Skip to main content

Endophytic Microbes in Crops: Diversity and Beneficial Impact for Sustainable Agriculture

  • Chapter
  • First Online:

Abstract

Endophytic microbes are ubiquitous in most plant species. Endophytic microbes enter plants mainly through wounds, naturally occurring as a result of plant growth or through root hairs and at epidermal conjunctions. Besides gaining entrance to plants through natural openings or wounds, endophytic microbes appear to actively penetrate plant tissues using hydrolytic enzymes like cellulase and pectinase. Diverse community structure of endophytes can be analyzed using culture-dependent and culture-independent method. Endophytic bacteria belong to different phyla such as Acidobacteria, Actinobacteria, Ascomycota, Bacteroidetes, Basidiomycota, Deinococcus-Thermus, and Firmicutes. Endophytic archaea (Euryarchaeota) were reported using only culture-independent method. Endophytic microbes were most predominant and studied and belonged to three major phyla Actinobacteria, Proteobacteria, and Firmicutes. Among reported genera Achromobacter, Bacillus, Burkholderia, Enterobacter, Herbaspirillum, Pantoea, Pseudomonas, Rhizobium, and Streptomyces were dominant in most host plants. Along with common endophytic microbial genera, there were many niche-specific microbial genera that have been reported from different host plants. Application of associative microbes for sustainable agriculture holds immense potential. Endophytic microbes are known to enhance growth and yield of plants by fixing atmospheric nitrogen and solubilization of phosphorus, potassium, and zinc; production of phytohormones (cytokinins, auxins, and gibberellins), ammonia, hydrogen cyanide, and siderophores; and possession of antagonistic activity as well as reducing the level of stress ethylene in host plants. Endophytes seem to contribute to plant fitness and development, displaying beneficial traits that can be exploited in agricultural biotechnology. The interactions between endophytes and plants can promote plant health and play a significant role in low-input sustainable agriculture for both food and nonfood crops. This chapter summarizes part of the work being done on endophytic microbes, including their isolation, identification, diversity, distribution, and applications for sustainable agriculture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aleksandrov VG, Blagodyr RN, Ilev IP (1967) Liberation of phosphoric acid from apatite by silicate bacteria. Mikrobiol Z 29:111–114

    CAS  Google Scholar 

  • Ambrosini A, Beneduzi A, Stefanski T, Pinheiro F, Vargas L, Passaglia LP (2012) Screening of plant growth promoting rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant Soil 356(2):245–264

    Article  CAS  Google Scholar 

  • Andreote FD, Rossetto PB, Souza LC, Marcon J, Maccheroni W, Azevedo JL, Araujo WL (2008) Endophytic population of Pantoea agglomerans in citrus plants and development of a cloning vector for endophytes. J Basic Microbiol 48(5):338–346

    Article  CAS  PubMed  Google Scholar 

  • Aon M, Khalid M, Hussain S, Naveed M, Akhtar MJ (2015) Diazotrophic inoculation supplemented nitrogen demand of flooded rice under field conditions. Pak J Agric Sci 52(1):145–150

    Google Scholar 

  • Araújo JM, Silva AC, Azevedo JL (2000) Isolation of endophytic actinomycetes from roots and leaves of maize (Zea mays L.). Braz Arch Biol Technol 43(4):447–451

    Article  Google Scholar 

  • Araújo WL, Maccheroni W Jr, Aguilar-Vildoso CI, Barroso PA, Saridakis HO, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47(3):229–236

    Article  PubMed  Google Scholar 

  • Araújo WL, Marcon J, Maccheroni W, van Elsas JD, van Vuurde JW, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68(10):4906–4914

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Arora NK (2013) Plant microbe symbiosis: fundamentals and advances. Springer, India

    Book  Google Scholar 

  • Arora S, Patel PN, Vanza MJ, Rao G (2014) Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from coastal Gujarat. Afr J Microbiol Res 8(17):1779–1788

    Article  Google Scholar 

  • Assumpção LC, Lacava PT, Dias ACF, Azevedo JL, Menten JOM (2009) Diversity and biotechnological potential of endophytic bacterial community of soybean seeds. Pesq Agrop Brasileira 44(5):503–510

    Article  Google Scholar 

  • Baldani JI, Baldani VL (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Cienc 77(3):549–579

    Article  CAS  PubMed  Google Scholar 

  • Bandara W, Seneviratne G, Kulasooriya SA (2006) Interactions among endophytic bacteria and fungi: effects and potentials. J Biosci 31(5):645–650

    Article  CAS  PubMed  Google Scholar 

  • Bell C, Dickie G, Harvey W, Chan J (1995) Endophytic bacteria in grapevine. Can J Microbiol 41(1):46–53

    Article  CAS  Google Scholar 

  • Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51(2):215–229

    Article  CAS  PubMed  Google Scholar 

  • Bevivino A, Sarrocco S, Dalmastri C, Tabacchioni S, Cantale C, Chiarini L (1998) Characterization of a free-living maize-rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiol Ecol 27(3):225–237

    Article  CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG (2000) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92(5):880–886

    Article  Google Scholar 

  • Boddey RM, Urquiaga S, Alves BJ, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252(1):139–149

    Article  CAS  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun. doi:10.1038/ncomms1046

    PubMed  Google Scholar 

  • Castro RA, Quecine MC, Lacava PT, Batista BD, Luvizotto DM, Marcon J, Ferreira A, Melo IS, Azevedo JL (2014) Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem. Springer Plus 3(1):382

    Article  PubMed Central  PubMed  Google Scholar 

  • Castro-González R, Martínez-Aguilar L, Ramírez-Trujillo A, Estrada-de los Santos P, Caballero-Mellado J (2011) High diversity of culturable Burkholderia species associated with sugarcane. Plant Soil 345(1–2):155–169

    Article  CAS  Google Scholar 

  • Chelius M, Triplett E (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41(3):252–263

    Article  CAS  PubMed  Google Scholar 

  • Cheplick G, Clay K, Marks S (1989) Interactions between infection by endophytic fungi and nutrient limitation in the grasses Lolium perenne and Festuca arundinacea. New Phytol 111(1):89–97

    Article  Google Scholar 

  • Choudhury AT, Kecskés ML, Kennedy IR (2014) Utilization of BNF technology supplementing urea N for sustainable rice production. J Plant Nutr 37(10):1627–1647

    Article  CAS  Google Scholar 

  • Coombs JT, Franco CM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69(9):5603–5608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coombs JT, Michelsen PP, Franco CM (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29(3):359–366

    Article  Google Scholar 

  • Costa LEO, Queiroz MV, Borges AC, Moraes CA, Araújo EF (2012) Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz J Microbiol 43(4):1562–1575

    Article  Google Scholar 

  • de Bruijn F, Stoltzfus J, So R, Malarvithi P, Ladha J (1997) Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. In: Opportunities for biological nitrogen fixation in rice and other non-legumes. Springer, Dordrecht, pp 25–36

    Chapter  Google Scholar 

  • de Melo Pereira G, Magalhães K, Lorenzetii E, Souza T, Schwan R (2012) A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microb Ecol 63(2):405–417

    Article  PubMed  Google Scholar 

  • de Oliveira Costa LE, de Queiroz MV, Borges AC, de Moraes CA, de Araújo EF (2012) Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz J Microbiol 43(4):1562

    Article  PubMed Central  PubMed  Google Scholar 

  • Dias AC, Costa FE, Andreote FD, Lacava PT, Teixeira MA, Assumpção LC, Araújo WL, Azevedo JL, Melo IS (2009) Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J Microbiol Biotechnol 25(2):189–195

    Article  CAS  Google Scholar 

  • Dobereiner J (1992) History and new perspectives of diazotrophs in association with non-leguminous plants. Symbiosis 13:1–13

    Google Scholar 

  • Dong Z, McCully M, Canny M (1997) Does acetobacter diazotrophicus live and move in the xylem of sugarcane stems? anatomical and physiological data. Ann Bot 80(2):147–158

    Article  Google Scholar 

  • Doty SL (2011) Nitrogen-fixing endophytic bacteria for improved plant growth. In: Bacteria in agrobiology: plant growth responses. Springer-Verlag Berlin Heidelberg, pp 183–199

    Chapter  Google Scholar 

  • Dourado MN, Aparecida Camargo Neves A, Santos DS, Araújo WL (2015) Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp. BioMed Res Int. http://dx.doi.org/10.1155/2015/909016

  • Dudeja SS, Nidhi (2013) Molecular diversity of rhizobial and nonrhizobial bacteria from nodules of cool season legumes. In: Salar RK, Gahlawat SK, Siwach P, Duhan JS (eds) Biotechnology: prospects and applications. Springer, India, pp 113–125

    Chapter  Google Scholar 

  • Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato Y-I, Morisaki H, Mitsui H, Minamisawa K (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant Nutr 46(3):617–629

    Article  Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67(11):5285–5293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Estrada GA, Baldani VLD, de Oliveira DM, Urquiaga S, Baldani JI (2013) Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant Soil 369(1–2):115–129

    Article  CAS  Google Scholar 

  • Feller IC (1995) Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecol Monogr 65(4):477–505

    Article  Google Scholar 

  • Figueiredo M, Martinez C, Burity H, Chanway C (2008) Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol 24(7):1187–1193

    Article  CAS  Google Scholar 

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59(5):1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76(5):1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Forchetti G, Masciarelli O, Izaguirre MJ, Alemano S, Alvarez D, Abdala G (2010) Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. Curr Microbiol 61(6):485–493

    Article  CAS  PubMed  Google Scholar 

  • Gholami M, Khakvar R, Niknam G (2014) Introduction of some new endophytic bacteria from Bacillus and Streptomyces genera as successful biocontrol agents against Sclerotium rolfsii. Arch Phytopathol Plant Protect 47(1):122–130

    Article  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117

    Article  CAS  Google Scholar 

  • Glick BR (2015) Introduction to plant growth-promoting bacteria. In: Beneficial plant-bacterial interactions. Springer International Publishing, Switzerland, pp 1–28

    Google Scholar 

  • Glick B, Patten C, Holguin G, Penrose D (1999) Overview of plant growth-promoting bacteria. In: Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, pp 1–13

    Chapter  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Govindarajan M, Kwon S-W, Weon H-Y (2007) Isolation, molecular characterization and growth-promoting activities of endophytic sugarcane diazotroph Klebsiella sp. GR9. World J Microbiol Biotechnol 23(7):997–1006

    Article  CAS  Google Scholar 

  • Govindarajan M, Balandreau J, Kwon S-W, Weon H-Y, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55(1):21–37

    Article  PubMed  Google Scholar 

  • Guerny K, Mantle P (1993) Biosynthesis of 1-N-methylalbonoursin by an endophytic Streptomyces sp. J Nat Prod 56:1194–1199

    Article  Google Scholar 

  • Gupta G, Panwar J, Jha PN (2013) Natural occurrence of Pseudomonas aeruginosa, a dominant cultivable diazotrophic endophytic bacterium colonizing Pennisetum glaucum (L.) R. Br. Appl Soil Ecol 64:252–261

    Article  Google Scholar 

  • Gupta G, Parihar S, Ahirwar N, Snehi S, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:096–102

    Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee W, Kloepper J (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914

    Article  CAS  Google Scholar 

  • Hardoim P, Nissinen R, van Elsas JD (2012) Ecology of bacterial endophytes in sustainable agriculture. In: Bacteria in agrobiology: plant probiotics. Springer, New York, pp 97–126

    Chapter  Google Scholar 

  • Hung PQ, Annapurna K (2004) Isolation and characterization of endophytic bacteria in soybean (Glycine sp.). Omonrice 12:92–101

    Google Scholar 

  • Ikeda AC, Bassani LL, Adamoski D, Stringari D, Cordeiro VK, Glienke C, Steffens MBR, Hungria M, Galli-Terasawa LV (2013) Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microb Ecol 65(1):154–160

    Article  PubMed  Google Scholar 

  • Inderiati S, Franco CM (2008) Isolation and identification of endophytic actinomycetes and their antifungal activity. J Biotechnol Res 1:1–6

    Google Scholar 

  • Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant-Microbe Interact 17(10):1078–1085

    Article  CAS  PubMed  Google Scholar 

  • Isawa T, Yasuda M, Awazaki H, Minamisawa K, Shinozaki S, Nakashita H (2009) Azospirillum sp. strain B510 enhances rice growth and yield. Microbes Environ/JSME 25(1):58–61

    Article  Google Scholar 

  • Ivanova E, Doronina N, Trotsenko YA (2001) Aerobic methylobacteria are capable of synthesizing auxins. Microbiology 70(4):392–397

    Article  CAS  Google Scholar 

  • Ivanova E, Pirttilä A, Fedorov D, Doronina N, Trotsenko Y (2008) Association of methylotrophic bacteria with plants: metabolic aspects. In: Prospects and applications for plant associated microbes a laboratory manual, part A: bacteria. Biobien Innovations, Turku, pp 225–231

    Google Scholar 

  • Jacobs MJ, Bugbee WM, Gabrielson DA (1985) Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can J Bot 63(7):1262–1265

    Article  Google Scholar 

  • James E, Reis V, Olivares F, Baldani J, Döbereiner J (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45(6):757–766

    Article  CAS  Google Scholar 

  • Jasim B, Jimtha John C, Shimil V, Jyothis M, Radhakrishnan E (2014) Studies on the factors modulating indole-3-acetic acid production in endophytic bacterial isolates from Piper nigrum and molecular analysis of ipdc gene. J Appl Microbiol 117(3):786–799

    Article  CAS  PubMed  Google Scholar 

  • Jha P, Kumar A (2009) Characterization of novel plant growth promoting endophytic bacterium Achromobacter xylosoxidans from wheat plant. Microb Ecol 58(1):179–188

    Article  CAS  PubMed  Google Scholar 

  • Ji SH, Gururani MA, Chun S-C (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98

    Article  CAS  PubMed  Google Scholar 

  • Kang SH, Cho H, Cheong H, Ryu C, Kim JF, Park S (2007) Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.). J Microbiol Biotechnol 17(1):96–103

    CAS  PubMed  Google Scholar 

  • Khalid A, Akhtar M, Mahmood M, Arshad M (2006) Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology 75(2):231–236

    Article  CAS  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1(1):48–58

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7(2):39–44

    Article  Google Scholar 

  • Kluepfel DA (1993) The behavior and tracking of bacteria in the rhizosphere. Annu Rev Phytopathol 31(1):441–472

    Article  Google Scholar 

  • Kobayashi D, Palumbo J (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Microbial endophytes. Dekker, New York, pp 199–233

    Google Scholar 

  • Kumar R, Bhatia R, Kukreja K, Behl RK, Dudeja SS, Narula N (2007) Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.). J Basic Microbiol 47(5):436–439

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Amaresan N, Bhagat S, Madhuri K, Srivastava RC (2011) Isolation and characterization of rhizobacteria associated with coastal agricultural ecosystem of rhizosphere soils of cultivated vegetable crops. World J Microbiol Biotechnol 27(7):1625–1632

    Article  Google Scholar 

  • Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2014a) Deciphering the diversity of culturable thermotolerant bacteria from Manikaran hot springs. Ann Microbiol 64(2):741–751

    Article  CAS  Google Scholar 

  • Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2014b) Evaluating the diversity of culturable thermotolerant bacteria from four hot springs of India. J Biodivers Biopros Dev. http://dx.doi.org/10.4172/ijbbd.1000127

  • Lacava PT, Azevedo JL (2013) Endophytic bacteria: a biotechnological potential in agrobiology system. In: Bacteria in agrobiology: crop productivity. Springer, Berlin Heidelberg, pp 1–44

    Chapter  Google Scholar 

  • Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102(10):967–973

    Article  CAS  PubMed  Google Scholar 

  • Larran S, Perelló A, Simón MR, Moreno V (2007) The endophytic fungi from wheat (Triticum aestivum L.). World J Microbiol Biotechnol 23(4):565–572

    Article  Google Scholar 

  • Lee SO, Choi GJ, Choi YH, Jang KS, Park D-J, Kim C-J, Kim J-C (2008) Isolation and characterization of endophytic actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae. J Microbiol Biotechnol 18(11):1741–1746

    CAS  PubMed  Google Scholar 

  • Li G, Dong Q, Ma L, Huang Y, Zhu M, Ji Y, Wang Q, Mo M, Zhang K (2014) Management of Meloidogyne incognita on tomato with endophytic bacteria and fresh residue of Wasabia japonica. J Appl Microbiol 117(4):1159–1167

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Xu X (2013) Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants. Curr Microbiol 67(2):209–217

    Article  CAS  PubMed  Google Scholar 

  • Loaces I, Ferrando L, Scavino AF (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61(3):606–618

    Article  PubMed  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ER, Taghavi S, Mezgeay M, der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21(6):583–606

    Article  Google Scholar 

  • Magnani G, Didonet C, Cruz L, Picheth C, Pedrosa F, Souza E (2010) Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res 9(1):250–258

    Article  CAS  PubMed  Google Scholar 

  • Manter DK, Delgado JA, Holm DG, Stong RA (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60(1):157–166

    Article  PubMed  Google Scholar 

  • Matsumura E, Secco V, Moreira R, dos Santos O, Hungria M, de Oliveira A (2015) Composition and activity of endophytic bacterial communities in field-grown maize plants inoculated with Azospirillum brasilense. Ann Microbiol. doi:10.1007/s13213-015-1059-4

    Google Scholar 

  • Mcinroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173(2):337–342

    Article  CAS  Google Scholar 

  • Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73(22):7259–7267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mercado-Blanco J (2015) Life of microbes inside the plant. In: Principles of plant-microbe interactions. Springer International Publishing, Switzerland, pp 25–32

    Google Scholar 

  • Mercado-Blanco J, Lugtenberg JJB (2014) Biotechnological applications of bacterial endophytes. Curr Biotechnol 3(1):60–75

    Article  CAS  Google Scholar 

  • Mingma R, Pathom-aree W, Trakulnaleamsai S, Thamchaipenet A, Duangmal K (2014) Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. World J Microbiol Biotechnol 30(1):271–280

    Article  CAS  PubMed  Google Scholar 

  • Montanez A, Blanco AR, Barlocco C, Beracochea M, Sicardi M (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol 58:21–28

    Article  Google Scholar 

  • Muthukumarasamy R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, Gum KU, Park K-D, Son CY, Sa T (2005) Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28(3):277–286

    Article  CAS  PubMed  Google Scholar 

  • Nagendran K, Karthikeyan G, Peeran MF, Raveendran M, Prabakar K, Raguchander T (2013) Management of bacterial leaf blight disease in rice with endophytic bacteria. World Appl Sci J 28(12):2229–2241

    Google Scholar 

  • Naik BS, Shashikala J, Krishnamurthy Y (2009) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 164(3):290–296

    Article  CAS  PubMed  Google Scholar 

  • Nath R, Sharma G, Barooah M (2013) Screening of endophytic bacterial isolates of Tea (Camellia sinensis L.) roots for their multiple plant growth promoting activities. Int J Agric Environ Biotechnol 6(2):211–215

    Google Scholar 

  • Natheer SE, Muthukkaruppan S (2012) Assessing the in vitro zinc solubilization potential and improving sugarcane growth by inoculating Gluconacetobacter diazotrophicus. Ann Microbiol 62(1):435–441

    Article  CAS  Google Scholar 

  • Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S (2014) Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol 118(8):683–694

    Article  CAS  PubMed  Google Scholar 

  • Okubo T, Ikeda S, Kaneko T, Eda S, Mitsui H, Sato S, Tabata S, Minamisawa K (2009) Nodulation-dependent communities of culturable bacterial endophytes from stems of field-grown soybeans. Microbes Environ 24(3):253–258

    Article  PubMed  Google Scholar 

  • Olivares FL, Baldani VL, Reis VM, Baldani JI, Döbereiner J (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biol Fertil Soils 21(3):197–200

    Article  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    Article  CAS  PubMed  Google Scholar 

  • Pageni BB, Lupwayi NZ, Larney FJ, Kawchuk LM, Gan Y (2013) Populations, diversity and identities of bacterial endophytes in potato (Solanum tuberosum L.) cropping systems. Can J Plant Sci 93(6):1125–1142

    Article  CAS  Google Scholar 

  • Pandey S, Singh S, Yadav AN, Nain L, Saxena AK (2013) Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci Biotechnol Biochem 77(7):1474–1480

    Article  CAS  PubMed  Google Scholar 

  • Park K-H, Lee O-M, Jung H-I, Jeong J-H, Jeon Y-D, Hwang D-Y, Lee C-Y, Son H-J (2010) Rapid solubilization of insoluble phosphate by a novel environmental stress-tolerant Burkholderia vietnamiensis M6 isolated from ginseng rhizospheric soil. Appl Microbiol Biotechnol 86(3):947–955

    Article  CAS  PubMed  Google Scholar 

  • Pavlo A, Leonid O, Iryna Z, Natalia K, Maria PA (2011) Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.). Biol Control 56(1):43–49

    Article  Google Scholar 

  • Pedraza R (2015) Siderophores production by Azospirillum: biological importance, assessing methods and biocontrol activity. In: Cassán FD, Okon Y, Creus CM (eds) Handbook for Azospirillum. Springer International Publishing, Switzerland, pp 251–262

    Google Scholar 

  • Pimentel IC, Glienke-Blanco C, Gabardo J, Stuart RM, Azevedo JL (2006) Identification and colonization of endophytic fungi from soybean (Glycine max (L.) Merril) under different environmental conditions. Braz Arch Biol Technol 49(5):705–711

    Article  Google Scholar 

  • Piromyou P, Greetatorn T, Teamtisong K, Okubo T, Shinoda R, Nuntakij A, Tittabutr P, Boonkerd N, Minamisawa K, Teaumroong N (2015) Preferential association of endophytic bradyrhizobia with different rice cultivars and its implications for rice endophyte evolution. Appl Environ Microbiol 81(9):3049–3061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poonguzhali S, Madhaiyan M, Sa T (2006) Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris ssp pekinensis and screening of traits for potential plant growth promotion. Plant Soil 286(1–2):167–180

    Article  CAS  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2009) Rock-degrading endophytic bacteria in cacti. Environ Exp Bot 66(3):389–401

    Article  CAS  Google Scholar 

  • Purnawati A (2014) Endophytic bacteria as biocontrol agents of tomato bacterial wilt disease. J Trop Life Sci 4(1):33–36

    Google Scholar 

  • Quadt-Hallmann A, Kloepper J, Benhamou N (1997) Bacterial endophytes in cotton: mechanisms of entering the plant. Can J Microbiol 43(6):577–582

    Article  CAS  Google Scholar 

  • Quecine M, Lacava P, Magro S, Parra J, Araújo W, Azevedo J, Pizzirani Kleiner A (2011) Partial characterization of chitinolytic extract from endophytic Streptomyces sp. and its effects on the boll weevil. J Agric Sci Technol 5:420–427

    Google Scholar 

  • Quecine M, Araújo W, Rossetto P, Ferreira A, Tsui S, Lacava P, Mondin M, Azevedo J, Pizzirani-Kleiner A (2012) Sugarcane growth promotion by the endophytic bacterium Pantoea agglomerans 33.1. Appl Environ Microbiol 78(21):7511–7518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rado R, Andrianarisoa B, Ravelomanantsoa S, Rakotoarimanga N, Rahetlah V, Fienena F, Andriambeloson O (2015) Biocontrol of potato wilt by selective rhizospheric and endophytic bacteria associated with potato plant. Afr J Food Agric Nutr Dev 15(1):9762–9776

    Google Scholar 

  • Ramesh R, Joshi A, Ghanekar M (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J Microbiol Biotechnol 25(1):47–55

    Article  Google Scholar 

  • Rangjaroen C, Rerkasem B, Teaumroong N, Noisangiam R, Lumyong S (2014) Promoting plant growth in a commercial rice cultivar by endophytic diazotrophic bacteria isolated from rice landraces. Ann Microbiol. doi:10.1007/s13213-014-0857-4

    Google Scholar 

  • Rasche F, Trondl R, Naglreiter C, Reichenauer TG, Sessitsch A (2006) Chilling and cultivar type affect the diversity of bacterial endophytes colonizing sweet pepper (Capsicum anuum L.). Can J Microbiol 52(11):1036–1045

    Article  CAS  PubMed  Google Scholar 

  • Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224

    Article  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6(4):139–144

    Article  CAS  PubMed  Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68(5):2261–2268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reiter B, Wermbter N, Gyamfi S, Schwab H, Sessitsch A (2003) Endophytic Pseudomonas spp. populations of pathogen-infected potato plants analysed by 16S rDNA-and 16S rRNA-based denaturating gradient gel electrophoresis. Plant Soil 257(2):397–405

    Article  CAS  Google Scholar 

  • Rokhbakhsh-Zamin F, Sachdev D, Kazemi-Pour N, Engineer A, Pardesi KR, Zinjarde S, Dhakephalkar PK, Chopade BA (2011) Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J Microbiol Biotechnol 21(6):556–566

    PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19(8):827–837

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Sacherer P, Défago G, Haas D (1994) Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 116(2):155–160

    Article  CAS  PubMed  Google Scholar 

  • Saini R, Dudeja SS, Giri R, Kumar V (2015) Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. J Basic Microbiol 55(1):74–81

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Saravanan V, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66(9):1794–1798

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy A (2013) Legume root nodule associated bacteria. In: Plant microbe symbiosis: fundamentals and advances. Springer, India, pp 215–232

    Chapter  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50(4):239–249

    Article  CAS  PubMed  Google Scholar 

  • Sheng X-F, Xia J-J, Jiang C-Y, He L-Y, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156(3):1164–1170

    Article  CAS  PubMed  Google Scholar 

  • Shilev S (2013) Soil rhizobacteria regulating the uptake of nutrients and undesirable elements by plants. In: Plant microbe symbiosis: fundamentals and advances. Springer, India, pp 147–167

    Chapter  Google Scholar 

  • Stella M, Halimi M (2015) Gluconic acid production by bacteria to liberate phosphorus from insoluble phosphate complexes. J Trop Agric Food Sci 43(1):41–53

    Google Scholar 

  • Stone JK, Bacon CW, White J (2000) An overview of endophytic microbes: endophytism defined. Microbial Endophytes 3:29–33

    Google Scholar 

  • Sturz A (1995) The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil 175(2):257–263

    Article  CAS  Google Scholar 

  • Sturz A, Christie B, Matheson B (1998) Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can J Microbiol 44(2):162–167

    Article  CAS  Google Scholar 

  • Suman A, Solomon S, Yadav DV, Gaur A, Singh M (2000) Post-harvest loss in sugarcane quality due to endophytic microorganisms. Sugar Tech 2(4):21–25

    Article  Google Scholar 

  • Suman A, Shasany AK, Singh M, Shahi HN, Gaur A, Khanuja SPS (2001) Molecular assessment of diversity among endophytic diazotrophs isolated from subtropical Indian sugarcane. World J Microbiol Biotechnol 17(1):39–45

    Article  CAS  Google Scholar 

  • Suman A, Gaur A, Shrivastava AK, Yadav RL (2005) Improving sugarcane growth and nutrient uptake by inoculating Gluconacetobacter diazotrophicus. Plant Growth Regul 47(2–3):155–162

    Article  CAS  Google Scholar 

  • Suman A, Shrivastava AK, Gaur A, Singh P, Singh J, Yadav RL (2008) Nitrogen use efficiency of sugarcane in relation to its BNF potential and population of endophytic diazotrophs at different N levels. Plant Growth Regul 54(1):1–11

    Article  CAS  Google Scholar 

  • Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55(3):415–424

    Article  CAS  PubMed  Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2015) Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris) rhizosphere as revealed by 16S rRNA gene sequences. Biologia 70(3):305–313

    Article  CAS  Google Scholar 

  • Szilagyi-Zecchin VJ, Ikeda AC, Hungria M, Adamoski D, Kava-Cordeiro V, Glienke C, Galli-Terasawa LV (2014) Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express 4(1):26

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tam HM, Diep CN (2014) Isolation, characterization and identification of endophytic bacteria in sugarcane (Saccharum spp. L.) cultivated on soils of the Dong Nai province, Southeast of Vietnam. Am J Life Sci 2(6):361–368

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tariq M, Hameed S, Yasmeen T, Zahid M, Zafar M (2014) Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World J Microbiol Biotechnol 30(2):719–725

    Article  CAS  PubMed  Google Scholar 

  • Taulé C, Mareque C, Barlocco C, Hackembruch F, Reis VM, Sicardi M, Battistoni F (2012) The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 356(1–2):35–49

    Article  CAS  Google Scholar 

  • Thanh DTN, Diep CN (2014) Isolation, characterization and identification of endophytic bacteria in maize (Zea mays L.) cultivated on Acrisols of the Southeast of Vietnam. Am J Life Sci 2(4):224–233

    Article  CAS  Google Scholar 

  • Tian X, Cao L, Tan H, Zeng Q, Jia Y, Han W, Zhou S (2004) Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. World J Microbiol Biotechnol 20(3):303–309

    Article  Google Scholar 

  • Tian X, Cao L, Tan H, Han W, Chen M, Liu Y, Zhou S (2007) Diversity of cultivated and uncultivated actinobacterial endophytes in the stems and roots of rice. Microb Ecol 53(4):700–707

    Article  PubMed  Google Scholar 

  • Tilak K, Ranganayaki N, Pal K, De R, Saxena A, Nautiyal CS, Mittal S, Tripathi A, Johri B (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89(1):136–150

    CAS  Google Scholar 

  • Vendan RT, Yu YJ, Lee SH, Rhee YH (2010) Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol 48(5):559–565

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2013) Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Natl J Life Sci 10(2):219–226

    CAS  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 3(5):432–447

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2015a) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol (in press)

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015b) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol. doi:10.1007/s13213-014-1027-4

    Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. doi:10.1186/1471-2180-9-174

    PubMed Central  PubMed  Google Scholar 

  • Wei C-Y, Lin L, Luo L-J, Xing Y-X, Hu C-J, Yang L-T, Li Y-R, An Q (2014) Endophytic nitrogen-fixing Klebsiella variicola strain DX120E promotes sugarcane growth. Biol Fertil Soils 50(4):657–666

    Article  CAS  Google Scholar 

  • White JF Jr, Torres MS, Johnson H, Irizarry I, Tadych M (2014) A functional view of plant microbiomes: endosymbiotic systems that enhance plant growth and survival. In: Advances in endophytic research. Springer, India, pp 425–439

    Chapter  Google Scholar 

  • Xu M, Sheng J, Chen L, Men Y, Gan L, Guo S, Shen L (2014) Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World J Microbiol Biotechnol 30(3):835–845

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN (2015) Bacterial diversity of cold deserts and mining of genes for low temperature tolerance. PhD thesis (IARI/Birla Institute of Technology, Mesra, Ranchi), p 234

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol (in Press).

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015b) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119(6):683–693

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015c) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31(1):95–108

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK, Kaushik R, Saxena AK (2015d) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293. doi:10.1038/srep12293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Prasanna R, Saxena AK (2015e) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 62(2):611–629

    Article  Google Scholar 

  • Yaish MW, Antony I, Glick BR (2015) Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek. doi:10.1007/s10482-015-0445-z

    PubMed  Google Scholar 

  • Yang JW, Yu SH, Ryu C-M (2009) Priming of defense-related genes confers root-colonizing bacilli-elicited induced systemic resistance in pepper. Plant Pathol J 25(4):389–399

    Article  Google Scholar 

  • Yanni Y, Dazzo F, Zidan M (2011) Beneficial endophytic rhizobia as biofertilizer inoculants for rice and the spatial ecology of this bacteria–plant association. In: Bacteria in agrobiology: crop ecosystems. Springer, Berlin Heidelberg, pp 265–294

    Chapter  Google Scholar 

  • Yashiro E, Spear R, McManus P (2011) Culture-dependent and culture-independent assessment of bacteria in the apple phyllosphere. J Appl Microbiol 110(5):1284–1296

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archna Suman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Suman, A., Yadav, A.N., Verma, P. (2016). Endophytic Microbes in Crops: Diversity and Beneficial Impact for Sustainable Agriculture. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_7

Download citation

Publish with us

Policies and ethics