Skip to main content

Microbial Inoculant: Modern Era of Fertilizers and Pesticides

  • Chapter
  • First Online:
Microbial Inoculants in Sustainable Agricultural Productivity

Abstract

In past few decades of agriculture history, chemical fertilizers and pesticides contributed significantly to boost agro-production even in few years of introduction. Their special attributes such as quick and nonspecific action and less expensive, low-cost production and storage make them more acceptable widely. However, their lethal effects on plants, animals, humans, and the environment diverted attention toward eco-friendly alternative. In addition, developing resistance in pests becomes an unresolved puzzle in current time frame and a raising demand for reliable and environment-friendly tool for plant disease management. In view of the growing concern toward safe and nutritious food, biofertilizers and biopesticides seem crucial component of modern agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Halim NB (2009) Effects of using enhanced biofertilizer containing N-fixer bacteria on patchouli growth. Thesis, Faculty of Chemical and Natural Resources Engineering University Malaysia Pahang, p 145

    Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbiol Ecol 58:921–929

    Article  CAS  Google Scholar 

  • Afify AEMR, Abo-El-Seoud MA, Ibrahim GM, Kassem BW (2013) Stimulating of biodegradation of Oxamyl pesticide by low dose gamma irradiated fungi. Plant Pathol Microbiol. doi:10.4172/2157-7471.1000201

  • Ahemad M, Khan MS (2010) Ameliorative effects of Mesorhizobium sp. MRC4 on chickpea yield and yield components under different doses of herbicide stress. Pestic Biochem Physiol 98:183–190

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2011) Toxicological assessment of selective pesticides towards plant growth promoting activities of phosphate solubilizing Pseudomonas aeruginosa. Acta Microbiol Immunol Hung 58:169–187

    Article  PubMed  CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Ahmad F, Uddin S, Ahmad N, Islam R (2013) Phosphorus–microbes interaction on growth: yield and phosphorus-use efficiency of irrigated cotton. Arch Acker PFL Boden 59:341–351

    Google Scholar 

  • Aislabie J, Bej AK, Ryburn J, Lloyd N, Wilkins A (2005) Characterization of Arthrobacter nicotinovorans HIM, an atrazine degrading bacterium, from agricultural soil New Zealand. FEMS Microbiol Ecol 52:279–286

    Article  PubMed  CAS  Google Scholar 

  • Apajalahti JHA, Karpanoja P, Salkinoja-Salonen MS (1986) Rhodococcus chlorophenolicus sp. nov., a chlorophenol-mineralizing actinomycete. Int J Syst Bacteriol 36:246–251

    Article  CAS  Google Scholar 

  • Arriagada C, Aranda E, Sampedro I, Garcia-Romera I, Ocampo JA (2009) Contribution of the saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular mycorrhzal fungi Glomus deserticola and G. claroideum to arsenic tolerance of Eucalyptus globulus. Bioresour Technol 24:6250–6257

    Article  CAS  Google Scholar 

  • Asadhi S, Reddy BVB, Sivaprasad Y, Prathyusha M, Krishna TM, Kumar KVK, Reddy KR (2013) Characterization, genetic diversity and antagonistic potential of 2,4-diacetylphloroglucinol producing Pseudomonas fluorescens isolates in groundnut-based cropping systems of Andhra Pradesh, India. Arch Phytopathol Plant Prot. http://dx.doi.org/10.1080/03235408.2013.782223

    Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  PubMed  CAS  Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ (2002) Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agents. Physiol Mol Plant Pathol 61:289–298

    Article  CAS  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Benimeli CS, Fuentes MS, Abate CM, Amoroso MJ (2008) Bioremediation of lindane-contaminated soil by Streptomyces sp. M7 and its effects on Zea mays growth. Int Biodeterior Biodegrad 61:233–239

    Article  CAS  Google Scholar 

  • Benítez T, Rincón MA, Limón MC, Codón CA (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  PubMed  CAS  Google Scholar 

  • Bisseling T, Dangl JL, Schulze-Lefert P (2009) Next-generation communication. Science 324:691

    Article  PubMed  CAS  Google Scholar 

  • Bixby MW, Bousch GM, Matsumura F (1971) Degradation of dieldrin to carbon dioxide by soil fungus Trichoderma koningii. Bull Environ Contam Toxicol 64:491–494

    Article  Google Scholar 

  • Boricha H, Fulekar MH (2009) Pseudomonas plecoglossicida as a novel organism for the bioremediation of cypermethrin. Biol Med 1(4):1–10

    CAS  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-, Hg- and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere 74(2):280–286

    Article  PubMed  CAS  Google Scholar 

  • Bruinsma J (2003) World agriculture: towards 2015/2030. An FAO perspective. Earthscan, London

    Google Scholar 

  • Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, Shen Q (2011) Bacillus subtilis Sqr 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils 47:495–506

    Article  CAS  Google Scholar 

  • Chaparro AP, Carvajal LH, Orduz S (2011) Fungicide tolerance of Trichoderma asperelloides and T. harzianum strains. Agric Sci 2(3):301–307

    CAS  Google Scholar 

  • CMG GardenNotes No. 213 (2014) Managing Soil Tilth. Colorado state university garden notes

    Google Scholar 

  • Cook RJ (2000) Advances in plant health management in the twentieth century. Annu Rev Phytopathol 38:95–116

    Article  PubMed  CAS  Google Scholar 

  • Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim DS (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci U S A 92:4197

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cropper ML, Evans WN, Berardi SJ, Ducla-Soares MM, Portney PR (1992) The determinants of pesticide regulation: a statistical analysis of EPA decision making. J Polit Econ 100:175–197

    Article  Google Scholar 

  • Dams RI, Paton GI, Killham K (2007) Rhizoremediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Chemosphere 68:864–870

    Article  PubMed  CAS  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    Article  PubMed  CAS  Google Scholar 

  • Dimkic I, Zivkovic S, Beric T, Ivanovic Z, Gavrilovic V, Stankovic S, Fira D (2013) Characterization and evaluation of two Bacillus strains, SS-12.6 and SS-13.1 as potential agents for the control of phytopathogenic bacteria and fungi. Biol Control 65:312–321

    Article  Google Scholar 

  • Dong HZ, Li WJ, Zhang DM, Tang W (2003) Differential expression of induced resistance by an aqueous extract of killed Penicillium chrysogenum against Verticillium wilt of cotton. Crop Prot 22:129–134

    Article  Google Scholar 

  • Döring TF, Pautasso M, Finckh MR, Wolfe MS (2012) Concepts of plant health–reviewing and challenging the foundations of plant protection. Plant Pathol 61:01–15

    Article  Google Scholar 

  • Duijff BJ, Gianinazzi-Pearson V, Lemanceau P (1997) Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytol 135:325–334

    Article  CAS  Google Scholar 

  • Edwards J, Porter IJ, Imhof M (no date) Soil health – what is it, how do we assess it and how do we improve it? In: Water and Wine, Managing the Challenge. Fact Sheet Module 13. Department of Primary Industries, Victoria (http://research.wineaustralia.com/wp-content/uploads/2012/09/FS-Soil-Health.pdf).

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:01–09

    CAS  Google Scholar 

  • El-Kassas HY, El-Taher EM (2009) Optimization of batch process parameters by response surface methodology for mycoremediation of Chrome-VI by a chromium resistant strain of marine Trichoderma Viride. American-Eurasian J Agric Environ Sci 5:676–681

    CAS  Google Scholar 

  • Elsharkawya MM, Shimizu M, Takahashi H, Hyakumachi M (2012) Induction of systemic resistance against Cucumber mosaic virus by Penicillium simplicissimum GP17-2 in Arabidopsis and tobacco. Plant Pathol 61:964–976

    Article  CAS  Google Scholar 

  • Errasquin EL, Vazquez C (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50:137–143

    Article  Google Scholar 

  • Ezzi MI, Lynch JM (2005) Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. Enzyme Microbiol Technol 36:849–854

    Article  CAS  Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y, Savchuk S (2007) Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot 26:100–107

    Article  Google Scholar 

  • Fertilizer (1998) How products are made. Retrieved 16 Apr 2015 from Encyclopedia.com:http://www.encyclopedia.com/doc/1G2-2896700038.html

  • Fontenelle ADB, Guzzo SD, Lucon CMM (2011) Harakaya RGrowth promotion and induction of resistance in tomato plant against Xanthomonas euvesicatoria and Alternaria solani by Trichoderma spp. Crop Prot 30:1492–1500

    Article  Google Scholar 

  • Fragoeiro S, Magan N (2008) Impact of Trametes versicolor and Phanerochaete crysosporium on differential breakdown of pesticide mixtures in soil microcosms at two water potentials and associated respiration and enzyme activity. Int Biodeterior Biodegrad 62:376–383

    Article  CAS  Google Scholar 

  • Fravel DR (2005) Commercialisation and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  PubMed  CAS  Google Scholar 

  • Fulekar MH (2009) Bioremediation of fenvalerate by Pseudomonas aeruginosa in a scale up bioreactor. Roman Biotechnol Lett 14(6):4900–4905

    CAS  Google Scholar 

  • Gai CS, Lacava PT, Quecine MC, Auriac MC, Lopes JRS, Araújo WL, Miller TA, Azevedo JL (2009) Transmission of Methylobacterium mesophilicum by Bucephalogonia xanthophis for paratransgenic control strategy of citrus variegated chlorosis. J Microbiol 47:448–454

    Article  PubMed  Google Scholar 

  • Gholami A, Shahsavani S, Nezarat S (2009) The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int J Biol Life Sci 1:35–40

    Google Scholar 

  • Gopalakrishnan S, Humayun P, Kiran BK, Kannan GK, Sree Vidya M, Deepthi K, Rupela O (2011) Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World J Microbiol Biotechnol 27(6):1313–1321

    Article  PubMed  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gupta AK (2004) The complete technology book on biofertilizers and organic farming. National Institute of Industrial Research Press, Delhi

    Google Scholar 

  • Gupta A, Rai V, Bagdwal N, Goel R (2005) In situ characterization of mercury resistant growth promoting fluorescent pseudomonads. Microbiol Res 160:385–388

    Article  PubMed  CAS  Google Scholar 

  • Habibi A, Heidari G, Sohrabi Y, Badakhshan H, Mohammadi K (2011) Influence of bio, organic and chemical fertilizers on medicinal pumpkin traits. J Med Plant Res 5(23):5590–5597

    CAS  Google Scholar 

  • Hajieghrari B (2010) Effect of some metal-containing compounds and fertilizers on mycoparasite Trichoderma species mycelia growth response. Afr J Biotechnol 9(26):4025–4033

    CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  PubMed  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Higa T, Parr JF (1994) Beneficial and effective microorganisms for a sustainable agriculture and environment, vol 1. International Nature Farming Research Center, Atami

    Google Scholar 

  • Hilborne LH, Golomb BA, Marshall GN, Davis LM, Sherbourne CD, Augerson W, Spektor DM, Harley N, Foulkes E, Arlene H, Ross Anthony C, Cecchine G, Marlowe DH, Rettig RA, Fricker RD, Reardon E, Cotton SK, Hawes-Dawson J, Pace JE, Hosek SD (2005) Examining possible causes of Gulf war illness: RAND policy investigations and reviews of the scientific literature. RAND Corporation, Santa Monica. http://www.rand.org/pubs/researchbriefs/RB7544

    Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:04–10

    Article  Google Scholar 

  • Ivanova EG, Fedorov DN, Doronina NV, Trotsenko YA (2006) Production of vitamin B12 in aerobic methylotrophic bacteria. Microbiology 75:494–496

    Article  CAS  Google Scholar 

  • Jogaiah S, Abdelrahman M, Tran LSP, Shin-ichi I (2013) Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. J Exp Bot 64:3829–3842

    Article  PubMed  CAS  Google Scholar 

  • Joshi SR (2006) Biopesticides. A biotechnological approach. New Age International (P) Limited, New Delhi, p 1

    Google Scholar 

  • Katayama A, Matsumura F (1993) Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environ Toxicol Chem 12:1059–1065

    Article  CAS  Google Scholar 

  • Kathiresan G, Manickam G, Parameswaran P (1995) Efficiency of phosphobacteria addition on cane yield and quality. Coop Sugar 26:629–631

    Google Scholar 

  • Kavino M, Harish S, Kumar N, Saravanakumar D, Samiyappan R (2008) Induction of systemic resistance in banana (Musa spp.) against banana bunchy top virus (BBTV) by combining chitin with root-colonizing Pseudomonas fluorescens strain CHA0. Eur J Plant Pathol 120:353–362

    Article  CAS  Google Scholar 

  • Kennedy DW, Aust SD, Bumpus JA (1990) Comparative biodegradation of alkyl halide insecticides by the white rot fungus Phanerochaete chrysosporium (BKM-F-1767). Appl Environ Microbiol 56:2347–2353

    PubMed Central  PubMed  CAS  Google Scholar 

  • Keum YS, Lee YJ, Kim JH (2008) Metabolism of nitrodiphenyl ether herbicides by dioxin-degrading bacterium Sphingomonas wittichii RW1. J Agric Food Chem 56:9146–9151

    Article  PubMed  CAS  Google Scholar 

  • Kredics L, Antal L, Manczinger L, Nagy E (2001) Breeding of mycoparasitic Trichoderma strains for heavy metal resistance. Lett Appl Microbiol 33:112–116

    Article  PubMed  CAS  Google Scholar 

  • Leeman M, VanPelt JA, DenOuden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995a) Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. Eur J Plant Pathol 101:655–664

    Article  Google Scholar 

  • Leeman M, VanPelt JA, DenOuden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995b) Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027

    Article  CAS  Google Scholar 

  • Leitão AL (2009) Potential of Penicillium species in the bioremediation field. Int J Environ Res Public Health 6(4):1393–1417

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu YY, Xiong Y (2001) Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256 isolated from sewage. Appl Environ Microbiol 67:3746–3749

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu YH, Huang CJ, Chen CY (2010) Identification and transcriptional analysis of genes involved in Bacillus cereus induced systemic resistance in Lilium. Biol Plant 54:697–702

    Article  CAS  Google Scholar 

  • Martínez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ (2001) Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 183:5684–5697

    Article  PubMed Central  PubMed  Google Scholar 

  • Matsubara M, Lynch JM, De Leij FAAM (2006) A simple screening procedure for selecting fungi with potential for use in the bioremediation of contaminated land. Enzyme Microbiol Technol 39(7):1365–1372

    Article  CAS  Google Scholar 

  • Matsumura F, Boush GM (1966) Malathion degradation by Trichoderma viride and a Pseudomonas species. Science 153(3741):1278–1280

    Article  PubMed  CAS  Google Scholar 

  • Mazid M, Khan TA (2014) Future of bio-fertilizers in Indian agriculture: an overview. Int J Agr Food Res 3:10–23

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial plant pathogenic and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  PubMed  CAS  Google Scholar 

  • Mercado-Blanco J, Bakker PAHM (2007) Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 92:367–389

    Article  PubMed  Google Scholar 

  • Mervat SM (2009) Degradation of methomyl by the novel bacterial strain Stenotrophomonas maltophilia M1. Elect J Biotechnol 12(4):1–6

    Google Scholar 

  • Mizumoto S, Hirai M, Shoda M (2007) Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Appl Microbiol Biotechnol 75:1267–1274

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi K (2010) Ecophysiological response of canola (Brassica napus L.) to different fertility systems in crop rotation. PhD thesis, Agronomy Department, Tarbiat Modares University, Tehran, Iran, p 354

    Google Scholar 

  • Mohammadi K, Yousef Sohrabi Y (2012) Bacterial biofertilizers for sustainable crop production: a review. J Agric Biol Sci 7:307–316

    Google Scholar 

  • Mohammadi K, Ghalavand A, Aghaalikhani M, Heidari GR, Sohrabi Y (2011) Introducing the sustainable soil fertility system for chickpea (Cicer arietinum L.). Afr J Biotechnol 10(32):6011–6020

    Google Scholar 

  • Mougin C, Laugero C, Asther M, Dubroca J, Frasse P, Asther M (1994) Biotransformation of the herbicide atrazine by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 60:705–708

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nagaraju A, Sudisha J, Mahadevamurthy S, Shin-ichi I (2012) Seed priming with Trichoderma harzianum isolates enhances plant growth and induces resistance against Plasmopara halstedii, an incident of sunflower downy mildew disease. Aust J Plant Pathol 41:609–620

    Article  Google Scholar 

  • Nielsen MN, Winding A (2002) Microorganisms as indicators of soil health. National Environmental Research Institute, Denmark. Technical Report No. 388

    Google Scholar 

  • Nobbe F, Hiltner L (1896) Inoculation of the soil for cultivating leguminous plants. US Patent 570,813

    Google Scholar 

  • Okon Y, Labandera-Gonzales CA (1994) Agronomic application of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Ongena M, Duby F, Rossignol F, Fauconnier ML, Dommes J, Thonart P (2004) Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain. Mol Plant Microbe Interact 17:1009–1018

    Article  PubMed  CAS  Google Scholar 

  • Owen D, Williams AP, Griffith GW, Withers PJA (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Appl Soil Ecol 86:41–54

    Article  Google Scholar 

  • Parekh NR, Walker A, Roberts SJ, Welch SJ (1994) Rapid degradation of the triazinone herbicide metamitron by a Rhodococcus sp. isolated from treated soil. J Appl Bacteriol 77(5):467–475

    Article  PubMed  CAS  Google Scholar 

  • Park JY, Oh SA, Anderson AJ, Neiswender J, Kim JC, Kim YC (2011) Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett Appl Microbiol 52(5):532–537

    Article  PubMed  CAS  Google Scholar 

  • Parr JF, Hornick SB, Kaufman DD (1994) Use of microbial inoculants and organic fertilizers in agricultural production. In: Proceedings of the international seminar on the use of microbial and organic fertilizers in agricultural production. Food and Fertilizer Technology Center, Taipei

    Google Scholar 

  • Patil KC, Matsumura F, Boush GM (1970) Degradation of endrin, aldrin, and DDT by soil microorganisms. Appl Microbiol 19:879–881

    PubMed Central  PubMed  CAS  Google Scholar 

  • Patil HJ, Srivastava AK, Kumar S, Chaudhari BL, Arora DK (2010) Selective isolation, evaluation and characterization of antagonistic actinomycetes against Rhizoctonia solani. World J Microbiol Biotechnol 26(12):2163–2170

    Article  CAS  Google Scholar 

  • Patil HJ, Srivastava AK, Singh DP, Chaudhari BL, Arora DK (2011) Actinomycetes mediated biochemical responses in tomato (Solanum lycopersicum) enhances bioprotection against Rhizoctonia solani. Crop Prot 30:1269–1273

    Article  CAS  Google Scholar 

  • Paul EA (2014) Soil microbiology, ecology and biochemistry. Academic, Boston

    Google Scholar 

  • Pelcastre MI, Navarrete JRVIAM, Rosas JC, Ramirez CAG, Sandoval OAA (2013) Bioremediation perspectives using autochthonous species of Trichoderma sp. for degradation of atrazine in agricultural soil from the Tulancingo valley, Hidalgo, Mexico. Tropl Subtrop Agroecosys 16:265–276

    CAS  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  PubMed  CAS  Google Scholar 

  • Press CM, Loper JE, Kloepper JW (2001) Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber. Phytopathology 91:593–598

    Article  PubMed  CAS  Google Scholar 

  • Quintero JC, Lu-Chau T, Moreira MT, Feijoo G, Lema JM (2007) Bioremediation of HCH present in soil by the white-rot fungus Bjerkandera adusta in a slurry batch bioreactor. Int Biodeterior Biodegrad 60:319–326

    Article  CAS  Google Scholar 

  • Raudales RE, McSpadden Gardener B (2008) Microbial biopesticides for the control of plant diseases in organic forming. Ohio State University fact sheet. Agric Natl Res 1–5

    Google Scholar 

  • Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Torres-Gutierrez R, El-Howeity M, Michiels J, Vanderleyden J (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161

    Article  CAS  Google Scholar 

  • Roesti D, Gaur R, Johri BN, Imfeld G, Sharma S, Kawaljeet K, Aragno M (2006) Plant growth stage: fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol Biochem 38:1111–1120

    Article  CAS  Google Scholar 

  • Rubilar O, Feijoo G, Diez MC, Lu-Chau TA, Moreira MT, Lema JM (2007) Biodegradation of pentachlorophenol in soil slurry cultures by Bjerkandera adusta and Anthracophyllum discolour. Ind Eng Chem Res 4:6744–6751

    Article  CAS  Google Scholar 

  • Russo A, Carrozza GP, Vettori L, Felici C, Cinelli F, Toffanin A (2012) Plant beneficial microbes and their application in plant biotechnology. In: Agbo EC (ed) Innovations in biotechnology. Intechopen, pp 57–72. doi:10.5772/2450

    Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sahoo RK, Bhardwaj D, Tuteja N (2013) Biofertilizers: a sustainable eco-friendly agricultural approach to crop improvement. In: Tuteja N, Gill SS (eds) Plant acclimation to environmental stress. Springer Science + Business Media, New York, pp 403–432

    Chapter  Google Scholar 

  • Samoon HA, Dar SA, Zehra B, Mahdi SS, GI Hassan SA (2010) Bio-fertilizers in organic agriculture. J Phytol 2(10):9–14

    Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria forbiocontrol of phytopathogens. Microbiol Res 169:18–29

    Article  PubMed  CAS  Google Scholar 

  • Saravanakumar D, Lavanya N, Muthumeena K, Raguchander T, Samiyappan R (2009) Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. BioControl 54:273–286

    Article  Google Scholar 

  • Schlosser E (1997) Allgemeine Phytopathologie. Georg Thieme Verlag, New York

    Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2014) Biosafety of novel bioinoculants. J Biofertil Biopestici 5:2

    Google Scholar 

  • Shankar M, Kurtboke DI, Gillespie-Sasse LMJ, Rowland CY, Sivasithamparam K (1994) Possible roles of competition for thiamine, production of inhibitory compounds, and hyphal interactions in suppression of the take-all fungus by a sterile red fungus. Can J Microbiol 40(6):478–483

    Article  CAS  Google Scholar 

  • Siddiquee S, Aishah SN, Azad SA, Shafawati SN, Naher L (2013) Tolerance and biosorption capacity of Zn2+, Pb2+, Ni3+ and Cu2+ by filamentous fungi (Trichoderma harzianum, T. aureoviride and T. virens). Adv Biosci Biotechnol 4:570–583

    Article  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2004a) Systemic resistance in tomato induced by biocontrol bacteria against the root-knot nematode, Meloidogyne javanica is independent of salicylic acid production. J Phytopathol 152:48–54

    Article  Google Scholar 

  • Siddiqui IA, Shaukat SS (2004b) Trichoderma harzianum enhances the production of nematicidal compounds in vitro and improves biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in tomato. Lett Appl Microbiol 38:169–175

    Article  PubMed  CAS  Google Scholar 

  • Singh UP, Sarma BK, Singh DP, Amar B (2002) Plant growth-promoting rhizobacteria-mediated induction of phenolics in pea (Pisum sativum) after infection with Erysiphe pisi. Curr Microbiol 6:396–400

    Article  CAS  Google Scholar 

  • Singh BK, Walker A, Morgan JA, Wright DJ (2004) Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl Environ Microbiol 70:4855–4863

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Singh S, Singh BB, Chandra R, Patel DK, Rai V (2009) Synergistic biodegradation of pentachlorophenol by Bacillus cereus (DQ002384), Serratia marcescens (AY927692) and Serratia marcescens (DQ002385). World J Microbiol Biotechnol 25:1821–1828

    Article  CAS  Google Scholar 

  • Singh DP, Khattar JI, Nadda J, Singh Y, Garg A, Kaur N, Gulati A (2011a) Chlorpyrifos degradation by the Cyanobacterium Synechocystis sp. strain PUPCCC 64. Environ Sci Pol Res Int 18(8):1351–1359

    Article  CAS  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011b) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agr Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Smith RS (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492

    Article  Google Scholar 

  • Solanki MK, Singh N, Singh RK, Singh P, Srivastava AK, Kumar S, Kashyap PL, Arora DK (2011) Plant defense activation and management of tomato root rot by a chitin-fortified Trichoderma/Hypocrea formulation. Phytoparasitica 39:471–481

    Article  CAS  Google Scholar 

  • Solanki MK, Robert AS, Singh RK, Kumar S, Pandey AK, Arora DK (2012) Characterization of mycolytic enzymes of Bacillus strains and their bio-protection role against Rhizoctonia solani in tomato. Curr Microbiol 65(3):330–336

    Article  PubMed  CAS  Google Scholar 

  • Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyup PL, Srivastava AK (2014a) Characterization of antagonistic-potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato. J Basic Microbiol 53:01–09

    Google Scholar 

  • Solanki MK, Singh RK, Srivastava S, Kumar S, Srivastava AK, Kashyup PL, Arora DK (2014b) Isolation and characterizations of siderophore producing rhizobacteria against Rhizoctonia solani. J Basic Microbiol 54(6):585–597

    Article  PubMed  CAS  Google Scholar 

  • Stępniewska Z, Kuźniar A (2013) Endophytic microorganisms-promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97(22):9589–9596

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sullivan P (2001) Alternative soil amendments. Appropriate Technology Transfer for Rural Areas, National Center for Appropriate Technology

    Google Scholar 

  • Tallur PN, Megadi VB, Ninnekar HZ (2007) Biodegradation of cypermethrin by Micrococcus strain CPN1. Biodegradation 9116–9118

    Google Scholar 

  • Tang J, Liu L, Huang X, Li Y, Chen Y, Chen J (2010) Proteomic analysis of Trichoderma atroviride mycelia stressed by organophosphate pesticide dichlorvos. Can J Microbiol 56:121–127

    Article  PubMed  CAS  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58

    Article  CAS  Google Scholar 

  • Thakuria D, Talukdar NC, Goswami C, Hazarika S, Boro RC, Khan MR (2004) Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr Sci 86:978–985

    Google Scholar 

  • Ting ASY, Choong CC (2009) Bioaccumulation and biosorption efficacy of Trichoderma isolates SP2F1 in removing Copper (Cu II) from aqueous solutions. World J Microbiol Biotechnol 25:1431–1437

    Article  CAS  Google Scholar 

  • Tran H, Ficke A, Asiimwe T, Höfte M, Raaijmakers JM (2007) Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants byPseudomonas fluorescens. New Phytol 175:731–742

    Article  PubMed  CAS  Google Scholar 

  • Tripathi P, Singh PC, Mishra A, Chauhan PS, Dwivedi S, Bais RT, Tripathi RD (2013) Trichoderma: a potential bioremediator for environmental cleanup. Clean Techn Environ Policy 15:541–550

    Article  CAS  Google Scholar 

  • UNEP (2003) Biosafety and the environment: an introduction to the Cartagena Protocol on Biosafety GE.03-01836/E, United Nations Environment Programme, 8

    Google Scholar 

  • Usta C (2013) Microorganisms in biological pest control – a review. Bacterial toxin application and effect of environmental factors. Current Progress in Biological Research, Dr. Marina Silva-Opps (ed), ISBN: 978-953-51-1097-2, InTech. doi:10.5772/55786

    Google Scholar 

  • Valverde A, Burgos A, Fiscella T, Rivas R, Velazquez E, Rodrıguez-Barrueco C, Cervantes E, Chamber M, Igual JM (2006) Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil 287:43–50

    Article  CAS  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Peer R, Schippers B (1992) Lipopolysaccharides of plant growth promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt. Neth J Plant Pathol 98:129–139

    Article  Google Scholar 

  • Vanitha SC, Umesha S (2011) Pseudomonas fluorescens mediated systemic resistance in tomato is driven through an elevated synthesis of defense enzymes. Biol Plant 55(2):317–322

    Article  CAS  Google Scholar 

  • Viswanathan R, Samiyappan R (2007) Siderophores and iron nutrition on the Pseudomonas mediated antagonism against Colletotrichum falcatum in sugarcane. Sugar Tech (I):57–60

    Google Scholar 

  • Viterbo A, Inbar J, Hadar Y, Chet I (2007) Plant disease biocontrol and induced resistance via fungal mycoparasites. In: Kubicek CP, Druzhinina IS (eds) Environmental and microbial relationships. The Mycota IV, 2nd edn. Springer, Berlin/Heidelberg, pp 127–146

    Google Scholar 

  • Wan M, Li G, Zhang J, Jiang D, Huang HC (2008) Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal disease. Biol Control 46(3):552–559

    Article  Google Scholar 

  • Wang B, Yuan J, Zhang J, Shen Z, Zhang M, Li R et al (2013) Effect of novel bio organic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana. Biol Fertil Soils 49:435–446

    Article  Google Scholar 

  • Wani SP (1990) Inoculation with associative nitrogen fixing bacteria: role in cereal grain production improvement. Indian J Microbiol 30:363–393

    Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163

    Article  PubMed  CAS  Google Scholar 

  • Wawerua B, Turoopa L, Kahangia E, Coyneb D, Duboisb T (2014) Non-pathogenic Fusarium oxysporum endophytes provide field control of nematodes, improving yield of banana (Musa sp.). Biol Control 74:82–88

    Article  Google Scholar 

  • Weller DM, Mavrodi DV, van Pelt JA, Pieterse CM, van Loon LC, Bakker PA (2012) Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102:403–412

    Article  PubMed  CAS  Google Scholar 

  • Wittmann C, Zeng AP, Deckwer WD (1998) Physiological characterization and cultivation strategies of the pentachlorophenol-degrading bacteria Sphingomonas chlorophenolica RA2 and Mycobacterium chlorophenolicum PCP-1. J Ind Microbiol Biotechnol 21:315–321

    Article  CAS  Google Scholar 

  • Yandigeri MS, Malviya N, Solanki MK, Shrivastava P, Sivakumar G (2015) Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani. World J Microbiol Biotechnol. doi:10.1007/s11274-015-1870-x

    PubMed  Google Scholar 

  • Yoshioka Y, Ichikawa H, Naznin HA, Kogure A, Hyakumachi M (2012) Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seed borne diseases of rice. Pest Manag Sci 68:60–66

    Article  PubMed  CAS  Google Scholar 

  • Youssef MMA, Eissa MFM (2014) Biofertilizers and their role in management of plant parasitic nematodes. A review. E3 J Biotechnol. Pharm Res 5:01–06

    Google Scholar 

  • Zafra G, Absalón AE, Cuevas MDC, Cortés-Espinosa DV (2014) Isolation and selection of a highly tolerant microbial consortium with potential for PAH biodegradation from heavy crude oil-contaminated soils. Water Air Soil Poll 225:1826

    Article  CAS  Google Scholar 

  • Zhou X, Liu L, Chen Y, Xu S, Chen J (2007) Efficient biodegradation of cyanide and ferrocyanide by Na-alginate beads immobilized with fungal cells of Trichoderma koningii. Can J Microbiol 53(9):1033–1037

    Article  PubMed  CAS  Google Scholar 

Webliography

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant J. Patil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Patil, H.J., Solanki, M.K. (2016). Microbial Inoculant: Modern Era of Fertilizers and Pesticides. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_19

Download citation

Publish with us

Policies and ethics