Annu Rev Phytopathol 36:485–500

    Article  PubMed  CAS  Google Scholar 

  • Booth C (1971) The genus Fusarium. Commonwealth Mycological Institute, Kew, 237 pp

    Google Scholar 

  • Brenneman TB (1997) Rhizoctonia diseases. In: Kokalis-Burelle N, Porter DM, Rodriguez-Kabana RD, Smith H, Subrahmanyam P (eds) Compendium of peanut diseases. APS Press, St. Paul, pp 30–31

    Google Scholar 

  • Buchwaldt L, Morrall RAA, Chongo G, Bernier CC (1996) Windborne dispersal of Colletotrichum truncatum and survival in infested lentil debris. Phytopathology 86:1193–1198

    Article  Google Scholar 

  • Budge SP, Mcquilken MP, Fenlon JS, Whipps JM (1995) Use of Coniothyrium minitans and Gliocladium virens for biological control of Sclerotinia sclerotiorum in glasshouse lettuce. Biol Control 5:513–522

    Article  Google Scholar 

  • Carina M, Andrea A, Lorena P, Maria G, Stella C, Ana C (2006) Ochratoxin A and the occurrence of ochratoxin A producing black aspergilli in stored peanut seeds from Cordoba. Arg J Agron Crop Sci 86:2369–2373

    Google Scholar 

  • Casasnovas F, Fantini EN, Palazzini JM, Giaj-Merlera G, Chulze SN, Reynoso MM, Torres AM (2013) Development of amplified fragment length polymorphism (AFLP)-derived specific primer for the detection of Fusarium solani aetiological agent of peanut brown root rot. J App Microbiol 114:1782–1792

    Article  CAS  Google Scholar 

  • Chet I, Inbar J, Hadar I (1997) Fungal antagonists and mycoparasites. In: Wicklow DT, Söderström B (eds) The Mycota IV: Environmental and microbial relationships. Springer, Berlin, pp 165–184

    Google Scholar 

  • Conforto C, Cazón I, Fernández FD, Marinelli A, Oddino C, Rago AM (2013) Molecular sequence data of Thecaphora frezii affecting peanut crops in Argentina. Eur J Plant Pathol 137:663–666

    Article  Google Scholar 

  • Cortes C, Gutierrez A, Olmedo V, Inbar J, Chet I, Herrera Estrella A (1998) The expression of genes involved in parasitism by Trichoderma harzianum is triggered by a diffusible factor. Mol Gen Genetics 260:218–225

    Article  CAS  Google Scholar 

  • Cuppels DA, Stipanovic RD, Stoessl A, Stothers JB (1987) The constitution and properties of a pyochelin–zinc complex. Can J Chem 65:2126–2130

    Article  CAS  Google Scholar 

  • da Silva J, Barros Torres D, Castro Lustosa D, Corsi de Filippi MC, Barata da Silva G (2012) Rice sheath blight biocontrol and growth promotion by Trichoderma isolates from the Amazon. Amazonian J Agric Environ Sci 55:243–250

    Google Scholar 

  • De Meyer G, Bigirimana J, Elad Y, Hofte M (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:279–286

    Article  Google Scholar 

  • Deelip C, Deelipkumar BS, Dubey HC (1998) Influence of amino acids and sugars on growth, fluorescence and siderophore production of fluorescent pseudomonads. Ind J Exp Biol 36:429–431

    Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    Article  PubMed  CAS  Google Scholar 

  • Doni F, Al-Shorgani NKN, Tibin EMM, Abuelhassan NN, Anizan I, Che Radziah CMZ, Wan Mohtar WY (2013) Microbial involvement in growth of paddy. Curr Res J Biol Sci 4:285–290

    Google Scholar 

  • Eisendle M, Oberegger H, Buttinger R (2004) Biosynthesis and uptake of siderophores is controlled by the PacC mediated ambient-pH regulatory system in Aspergillus nidulans. Euk Cell 3:561–563

    Article  CAS  Google Scholar 

  • Elad Y (2000) Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Prot 19:709–714

    Article  Google Scholar 

  • Francisco MLDL, Resurrección AVA (2008) Functional components in peanuts. Crit Rev Food Sci Nut 48:715–746

    Article  CAS  Google Scholar 

  • Gajera H, Rakholiya K, Vakharia D (2011) Bioefficacy of Trichoderma isolates against Aspergillus niger Van Tieghem inciting collar rot in groundnut (Arachis hypogaea L.). J Plant Protect Res 51:240–247

    Article  Google Scholar 

  • Ghuge SS, Mayee CD, Godbole GM (1981) Assessment of losses in peanut due to rust and tikka leaf spots. Indian Phytopathol 34:179–182

    Google Scholar 

  • Giorda LM, Bragachini M, Castellano SR (1985) Efecto de benomyl sobre Sphaceloma arachidis Bit. & Jenk. (Sarna del maní). Rev Agron Manfredi 1:29–40

    Google Scholar 

  • Glandorf DC, Verheggen P, Jansen T, Jorritsma JW, Smit E, Leefang P, Wernars K, Thomashow LS, Laureijs E, Thomas-Oates JE, Bakker PA, van Loon LC (2001) Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat. Appl Environ Microbiol 67:3371–3378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gohel V, Megha C, Vyas P, Chhatpar HS (2004) Strain improvement of chitinolytic enzyme producing isolate Pantoea dispersa for enhancing its biocontrol potential against fungal plant pathogens. Ann Microbiol 54:503–515

    CAS  Google Scholar 

  • Handelsman J, Stab EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–1869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 84:377–393

    Article  Google Scholar 

  • Harman GE, Taylor AG, Stasz TE (1989) Combining effective strains of Trichoderma harzianum and solid matrix priming to improve biological seed treatments. Plant Dis 73:631–637

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004a) Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43

    Article  PubMed  CAS  Google Scholar 

  • Harman GE, Petzoldt R, Comis A, Chen J (2004b) Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of this interaction on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94:147–153

    Article  PubMed  Google Scholar 

  • Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure–activity relationships. J Nut Biochem 13:572–584

    Article  CAS  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  PubMed  CAS  Google Scholar 

  • Higgs J (2003) The beneficial role of peanuts in the diet – Part 2. Nut Food Sci 33:56–64

    Article  Google Scholar 

  • Höfte M, Bakker PA (2007) Competition for iron and induced systemic resistance by siderophores of plant growth promoting rhizobacteria. Soil Biol 12:121–135

    Article  Google Scholar 

  • Howell CR (1998) The role of antibiosis in biocontrol. In: Harman GE, Kubicek CP (eds) Trichoderma & Gliocladium, vol 2. Taylor & Francis, Padstow, pp 73–184

    Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  Google Scholar 

  • Howell CR, Hanson EL, Stipanovic RD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252

    Article  PubMed  CAS  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact 16:851–858

    Article  PubMed  CAS  Google Scholar 

  • Inbar J, Abramsky M, Coen D, Chet I (1994) Plant growth enhancement and disease control by Trichoderma harzianum in vegetable seedlings grown under commercial conditions. Eur J Plant Pathol 100:337–346

    Article  Google Scholar 

  • Integrated Breeding Platform (2015) Groundnut facts & figures. https://www.integratedbreeding.net/404/communities/communities/facts-figures/groundnut-facts-figures#ibp-backtotop

  • John RP, Tyagi RD, Prevost D, Brar SK, Pouleur S, Surampalli RY (2010) Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Protect 29:1452–1459

    Article  Google Scholar 

  • Kearney MIT, Marinelli A, Oddino C, March GJ (2002) Transmission and dispersal of Sphaceloma arachidis by crop debris and seed from infected peanut. Peanut Sci 29:13–17

    Article  Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005) Management of late leaf spot of groundnut (Arachis hypogaea) with chlorothalonil-tolerant isolates of Pseudomonas aeruginosa. Plant Pathol 54:401–408

    Article  CAS  Google Scholar 

  • Kishore GK, Pande S, Harish S (2007) Evaluation of essential oils and their components for broad-spectrum antifungal activity and control of late leaf spot and crown rot diseases in peanut. Plant Dis 91:375–379

    Article  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Kolte SJ (1985) Diseases of annual edible oilseeds crops. Vol I. Groundnut. CRC Press, Boca Raton, p 155

    Google Scholar 

  • Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA et al (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Latorre BA, Lillo C, Rioja ME (2001) Eficacia de los tratamientos fungicidas para el control de Botrytis cinerea de la vid en función de la época de aplicación. Cien Inv Agr 28:61–66

    Google Scholar 

  • Lim HS, Kim YS, Kim SD (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol 57:510–516

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lopes RM, Costa TSA, Gimenes MA, Silveira D (2011) Chemical composition and biological activities of Arachis species. J Agric Food Chem 59:4321–4330

    Article  PubMed  CAS  Google Scholar 

  • Lorito M, Harman GE, Hayes CK, Broadway RM, Tronsmo A, Woo SL, Di Pietro A (1993) Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitotriosidase. Phytopathology 83:302–307

    Article  CAS  Google Scholar 

  • Lorito M, Hayes CK, Di Pietro A, Woo SL, Harman GE (1994) Purification, characterization and synergistic activity of a glucan 1,3-bglucosidase and an N-acetyl-b-glucosaminidase from Trichoderma harzianum. Phytopathology 84:398–405

    Article  CAS  Google Scholar 

  • Manjula K, Kishore GK, Girish AG, Singh SD (2004) Combined application of Pseudomonas fluorescens and Trichoderma viride has an improved biocontrol activity against stem rot in groundnut. Plant Pathol J 20:75–80

    Article  Google Scholar 

  • March G, Marinelli A (1998) Enfermedades del Maní. In: Pedelini R, Casini C (eds) Manual del Maní 3ª Edición. INTA, Manfredi, pp 24–35

    Google Scholar 

  • March GJ, Marinelli A (1999) Enfermedades del maní. Agromercado 38:2–10

    Google Scholar 

  • March G, Marinelli A (2005) Enfermedades del Maní en Argentina (Primera Edición), Fundación Maní Argentino, INTA, p 59

    Google Scholar 

  • Marinelli A, March GJ, Rago A, Giuggia J (1998) Assessment of crop loss in peanut caused by Sclerotinia sclerotiorum, Sclerotinia minor and Sclerotium rolfsii in Argentina. Int J Pest Manag 44:251–254

    Article  Google Scholar 

  • Melouk HA, Backman PA (1995) Management of soilborne fungal pathogens. In: Melouk HA, Shokes FM (eds) Peanut health management. APS Press, St. Paul, pp 75–82

    Google Scholar 

  • Mercer PC (1976) Effect of defoliation on yield of two groundnut cultivars in Malawi. Oleagineux 31:69–72

    Google Scholar 

  • Monte E (2001) Understanding Trichoderma: between biotechnology and microbial ecology. Int Microbiol 4:1–4

    PubMed  CAS  Google Scholar 

  • Morsy EM, Abdel-Kawi KA, Khalil MNA (2009) Efficacy of Trichoderma viride and Bacillus subtilis as biocontrol agents against Fusarium solani on tomato plants. Egyptian J Phytopathol 37:47–57

    Google Scholar 

  • Mukherjee PK, Horwitz BA, Kenerley CM (2012) Secondary metabolism in Trichoderma – a genomic perspective. Microbiology 158:35–45

    Article  PubMed  CAS  Google Scholar 

  • Nalim FA, Samuels GJ, Wijesundera RL, Geiser DM (2012) New species from the Fusarium solani species complex derived from perithecia and soil in the Old World tropics. Mycologia 103:1302–1330

    Article  Google Scholar 

  • Nielsen TH, Christopheresen C, Anthoni U, Sørensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 87:80–90

    Article  PubMed  CAS  Google Scholar 

  • Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sørensen J (2000) Structure, production characteristics and fungal antagonism of tensin – a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89:992–1001

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell K (2000) Molecular phylogeny of the Nectria haematococcaFusarium solani species complex. Mycologia 92:919–938

    Article  Google Scholar 

  • O’Donnell K, Sutton DA, Fothergill A, McCarthy D, Rinaldi MG, Brandt ME, Zhang N, Geiser DM (2008) Molecular phylogenetic diversity, multilocus haplotype nomenclature, and in vitro antifungal resistance within the Fusarium solani species complex. J Clin Microbiol 46:2477–2490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  PubMed Central  Google Scholar 

  • Oddino C, Marinelli A, Zuza M, March GJ (2008) Influence of crop rotation and tillage on incidence of brown root rot of peanut caused by Fusarium solani in Argentina. Can J Plan Pathol 30:575–580

    Article  Google Scholar 

  • Ojeda HR (1966) La “Sarna” 0 “Verrugosis” del mani, enfermedad observada por primera vez en Argentina. BoI Cat Gen Fitotec 2:1–6

    Google Scholar 

  • Pande S, Rao JN (2000) Changing scenario of groundnut diseases in Andhra Pradesh, Karnataka and Tamil Nadu states of India. Int Arachis News 20:42–44

    Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology and potential for biocontrol. Annu Rev Phytopathol 23:23–54

    Article  Google Scholar 

  • Partridge DE, Jordan DL, Bailey JE (2006) Management of Sclerotinia blight of peanut with the biological control agent Coniothyrium minitans. Plant Dis 90:957–963

    Article  Google Scholar 

  • Patil RP, Jagadeesh KS, Drishnaraj PU, Kulkarni JH (1998) Bacterization of groundnut with Pseudomonas fluorescens for the control of collar rot caused by Sclerotium rolfsii Sacc. Karnataka J Agric Sci 11:423–425

    Google Scholar 

  • Phipps PM, Deck SH, Walker DR (1997) Weather-based crop and disease advisories for peanuts in Virginia. Plant Dis 81:236–244

    Article  Google Scholar 

  • Pirlak LA, Kose MB (2009) Effects of plant growth promoting rhizobacteria on yield and some fruit properties of strawberry. J Plant Nutr 32:1173–1184

    Article  CAS  Google Scholar 

  • Podile AR, Kishore GK (2002) Biological control of peanut diseases. In: Gnanamanickam SS (ed) Biological control of crop diseases. Marcel Dekker Inc, New York, pp 131–160

    Google Scholar 

  • Porras M, Barrau C, Arroyo FT, Santos B, Blanco C, Romero F (2007) Reduction of Phytophthora cactorum in strawberry fields by Trichoderma spp. and soil solarization. Plant Dis 91:142–146

    Article  Google Scholar 

  • Porter DM (1997) Botrytis blight. In: Kokalis-Burelle N, Porter DM, Rodriguez-Kabana R, Smith DH, Subrahmanyam P (eds) Compendium of peanut diseases. APS Press, St. Paul, pp 10–11

    Google Scholar 

  • Porter DM, Melouk HA (1997) Sclerotinia blight. In: Kokalis-Burelle N, Porter DM, Rodriguez-Kabana R, Smith DH, Subrahmanyam P (eds) Compendium of peanut diseases. APS Press, St. Paul, pp 34–36

    Google Scholar 

  • Porter DM, Smith DH, Rodriguez-Kabana R (1982) Peanut diseases. In: Pattee HE, Young CT (eds) Peanut science and technology. American Peanut Research and Education Society, Yoakum, pp 326–410

    Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH, Thomas JMG (2003) Super-optimal temperatures are detrimental to peanut (Arachis hypogaea L.) reproductive processes and yield at both ambient and elevated carbon dioxide. Global Change Biol 9:1775–1787

    Article  Google Scholar 

  • Punja ZK (1985) The biology, ecology, and control of Sclerotium rolfsii. Annu Rev Phytopathol 23:97–127

    Article  CAS  Google Scholar 

  • Reino JL, Guerrero RF, Hernandez-Galan R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123

    Article  CAS  Google Scholar 

  • Rojo FG, Reynoso MM, Ferez M, Chulze SN, Torres AM (2007) Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions. Crop Protect 26:549–555

    Article  Google Scholar 

  • Rosas S, Rovera M, Andrés JA, Pastor NA, Guiñazú LB, Carlier E (2005) Characterization of Pseudomonas aurantiaca as biocontrol and PGPR agent. Endophytic properties. In: Sorvari S, Toldo O (eds) Proceeding prospects and applications for plant associated microbes, 1st International conference on plant– microbe interactions: endophytes and biocontrol agents. Lapland, Finland, pp 91–99

    Google Scholar 

  • Rosas S, Pastor NA, Guiñazú LB, Andrés JA, Carlier E, Vogt V, Bergesse J, Rovera M (2011) Efficacy of Pseudomonas chlororaphis subsp. aurantiaca SR1 for improving productivity of several crops. In: Sharma P, Avrol B (eds) Crop production technologies. InTech, Croatria, pp 199–210

    Google Scholar 

  • Ruocco M, Lanzuise S, Vinale F, Marra R, Turrà D, Woo SL, Lorito M (2009) Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant pathogenic fungi. Mol Plant Microb Interact 22:291–301

    Article  CAS  Google Scholar 

  • Samson RA, Houbraken J, Summerbell RC, Flannigan B, Miller JD (2001) Common and important species of fungi and actinomycetes in indoor environments. In: Microogranisms in home and indoor work environments. Taylor & Francis, New York, pp 287–292

    Google Scholar 

  • Sanders TH (2001) Non-detectable levels of trans-fatty acids in peanut butter. J Agric Food Chem 49:2349–2351

    Article  PubMed  CAS  Google Scholar 

  • Saravanakumar K, Shanmuga Arasu V, Kathiresan K (2013) Effect of Trichoderma species on Avicennia marina. Aquat Bot 104:101–105

    Article  CAS  Google Scholar 

  • Segarra G, Casanova E, Aviles M, Trillas I (2010) Trichoderma asperellum strain T-34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microb Ecol 59:141–149

    Article  PubMed  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159

    Article  PubMed  CAS  Google Scholar 

  • Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Monoharan PT, Rajendran A (2009) Effect of single application of Trichoderma viride and Pseudomonas fluorescens on growth promotion in cotton plants. Afr J Agric Res 4:1220–1225

    Google Scholar 

  • Shanmugam V, Senthil N, Raguchander T, Ramanathan A, Samiyappan R (2002) Interaction of Pseudomonas fluorescens with Rhizobium for their effect on the management of peanut root rot. Phytoparasitica 30:169–176

    Article  Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    Article  PubMed  CAS  Google Scholar 

  • Shivanna MB, Meera MS, Hyakumachi M (1996) Role of root colonization ability of plant growth promoting fungi in the suppression of take‐all and common root rot of wheat. Crop Protect 15:497–504

    Article  Google Scholar 

  • Sivasithamparam K, Ghisalberti EL (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium. Basic biology, taxonomy and genetics. Taylor & Francis, London, pp 139–191

    Google Scholar 

  • Sumner DR, Bell DK (1994) Survival of Rhizoctonia spp. and root diseases in a rotation of corn, snap bean and peanut in microplots. Phytopathology 84:113–118

    Article  Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF, Pierson LS III (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent pseudomonas in the rhizosphere of wheat. Appl Environ Microbiol 56:908–912

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tu CC, Kimbrough JW (1978) Systematic and phylogeny of fungi in the Rhizoctonia complex. Bot Gaz 139:454–466

    Article  Google Scholar 

  • USDA (2012) Foreign agricultural service: table 13 peanut area, yield, and production, 2012. http://www.fas.usda.gov/psdonline/psdreport.aspx

  • van Loon LC, Glick BR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Springer, Berlin, pp 177–205

    Chapter  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Vey A, Hoagland RE, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International, Bristol, pp 311–346

    Chapter  Google Scholar 

  • Vinale F, D’Ambrosio G, Abadi K, Scala F, Marra R, Turrá D, Woo SL, Lorito M (2004) Application of Trichoderma harzianum (T22) and Trichoderma atroviride (P1) as plant growth promoters, and their compatibility with copper oxychloride. J Zhejiang Univ (Sci) 30:2–8

    Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Ruocco M, Woo S, Lorito M (2012) Trichoderma secondary metabolites that affect plant metabolism. Nat Prod Commun 7:1545–1550

    PubMed  CAS  Google Scholar 

  • Visca P, Colotti G, Serino L, Verzili D, Orsi N, Chiancone E (1992) Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophore–metal complexes. Appl Environ Microbiol 58:2886–2893

    PubMed  PubMed Central  CAS  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Zhang H, Zhang X, Qin S, Tan H, Li X (2013) Effects of long-term chlorimuron-ethyl application on the diversity and antifungal activity of soil Pseudomonas spp. in a soybean field in Northeast China. Ann Microbiol 63:335–341

    Article  CAS  Google Scholar 

  • Wiest A, Grzegorski D, Xu B, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem 277:20862–20868

    Article  PubMed  CAS  Google Scholar 

  • Woo SL, Lorito M (2007) Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol. In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management. IOS/Springer, Amsterdam, pp 107–130

    Chapter  Google Scholar 

  • Woo SL, Donzelli B, Scala F, Mach R, Harman GZ, Kubicek CP, del Sorbo G, Lorito M (1999) Disruption of the Ech42 (endochitinase encoding) gene affects biocontrol activity in Trichoderma harzianum P1. Mol Plant Microbe Interact 12:419–429

    Article  CAS  Google Scholar 

  • Woo SL, Formisano E, Fogliano V, Cosenza C, Mauro A, Turra D, Soriente I, Ferraioli S, Scala F, Lorito M (2004) Factors that contribute to the mycoparasitism stimulus in Trichoderma atroviride strain P1. J Zhejiang Univ (Sci) 30:421

    Google Scholar 

  • Woo SL, Scala F, Ruocco M, Lorito M (2006) The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi and plants. Phytopathology 96:181–185

    Article  PubMed  CAS  Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65:1061–1070

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and the accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Youard ZA, Wenner N, Reimmann C (2011) Iron acquisition with the natural siderophore enantiomers pyochelin and enantio-pyochelin in Pseudomonas species. Biometals 24:513–522

    Article  PubMed  CAS  Google Scholar 

  • Yuttavanichakul W, Lawongsa P, Wongkaew S, Teaumroong N, Boonkerd N, Nomura N, Tittabut P (2012) Improvement of peanut rhizobial inoculant by incorporation of plant growth promoting rhizobacteria (PGPR) as biocontrol against the seed borne fungus Aspergillus niger. Biol Control 63:87–97

    Article  Google Scholar 

  • Zhang N, O’Donnell K, Sutton DA, Nalim FA, Summerbell RC, Padhye AA, Geiser DM (2006) Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. J Clin Microbiol 44:2186–2190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Our working group is supported by Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto (UNRC, Argentina) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier A. Andrés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Andrés, J.A., Pastor, N.A., Ganuza, M., Rovera, M., Reynoso, M.M., Torres, A. (2016). Biopesticides: An Eco-Friendly Approach for the Control of Soilborne Pathogens in Peanut. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_9

Download citation

Publish with us

Policies and ethics