Skip to main content

Isolation, Characterization of Nematode-Controlling Bacteria and Fungi from Nature

  • Chapter
  • First Online:
Book cover Microbial Inoculants in Sustainable Agricultural Productivity

Abstract

The root-knot nematodes (genus Meloidogyne) are a major endoparasitic pest affecting the production of many economically valuable annual and perennial crops worldwide in tropical and subtropical climatic zones. The infected plants show typical symptoms which include root galling, lack of vigor, stunting growth, nutrient deficiency particularly nitrogen deficiency, yellowing of leaves, and wilting under water stress conditions. The root-knot nematodes are one of the most destructive and difficult diseases to control in agricultural sector. These nematodes cause billions of US dollars in yield loss annually every year. The use of chemical nematicides is usually effective and has been used for over 50 years, but they cause significant environmental pollution as most nematicides are highly toxic compounds. Among the various strategies advocated to manage root-knot disease is the use of native biocontrol agents as an integral component of integrated disease management. The use of biocontrol agents from bacteria and fungi has been the focus of many researchers, mostly for development of microbial biopesticides against diseases and pests. The efforts have resulted in several microbial insecticides being marketed in many countries.

A comprehensive understanding of mechanisms of disease inhibition by bacterial or fungal pathogens remains limited. In this chapter, we investigated the uses of some biocontrol agents to control root-knot nematodes if not totally eliminate them from our agricultural fields. The results showed that certain groups of bacteria and pathogenic fungi have been intensively studied, and some were developed for use as microbial bioinsecticides. The success of these bioinsecticides relies mainly on the activities of the fungus and bacteria, which can be affected by various environmental factors along with the interaction between the pathogen and its host insect pest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elgawad MMM, Kabeil SSA (2010) Management of the root-knot nematode, Meloidogyne incognita on tomato in Egypt. J Am Sci 6:256–262

    Google Scholar 

  • Affokpon A, Coyne DL, Htay CC, Agbede RD, Lawouin L, Coosemans J (2011) Biocontrol potential of native Trichoderma isolates against root-knot nematodes in West African vegetable production systems. Soil Biol Biochem 43:600–608

    Article  CAS  Google Scholar 

  • Afzal S, Tariq S, Sultana V, Ara J, Ehteshamul-Haque S (2013) Managing the root diseases of okra with endo-root plant growth promoting Pseudomonas and Trichoderma viride associated with healthy okra roots. Pak J Bot 45(4):1455–1460

    Google Scholar 

  • Ahmed SS, Alsayed AA (1991) Interaction between the vesicular arbuscular mycorrhiza Glomus macrocarpus and Meloidogyne incognita infecting cowpea. Annu Agric Sci Moshtohor 29:1765–1772

    Google Scholar 

  • Akhtar A, Hisamuddin RMI, Abbasi RS (2012) Plant growth promoting Rhizobacteria: an overview. J Natl Prod Plant Res 2(1):19–31

    Google Scholar 

  • Alabouvette C, Olivain C, Steinberg C (2006) Biological control of plant diseases: the European situation. European J Plant Pathol 114(3):329–341

    Article  Google Scholar 

  • Al-Shammari TA, Bahkali AH, Elgorban AM, El-Kahky MT, Al-Sum BA (2013) The use of Trichoderma longibrachiatum and Mortierella alpina against root-knot nematode, Meloidogyne javanica on tomato. J Pure Appl Microbiol 7:199–207

    Google Scholar 

  • Anandraj M, Ramana KV, Sarma YR (1990) Interaction between vesicular arbuscular mycorrhizal fungi and Meloidogyne incognita in blackpepper. In: Bagyaraj DJ, Manjunath A (eds) Mycorrhizal symbiosis and plant growth. University of Agricultural Sciences, Bangalore, pp 110–112

    Google Scholar 

  • Anitha A, Rabeeth M (2010) Degradation of fungal cell walls of phytopathogenic fungi by lytic enzyme of Streptomyces griseus. African J Plant Sci 4(3):61–66

    CAS  Google Scholar 

  • Asano S, Hori H, Cui Y (1994) A unique insecticidal activity in Bacillus thuringiensis growth medium. Appl Entomol Zool 29(1):39–45

    Google Scholar 

  • Atkinson GF (1892) Some diseases of cotton. Alabama Agric Exp Stat Bull 41:65

    Google Scholar 

  • Back MA, Haydock PPJ, Jenkinson P (2002) Disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant Pathol 51:683–697

    Article  Google Scholar 

  • Barron GL (1992) Lignolytic and cellulolytic fungi as predators and parasites. In: Carroll GC, Wicklow DT (eds) The fungal community, its organization and role in the ecosystems. Marcel Dekker, New York, pp 311–326

    Google Scholar 

  • Bethlenfalvay GJ, Newton WE (1991) Agro-ecological aspects of the mycorrhizal, nitrogen-fixing legume symbiosis. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic, Dordrecht, pp 349–354

    Chapter  Google Scholar 

  • Bhat MS, Mahmood I (2000) Role of Glomus mosseae and Paecilomyces lilacinus in the management of root-knot nematode on tomato. Arch Phytopathol Plant Protect 33:131–140

    Article  Google Scholar 

  • Bhau BS, Koul V (1998) Switching on Bacillus thuringienesis to reduce selection for resistance. Curr Sci 75(8):771–777

    Google Scholar 

  • Birgit N-H, Hans-B½rje J, Anders T (2006) Nematophagous fungi. Encyclopedia of life sciences. Wiley. www.els.net

  • Borah A, Phukan PN (2000) Effect of VAM fungus, Glomus fasciculatum and root-knot nematode, Meloidogyne incognita on brinjal. J Agric Soc North-East India 13:212–214

    Google Scholar 

  • Borgonie G, Claeys M, Leyns G, Arnaut G, De Waele D, Coomans A (1996) Effect of nematicidal Bacillus thuringiensis strains on free living nematodes. 1. Light microscopic observation, species and biological stage specificity and identification of resistant mutants of Caenorhabditis elegans. Fundam Appl Nematol 19:391–398

    Google Scholar 

  • Brown SM, Kepner JL, Smart GC (1985) Increased crop yields following application of Bacillus penetrans to field plots infested with Meloidogyne incognita. Soil Biol Biochem 17:483–486

    Article  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154(2):275–304

    Article  Google Scholar 

  • Buchel E, Mayer A, Martini U, Anke H, Sterner O (1998) Structure elucidation of omphalotin, a cyclic dodecapeptide with potent nematicidal activity isolated from Omphalotus olearius. Pestic Sci 54:309–311

    Article  Google Scholar 

  • Bush LP, Wilkinson HH, Schardl CL (1997) Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol 114:1–7

    PubMed Central  PubMed  CAS  Google Scholar 

  • Caillaud MC, Dubreuil G, Quentin M, Perfus-Barbeoch L, Lecornte P et al (2008) Root-knot nematodes manipulate plant cell functions during a compatible interaction. J Plant Physiol 165(1):104–113

    Article  PubMed  CAS  Google Scholar 

  • Chahal PPK, Chahal VPS (1993) Effect of thuricide on the hatching of eggs root-knot nematode, Meloidogyne incognita. Curr Nematol 4(2):247

    Google Scholar 

  • Da Silva-Sousa C, Soares ACF, Coimbra JL, da Silva-Garrido M, da SilvaMachado G (2010) Arbuscular mycorrhizal fungi in the control of Meloidogyne incognita in tomato seedlings. Revista Coatingal 23:15–20

    Google Scholar 

  • Dackman C, Nordbring-Hertz B (1992) Fungal parasites of the cereal cyst nematode Heterodera avenae in southern Sweden. J Nematol 17:50–55

    Google Scholar 

  • De Leij FAAM, Kerry BR (1990) Influence of temperature and nematode species on the efficacy of the fungus Verticillium chlamydosporium, as a biological control agent of root-knot nematodes. J Nematol 36:367

    Google Scholar 

  • De Leij FAAM, Kerry BR (1991) The nematophagous fungus Verticillium chlamydosporium as a potential biological control agent for Meloidogyne arenaria. Rev Nematol 14:157–164

    Google Scholar 

  • Dennis C, Webster J (1971) Antagonistic properties of species groups of Trichoderma. II. Production of Volatile antibiotics. Trans Br Mycol Soc 57:41–48

    Article  CAS  Google Scholar 

  • Desai MV, Shah HM, Pillai SN (1972) Effect of Aspergillus niger on root-knot nematode, M. incognita. Indian J Nematol 2:210–214

    Google Scholar 

  • Dicklow MB, Acosta N, Zuckerman BM (1993) A novel Streptomyces species for controlling plant parasitic nematodes. J Chemist Ecol 19:159–173

    Article  CAS  Google Scholar 

  • Diederichs C (1987) Interaction between five endomycorrhizal fungi and the root-knot nematode, Meloidogyne javanica on chickpea under tropical conditions. J Trop Agric 64:353–355

    Google Scholar 

  • Downing KJ, Thomson JA (2000) Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for biocontrol of phytopathogenic fungi. Can J Microbiol 46:363–369

    Article  PubMed  CAS  Google Scholar 

  • Duddington CL (1951) Dactylella lobata, predacious on nematodes. Trans Br Mycol Soc 34:489–491

    Article  Google Scholar 

  • Elad Y, Henis Y (1982) Degradation of plant pathogenic fungi by Trichoderma harzianum. Can J Microbiol 28:719–725

    Article  CAS  Google Scholar 

  • Elgorban AM, Abdel-Wahab MA, Bahkali AH, Al-Sum BA (2013) Biocontrol of Meloidogyne javanica on tomato plants by Hypocrea lixii (the Teleomorph of Trichoderma harzianum). Clean Soil Air Water 42(10):1464–1469

    Article  CAS  Google Scholar 

  • El-Sharif AG, Ismail AFA (2009) Integrated management of Meloidogyne incognita infecting soybean by certain organic amendments, Bacillus thuringiensis, Trichoderma harzianum and oxamyl with reference to NPK and total chlorophyll status. Plant Pathol J 8:159–164

    Article  Google Scholar 

  • Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a (Gram1) positive perspective. FEMS Microbiol Lett 171:1–9

    Article  PubMed  CAS  Google Scholar 

  • Escudero N, Lopez-Llorca LV (2012) Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis. doi:10.1007/s13199-012-0173-3

    Google Scholar 

  • Felde ZA, Pocasangre LE, Carnizares Monteros CA, Sikora RA, Rosales FE, Riveros AS (2006) Effect of combined inoculations of endophytic fungi on the biocontrol of Radopholus similis. Info-Musa 15:12–18

    Google Scholar 

  • Feng L, Jianling Y, Huaguang W, Aijun Z, Boguang Z (2013) Host deception: predaceous fungus, Esteya vermicola, entices pine wood nematode by mimicking the scent of pine tree for nutrient. Plos One 8(8):e71676. doi:10.1371/journal.pone.0071676

    Article  CAS  Google Scholar 

  • Francl LJ (1993) Interactions of nematodes with mycorrhizae and mycorrhizal fungi. In: Khan MW (ed) Nematode interactions. Chapman & Hall, London, UK, pp 203–216

    Chapter  Google Scholar 

  • Fukuda K (1997) Physiological process of the symptom development and resistance mechanism in pine wilts disease. J For Res 2:171–181

    Article  Google Scholar 

  • Gautam A, Siddiqui ZA, Mahmood I (1995) Integrated management of Meloidogyne incognita on tomato. Nematol Mediterr 23:245–272

    Google Scholar 

  • Gokte N, Swarup G (1988) On the potential of some bacterial biocides against root-knot and cyst nematodes. Indian J Nematol 18:152–153

    Google Scholar 

  • Golzari H, Panjehkeh N, Ahmadzadeh M, Salari M, Sedaghati-khoravi E (2011) Elucidating the parasitic capabilities of Trichoderma against Meloidogyne javanica on tomato. Insight Plant Dis 1:12–19

    Google Scholar 

  • Graham JH (2001) What do root pathogens see in mycorrhizas? New Phytol 149:357–359

    Article  Google Scholar 

  • Gupta R, Tiwari S, Saikia SK, Shukla V, Singh R, Singh SP, Kumar PVA, Pandey R (2015) Exploitation of microbes for enhancing bacoside content and reduction of Meloidogyne incognita infestation in Bacopa monnieri L. Protoplasma 252(1):53–61

    Article  PubMed  CAS  Google Scholar 

  • Haggag WM, Amin AW (2001) Efficiency of Trichoderma species in control of Fusarium-rot, root knot and reniform nematodes disease complex on sunflower. Pak J Biol Sci 4:314–318

    Article  Google Scholar 

  • Halbrendt JM (1996) Allelopathy in the management of plant-parasitic nematodes. J Nematol 28:8–14

    PubMed Central  PubMed  CAS  Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 84:377–393

    Article  Google Scholar 

  • Harman GE, Kubicek CP (1998) Trichoderma and Gliocladium, enzymes, biological control and commercial applications, vol 2. Taylor & Francis, London

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  PubMed  CAS  Google Scholar 

  • Hayashi A, Fujioka S, Nukina M, Kawano T, Shimada A, Kimura Y (2007) Fumiquinones A and B, nematicidal quinones produced by Aspergillus fumigatus. Biosci Biotechnol Biochem 71:1697–1702

    Article  PubMed  CAS  Google Scholar 

  • Höfte H, Whitefley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    PubMed Central  PubMed  Google Scholar 

  • Hol WHG, Cook R (2005) An overview of arbuscular mycorrhizal fungi-nematode interactions. Basic Appl Ecol 6(6):489–503

    Article  Google Scholar 

  • Hollis JP, Rodriguez-Kabana R (1966) Rapid kill of nematodes in flooded soil. Phytopathology 56:1015–1019

    PubMed  CAS  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87(1):4–10

    Article  Google Scholar 

  • Hussey RS, McGuire JM (1987) Interactions with other organisms. In: Brown RH, Kerry BR (eds) Principles and practice of nematode control in crops. Academic, Marrickville, pp 294–320

    Google Scholar 

  • Ibrahim AAM (1994) Effect of cadusafos, Paecilomyces lilacinus and Nemout on reproduction and damage potential of Meloidogyne javanica. Pak J Nematol 12:141–147

    Google Scholar 

  • Ignoffo CM, Dropkin VH (1977) Deleterious effects of the thermostable toxin of Bacillus thuringiensis on species of soil-inhabiting, mycophagous and plant parasitic nematodes. J Krans Entomol Soc 50:394–395

    Google Scholar 

  • Jacobs H, Gray SN, Crump DH (2003) Interactions between nematophagous fungi and consequences for their potential as biological agents for the control of potato cyst nematodes. Mycol Res 107:47–56

    Article  PubMed  Google Scholar 

  • Jaizme-Vega MC, Tenoury P, Pinochet J, Jaumot M (1997) Interactions between the root-knot nematode Meloidogyne incognita and Glomus mosseae in banana. Plant Soil 196:27–35

    Article  CAS  Google Scholar 

  • Janja L, Gregor U, Stanislav T (2013) Biological Control of Root-Knot Nematodes (Meloidogyne spp.): Microbes against the Pests. Acta Agric Slov 101(2):263–275

    Google Scholar 

  • Jatala P (1986) Biological control of plant parasitic nematodes. Annu Rev Phytopathol 24:453–489

    Article  Google Scholar 

  • Jin DE, Won SR, Dong PJ, Woong KR, Krishnan Y, Kim HB (2005) Effect of Chitin Compost and Broth on Biological Control of Meloidogyne Incognita on Tomato (Lycopersicon Esculentum MILL.). Nematology 7:125–132

    Article  CAS  Google Scholar 

  • Johnston TM (1958) Antibiosis of Clostridium butyricum Prazmowski on Tylenchorhynchus martini fielding, 1956 (nematode Phasmidia) in submerged rice soil. PhD thesis, Louisiana State University

    Google Scholar 

  • Jothi G, Sundarababu R (2001) Management of root-knot nematode in brinjal by using VAM and crop rotation with green gram and pearl millet. J Biol Contr 15:77–80

    Google Scholar 

  • Jothi G, Mani MP, Sundarababu R (2000) Management of Meloidogyne incognita on okra by integrating non-host and endomycorrhiza. Curr Nematol 11:25–28

    Google Scholar 

  • Kalra A, Chandra M, Awasthi A, Singh AK, Khanuja SPS (2010) Natural compounds enhancing growth and survival of rhizobial inoculants in vermicompost-based formulation. Biol Fertil Soils 46:521–524

    Article  Google Scholar 

  • Kantharaju V, Krishnappa K, Ravichandra NG, Karuna K (2005) Management of root-knot nematode Meloidogyne incognita on tomato by using indigenous isolates of AM fungus, Glomus fasciculatum. Indian J Nematol 35:32–36

    Google Scholar 

  • Kassab AS (1995) The influence of concomitant populations Meloidogyne incognita and VAM of their development and on the growth of Egyptian clover. Annu Agric Sci Cairo 40:433–441

    Google Scholar 

  • Kermarrec A, Jacqua G, Anais J (1994) Effect of Fusarium solani and Pseudomonas solanacearum on the infestation of aubergine with the plant-parasitic nematode, Rotylenchulus reniformis. Nematologica 40:152–154

    Google Scholar 

  • Kerry BR (2000) Rhizosphere interactions and exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38:423–441

    Article  PubMed  CAS  Google Scholar 

  • Khalil MS (2013) Alternative approaches to manage plant parasitic nematodes. J Plant Pathol Microbiol 4, e105. doi:10.4172/2157- 7471.1000e105

    Article  CAS  Google Scholar 

  • Khan HA, Khan SA, Qamar F, Seema N (1992) Preliminary studies on seed dressing of Luffa aegyplica with Paecilomyces lilacinus against Meloidogyne ineognita acrita during the germination of seed. Sarhad J Agric 8:227–230

    Google Scholar 

  • Khyami-Horani H, Al-Banna L (2006) Efficacy of Bacillus thuringiensis jordanica against Meloidogyne javanica infecting tomato. Phytopathol Mediterr 45:153–157

    Google Scholar 

  • Kiewnick S, Sikora RA (2006) Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biol Cont 38:179–187

    Article  Google Scholar 

  • Kimura Y, Nakahara S, Fujioka S (1996) Aspyrone, a nematicidal compound isolated from the fungus, Aspergillus melleus. Biosci Biotechnol Biochem 60:1375–1376

    Article  CAS  Google Scholar 

  • Kimura Y, Tani S, Hayashi A, Ohtani K, Fujioka S, Kawano T, Shimada A (2007) Nematicidal activity of 5-hydroxymethyl-2-furoic acid against plant parasitic nematodes. Z Naturforsch 62c:234–238

    Google Scholar 

  • Kloepper J, Ryu C (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Schulz B, Boyle C, Siebern T (eds) Microbial root endophytes. Springer, Heildelberg, pp 33–51

    Chapter  Google Scholar 

  • Kloepper JW et al (2004) Induced systemic resistance and promotion of plant growth by Bacillus species. Phytopathology 94:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Kloepper JW et al (2007) Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can J Microbiol 53:159–167

    Article  PubMed  CAS  Google Scholar 

  • Kotan R, Dikbas N, Bostan H (2009) Biological control of post harvest disease caused by on stored lemon fruits. Afr J Biotechnol 8(2):209–214

    Google Scholar 

  • Kubicek CP, Mach RL, Peterbauer CK, Lorito M (2001) Trichoderma: from genes to biocontrol. J Plant Pathol 83:11–23

    CAS  Google Scholar 

  • Kuc J, Rush JS (1985) Phytoalexin. Arch Biochem Biophys 236:455–473

    Article  PubMed  CAS  Google Scholar 

  • Kuroda K, Yamada T, Ito S (1991) Bursaphelenchus xylophilus induced pine wilt: factors associated with resistance. Eur J For Pathol 21:430–438

    Article  Google Scholar 

  • Kusano M, Koshino H, Uzawa J, Fujioka S, Kawano T, Kimura Y (2000) Nematicidal alkaloids and related compounds produced by the fungus Penicillium cf. simplicissimum. Biosci Biotechnol Biochem 64:2559–2568

    Article  PubMed  CAS  Google Scholar 

  • Kusano M, Nakagami K, Fujioka S, Kawano T, Shimada A, Kimura Y (2003) βγ-Dehydrocurvularin and related compounds as nematicides of Pratylenchus penetrans from the fungus Aspergillus sp. Biosci Biotechnol Biochem 67:1413–1416

    Article  PubMed  CAS  Google Scholar 

  • Lawton MA, Lamb CJ (1987) Transcriptional activation of plant defense genes by fungal elicitors, wounding and infection. Mol Cell Biol 7:335–341

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li G, Zhang K, Xu J, Dong J, Liu Y (2007) Nematicidal substances from fungi. Recent Pat Biotechnol 1:1–22

    Article  CAS  Google Scholar 

  • Lopez-Llorca LV, Jansson HB (2006) Fungal parasites of invertebrates: multimodal biocontrol agents. In: Exploitation of f fungi, pp 310–335

    Google Scholar 

  • Lorito MG, Harman E, Hayes CK, Broadway RM, Tronsmo A, Woo SI, DiPietro A (1993) Chitinolytic enzymes produced by Trichoderma harzianum. Phytopathology 863:302–307

    Article  Google Scholar 

  • Magdy M (2002) Biological control of plant parasitic nematodes with antagonistic bacteria on different host plants. PhD thesis, Institut für Pflanzenkrankheiten der Rheinischen Friedrich-Wilhelms-Universität Bonn

    Google Scholar 

  • Mahaveer PS, Bhargava S, Verma MK, Adholeya A (1994) Interaction between the endomycorrhizal fungus Glomus fasciculatum and root-knot nematode Meloidogyne incognita on tomato. Indian J Nematol 24:133–139

    Google Scholar 

  • Mankau R (1975a) Prokaryote affinities of Duboscqia pentrans Throne. J Protozool 21:31–34

    Article  Google Scholar 

  • Mankau R (1975b) Bacillus penetrans n. Comb. causing a virulent disease of plant parasitic nematodes. J Invertebr Pathol 26:333–339

    Article  Google Scholar 

  • Mankau R (1980) Biological control of nematodes pests by natural enemies. Annu Rev Phytopathol 18:415–440

    Article  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    Article  PubMed  CAS  Google Scholar 

  • Marroquin LD, Elyassnia JS, Griffitts JS, Feitelson JS, Aroian RV (2000) Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics 155:1693–1699

    PubMed Central  PubMed  CAS  Google Scholar 

  • Martinez-Beringola ML, Salto T, Vazquez G, Larena I, Melgarejo P, Cal AD (2013) Penicillium oxalicum reduces the number of cysts and juveniles of potato cyst nematodes. J Appl Microbiol 115(1):199–206

    Article  PubMed  CAS  Google Scholar 

  • Masadeh B, Vol Alten H, Grunewaldt-Stoecker G, Sikora RA (2004) Biocontrol of root knot nematodes using the arbuscular mycorrhizal fungus Glomus intraradices and the antagonist Trichoderma viride in two tomato cultivators differing in their suitability as hosts for the nematodes. J Plant Dis Prot 111:322–333

    Google Scholar 

  • Mayer A, Kilian M, Hoster B, Sterner O, Anke H (1999) In-vitro and in-vivo nematicidal activities of the cyclic dodecapeptide omphalotin A. Pestic Sci 55:27–30

    Article  CAS  Google Scholar 

  • Meyer SLF (2003) United States Department of Agriculture – Agricultural Research Service research programs on microbes for management of plant-parasitic nematodes. Pest Manag Sci 59:665–670

    Article  PubMed  CAS  Google Scholar 

  • Meyer SLF, Roberts DP (2002) Combinations of biocontrol agents for management of plant-parasitic nematodes and soil borne plant-pathogenic fungi. J Nematol 34:1–8

    PubMed Central  PubMed  Google Scholar 

  • Meyer SLF, Massoud SI, Chitwood DJ, Roberts DP (2000) Evaluation of Trichoderma virens and Burkholderia cepacia for antagonistic activity against root-knot nematode, Meloidogyne incognita. Nematology 2:871–879

    Article  Google Scholar 

  • Meyer SLF, Roberts DP, Chitwood DJ, Carta LK, Lumsden RD, Mao W (2001) Application of Burkholderia cepacia and Trichoderma virens, alone and in combinations, against Meloidogyne incognita on bell pepper. Nematropica 31:75–86

    Google Scholar 

  • Mittal N, Sharma M, Saxena G, Mukerji KG (1991) Effect of VA mycorrhiza on gall formation in tomato roots. Plant cells incompatibility Newsl 23:39–43

    Google Scholar 

  • Muthulakshmi M, Devrajan K, Jonathan EI (2010) Biocontrol of root knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood in mulberry (Morus alba L.). J Biopesticides 3(2):479–482

    Google Scholar 

  • Nair MG, Chandra A, Thorogod DL, Davis RMG (1995) Nematicidal and mosquitocidal aromatic nitro compounds produced by Streptomyces spp. Pesticides Sci 43:361–365

    CAS  Google Scholar 

  • Nakahara S, Kusano M, Fujioka S, Shimada A, Kimura Y (2004) Penipratynolene, a novel nematicide from Penicillium bilaiae Chalabuda. Biosci Biotechnol Biochem 68:257–259

    Article  PubMed  CAS  Google Scholar 

  • Naserinasab F, Sahebani N, Etebarian HR (2010) Biological control of Meloidogyne javanica by Trichoderma harzianum BI and salicylic acid on Tomato. African J Food Sci 5(3):276–280

    Google Scholar 

  • Nehra S (2004) VAM fungi and organic amendments in the management of Meloidogyne incognita infected ginger. J Indian Bot Soc 83:90–97

    Google Scholar 

  • Nester EW, Thomashow LS, Metz M, Girdon M (2002) 100 years of Bacillus thuringiensis, a critical scientific assessment. American Society for Microbiology, Washington, DC

    Google Scholar 

  • O’Bannon JH, Nemec S (1979) The response of citrus lemon seedling to a symbiont. Glomus etunicatum and a pathogen, Radopholus similis. J Nematol 11:270–275

    PubMed Central  PubMed  Google Scholar 

  • Oka Y, Chet I, Spiegel Y (1993) Control of root-knot nematode Meloidogyne javanica by Bacillus cereus. Biocontrol Sci Tech 3:115–126

    Article  Google Scholar 

  • Oostendorp M, Sikora RA (1989) Seed-treatment with antagonistic rhizobacteria for the suppression of Heterodera schachtii early root infection of sugar beet. Rev Nematol 12:77–83

    Google Scholar 

  • Oostendorp M, Sikora RA (1990) In vitro interrelationship between rhizosphere bacteria and Heterodera schachtii. Rev Nematol 13(3):269–274

    Google Scholar 

  • Oskay M (2009) Antifungal and antibacterial compounds from strains. Afr J Biotechnol 8(13):3007–3017

    CAS  Google Scholar 

  • Osman HA, Korayem AM, Ameen HH, Badr-Eldin SMS (1990) Interaction of root-knot nematode and mycorrhizal fungi on common bean Phaseolus vulgaris L. Anzeriger fur Schadlingskunde Pflanzenschutz Umweltschutz 63:129–131

    Article  Google Scholar 

  • Oyekanmi EO, Coyne DL, Fagade OE, Osonubi O (2007) Improving root knot nematode management on two soybean genotypes through the application of Bradyrhizobium japonicum, Trichoderma pseudokoningii and Glomus mosseae in full factorial combinations. Crop Prot 26:1006–1012

    Article  Google Scholar 

  • Ozbay N, Newman SE (2004) Biological control with Trichoderma spp. with emphasis on T. harzianum. Pak J Biol Sci 7(4):478–484

    Article  Google Scholar 

  • Palacino JH, Leguizamon CJ (1991) Interaction of Glomus manihotis and Meloidogyne incognita on yellow and red pitaya under nursery conditions. Fitopatologia Colombiana 15:9–17

    Google Scholar 

  • Pandey R (2005) Field application of bio-organics in the management of Meloidogyne incognita in Mentha arvensis. Nematol Medit 33:51–54

    CAS  Google Scholar 

  • Pandey R, Kalra A, Gupta ML (2009) Evaluation of bio-agents and pesticide on root-knot nematode development and oil yield of patchouli. Arch Phytopathol Plant Protect 42:419–423

    Article  CAS  Google Scholar 

  • Pandey R, Mishra AK, Tiwari S, Kalra A (2011) Nematode inhibiting organic materials and a strain of Trichoderma harzianum effectively manages Meloidogyne incognita in Withania somnifera fields. Biocontrol Sci Tech 21:1495–1499

    Article  Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Annu Rev Phytopathol 23:23–54

    Article  Google Scholar 

  • Perveen S, Ehteshamul-Haque S, Ghaffar A (1998) Efficacy of Pseudomonas aeruginosa and Paecilomyces lilacinus in the control of root-knot disease complex of some vegetables. Nematol Mediterr 26:209–212

    Google Scholar 

  • Poinar GO (1983) The natural history of nematodes. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Porter JK (1994) Chemical constituents of grass endophytes. In: Bacon CW, White JF Jr (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton, pp 103–123

    Google Scholar 

  • Qadri AN (1989) Fungi associated with sugarbeet cyst nematode in Jerash, Jordan. M.Sc. thesis, University of Jordan

    Google Scholar 

  • Rao MS, Reddy PP, Nagesh M (1996) Evaluation of plant based formulations of Trichoderma harzianum for the management of Meloidogyne incognita on eggplant. Nematol Mediterr 26:59–62

    Google Scholar 

  • Raupach GS, Kloepper JW (1998) Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164

    Article  PubMed  CAS  Google Scholar 

  • Reimann S, Hauschild R, Hildebrandt U, Sikora RA (2008) Interrelationships between Rhizobium etli G12 and Glomus intraradices and multitrophic effects in the biological control of the root-knot nematode Meloidogyne incognita on tomato. J Plant Dis Prot 115:108–113

    Google Scholar 

  • Rodriguez-Kabana R, Jordan LW, Hollis JP (1965) Nematodes: biological control in rice fields: role of hydrogen sulfide. Science 18:524–526

    Article  Google Scholar 

  • Rowan DD, Gaynor DL (1986) Isolation of feeding deterrents against Argentine stem weevil from rye grass infected with the endophyte. J Chem Ecol 12:647–658

    Article  PubMed  CAS  Google Scholar 

  • Sahebani N, Hadavi N (2008) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol Biochem 40:2016–2020

    Article  CAS  Google Scholar 

  • Samsonov P, Padrón RI, Pardo C, Cabrera J, De la Riva GA (1997) Bacillus thuringiensis from biodiversity to biotechnology. J Indian Microbiol Biotechnol 19:202–219

    Article  Google Scholar 

  • Santhosh J, Eapen BB, Ramana KV (2005) Tropical soil microflora of spice-based cropping systems as potential antagonists of root-knot nematodes. J Invertebr Pathol 88:218–225

    Article  Google Scholar 

  • Sasser JN, Eisenback JD, Carter CC, Triantaphyllou AC (1983) The international Meloidogyne project – its goals and accomplishments. Annu Rev Phytopathol 21:271–288

    Article  Google Scholar 

  • Schroth MN, Hancock JG (1982) Disease suppressive soil and root colonizing bacteria. Science 216:1376–1381

    Article  PubMed  CAS  Google Scholar 

  • Sebesta K, Farkas J, Horska K, Vankova J (1981) Thuringiensin, the beta-exotoxin of Bacillus thuringiensis. In: Burgess HD (ed) Microbial control of pests and plant disease 1970–1980. Academic, London, pp 249–277

    Google Scholar 

  • Serfoji P, Rajeshkumar S, Selvaraj T (2010) Management of root-knot nematode, Meloidogyne incognita on tomato cv Pusa Ruby. By using vermicompost, AM fungus, Glomus aggregatum and mycorrhiza helper bacterium, Bacillus Coagulans. J Agric Technol 6:37–45

    Google Scholar 

  • Sharma HKP, Mishra SD (2003) Effect of plant growth promoter microbes on root-knot nematode Meloidogyne incognita on okra. Curr Nematol 14:57–60

    Google Scholar 

  • Sharon ECI, Bar-Eyal M, Chet I, Herrera-Estrella A, Kleifeld O, Spiegel Y (2001) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91:687–693

    Article  PubMed  CAS  Google Scholar 

  • Sharon E, Chet I, Viterbo A, Bar-Eyal M, Nagan H, Samuels GJ, Spiegel Y (2007) Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix. Eur J Plant Pathol 118:247–258. doi:10.1007/s10658-007-9140-x

    Article  Google Scholar 

  • Shaukat C, Chahal VPS (2002) Effect of thuricide on the hatching of eggs root-knot nematode, Meloidogyne incognita. Curr Nematol 4(2):247

    Google Scholar 

  • Shreenivasa KR, Krishanppa K, Ravichandra NG, Ravikumar B, Kirankumar KC, Karuna K (2007) Optimization of arbuscular mycorrhizal fungus, Glomus fasciculatum culture against root-knot nematode Meloidogyne incognita on tomato. Asian J Microbiol Biotechnol Environ Sci 9:117–121

    Google Scholar 

  • Siddiqui ZA, Akhtar MS (2007) Effects of AM fungi and organic fertilizers on the reproduction of the nematode Meloidogyne incognita and on the growth and water loss of tomato. Biol Fert Soils 43:603–609

    Article  Google Scholar 

  • Siddiqui ZA, Akhtar MS (2008) Synergistic effects of antagonistic fungi and a plant growth promoting rhizobacterium, an arbuscular mycorrhizal fungus, or composted cow manure on population of Meloidogyne incognita and growth of tomato. Biocont Sci Technol 18:279–290

    Article  Google Scholar 

  • Siddiqui ZA, Akhtar MS (2009) Effect of antagonistic fungi, plant growth-promoting rhizobacteria, an arbuscular mycorrhizal fungi alone and in combination on reproduction of Meloidogyne incognita and growth of tomato. J Gen Plant Pathol 75:144–153

    Article  Google Scholar 

  • Siddiqui ZA, Husain SI (1991) Studies on the biological control of root-knot nematode. Curr Nematol 2:5–6

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1992) Biological control of root-rot disease complex of chickpea caused by Meloidogyne incognita race 3 and Macrophomina phaseolina. Nematology Mediterranean 20:199–202

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1993) Biological control of Meloidogyne incognita race 3 and Macrophomina phaseolina by Paecilomyces lilacinus and Bacillus subtilis alone and in combination on chickpea. Fundamental Applied Nematology 16:215–218

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1995) Role of plant symbionts in nematode management: a review. Bioresour Technol 54:217–226

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1995a) Management of Meloidogyne incognita race 3 and Macrophomina phaseolina by fungus culture filtrates and Bacillus subtilis on chickpea. Fundam Appl Nematol 18:71–76

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1995b) Biological control of Heterodera cajani and Fusarium udum by Bacillus subtilis, Bradyrhizobium japonicum and Glomus fasciculatum on pigeonpea. Fundam Appl Nematol 18:556–559

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour Technol 69:167–179

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (2000) Effects of Bacillus subtilis, Glomus mosseae and ammonium sulphate on the development of Meloidogyne javanica and on growth of tomato. Thai J Agric Sci 33:29–35

    Google Scholar 

  • Siddiqui ZA, Shakeel U (2009) Effects of antagonistic fungi, waste materials and urea on the population of Meloidogyne incognita and growth of tomato. Acta Phytopathol Entomol Hungarica 44:373–381

    Article  Google Scholar 

  • Siddiqui IA, Shaukat SS (2003) Suppression of root-knot disease by P. Fluorescens CHAO in tomato: importance of bacterial secondary metabolite, 2, 4- diacetylphloroglucinol. Soil Biol Biochem 35:1615–1623

    Article  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2004) Trichoderma harzianum enhances the production of nematicidal compounds in vitro and improves biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in tomato. Lett Appl Microbiol 38(2):169–175

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui IA, Ehteshamul-Haque S, Ghaffar A (1999) Root dip treatment with Pseudomonas aeruginosa and Trichoderma spp., in the control of root rot-root knot disease complex in chilli (Capsicum annuum L.). Pak J Nematol 17:67–75

    Google Scholar 

  • Siddiqui ZA, Qureshi A, Akhtar MS (2009) Biocontrol of root-knot nematode Meloidogyne incognita by Pseudomonas and Bacillus isolates on Pisum sativum. Arch Phytopathol Plant Protect 42(12):1154–1164

    Article  CAS  Google Scholar 

  • Sikora RA (1988) Interrelationship between plant health promoting bacteria, plant parasitic nematodes and soil microorganisms. Med Fac Landbouww Rijks univ Gent 53(2b):867–878

    Google Scholar 

  • Sikora RA (1992) Management of the antagonistic potential in agricultural ecosystems for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 30:245–270

    Article  Google Scholar 

  • Sikora RA, Fernandez E (2005) Nematode parasites of vegetables. In: Luc M, Sikora RA, Bridge J (eds) Plant-parasitic nematodes in subtropical and tropical agriculture. CABI Publishing, Wallingford, pp 319–392

    Chapter  Google Scholar 

  • Sikora RA, Hoffmann-Hergaten S (1993) Biological control of plant-parasitic nematodes with plant-health promoting rhizobacteria. In: Lumsden RD, Vaughn JL (eds) Pest management: biologically based technologies. proceedings of beltsville symposium XVIII. American Chemical Society, Washington, pp 166–172

    Google Scholar 

  • Sikora RA, Racke J, Bodenstein F (1989) Influence of plant health promotion rhizobacteria antagonistic to Globodera pallida and Heterodera schachtii on soil borne fungal and bacterial plant pathogens of potato and sugarbeet. J Nematol 21:588

    Google Scholar 

  • Sivaprasad P, Jacob A, Nair SK, George B (1990) Influence of VA mycorrhizal colonization on root knot nematode infestation in Piper nigrum L. In: Trends in mycorrhizal research, pp 110–111

    Google Scholar 

  • Sivaprasad P, Jacob A, Sulochana KK, Visalakshi A, George B, Ooi FAC (1992) Growth, root-knot nematode infestation and phosphorus nutrition in Piper nigrum (L.) as influenced by vesicular arbuscular mycorrhizae. In: Lim GS, Teng PS (eds) Proceedings of the 3rd international conference on plant protection in the tropics, vol 6. Genting Highlands, Malaysia, pp 34–37

    Google Scholar 

  • Spiegel Y, Chet I (1998) Evaluation of Trichoderma spp. as a biocontrol agent against soilborne fungi and plant-parasitic nematodes in Israel. Integr Pest Manag Rev 3:169–175

    Article  Google Scholar 

  • Spiegel Y, Cohn E, Galper S, Sharon E, Chet I (1991) Evaluation of a newly isolated bacterium, Pseudomonas chitinolytica sp. nov., for controlling the root-knot nematode Meloidogyne javanica. Biocontrol Sci Technol 1:115–125

    Article  Google Scholar 

  • Starr MP, Sayre RM, Schmidt JM (1983) Assignment of ATCC 27337 to Planctomyces staleyi sp. nov. and conservation of Pasteuria ramosa Metchnikoff 1888 on the basis of type descriptive material. Int J Syst Evol Microbiol 33(3):666–671

    Google Scholar 

  • Stirling GR (1991) Biological control of plant parasitic nematode: progress, problems and prospects. CAB International, Wallington

    Google Scholar 

  • Strobel NE, Hussey RS, Roncadori RW (1982) Interaction of vesicular arbuscular mycorrhizal fungi, Meloidogyne incognita and soil fertility on peach. Phytopathology 72:690–694

    Article  Google Scholar 

  • Suarez B, Rey M, Castillo P, Monte E, Llobell A (2004) Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl Microbiol Biotechnol 65:46–55

    Article  PubMed  CAS  Google Scholar 

  • Sundarababu R, Mani MP, Arulraj P (2001) Management of Meloidogyne incognita in chilli nursery with Glomus mosseae. Ann Plant Protect Sci 9:117–170

    Google Scholar 

  • Sundarababu R, Sankaranarayanan C, Vadivelu S (1993) Interaction of mycorrhiza species with Meloidogyne incognita on tomato. Indian J Nematol 23:121–123

    Google Scholar 

  • Susan LFM, Samia MI, Chitwood DJ, Roberts DP (2000) Evaluation of Trichoderma virens and Burkholderia cepacia for antagonistic activity against root-knot nematode, Meloidogyne incognita. Nematology 2(8):871–879

    Article  Google Scholar 

  • Tailer RJ, Tippett G, Gibbs S, Pells D, Jurdan L, Ely S (1992) Identification and characterization of a novel Bacillus thuringiensis toxin entomocidal to Coleopteran and Lepidopteran larvae. Mol Microbiol 21:1217

    Google Scholar 

  • Thomason IJ, Lear B (1961) Rate of production of Meloidogyne spp. as influenced by soil temperature. Phytopathology 51:520–524

    Google Scholar 

  • Tian B, Yang J, Zhang K-Q (2007) Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 61:197–213

    Article  PubMed  CAS  Google Scholar 

  • Trivedi PC (1992) Biocontrol agents in nematode management: a review. In: Recent advances in nematology Dr. Siddiqui commemoration. Bioved Research Society, Allahabad, pp 101–120

    Google Scholar 

  • Trudgill DL, Blok VC (2001) Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu Rev Phytopathol 39:53–77

    Article  PubMed  CAS  Google Scholar 

  • Tunlid A, Rosen S, EK B, Rask L (1994) Purification and characterization of an extracellular serine protease from the nematode trapping fungus Arthrobotrys oligospora. Microbiology 140:1687–1695

    Google Scholar 

  • Udo IA, Uguru MI, Gbuji RO (2013) Pathogenicity of Meloidogyne incognita race1 on tomato as influenced by different arbuscular mycorrhizal fungi and bioformulated Paecilomyces lilacinus a dysteric cambisol soil. J Plant Prot Res 53:71–78

    Article  Google Scholar 

  • van Loon LC et al (2004) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  Google Scholar 

  • Vicente NE, Sanchez LA, Acosta N (1991) Effect of granular nematicides and the fungus Paecilomyces lilacinus in nematode control in watermelons. J Agric Univ Puerto Rico 75:307–309

    Google Scholar 

  • Vieira P, Escudero C, Rodiuc N, Boruc J, Russinova E, Glab N et al (2013) Ectopic expression of Kip-related proteins restrains root-knot nematode-feeding site expansion. New Phytol 199:5505–5019

    Google Scholar 

  • Walters SA, Barker KR (1994) Efficacy of Paecilomyces lilacinus in suppressing Rotylenchulus reniformis on tomato. Suppl J Nematol 26:600–605

    PubMed  CAS  Google Scholar 

  • Wang DYC, Kumar S, Hedges BS (1999) Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc R Soc Lond B 266:163–171

    Article  CAS  Google Scholar 

  • Waweru BW, Losenge T, Kahangi EM, Dubois T, Coyne D (2013) Potential biological control of lesion nematodes on banana using Kenyan strains of endophytic Fusarium oxysporum. Nematology 15:101–107

    Article  Google Scholar 

  • Wei G, Kloepper JW, Tuzum S (1996) Induced systemic resistance of cucumber diseases and increased plant growth by plant growth promoting rhizobacteria under field conditions. Phytopathology 86:221–224

    Article  Google Scholar 

  • Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Aroian RV (2003) Bacillus thuringiensis Crystal proteins that target nematodes. Proc Natl Acad Sci U S A 100:2760–2765

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weidenborner M, Kunz B (1993) Influence of fermentation conditions on nematicidal activity of Pseudomonas fluorescens. Zeitschrift fur Pfleanzenkrankheiten und Pflanzenschuts 100:90

    Google Scholar 

  • Weindling R (1932) Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 22:837–845

    Google Scholar 

  • Westcott SW, Kluepfel DA (1990) Inhibition of Criconemella xenoplax egg hatch by Pseudomonas aureofaciens. Phytopathology 83:1245–1249

    Article  Google Scholar 

  • Westcott SW, Kluepiel DA (1992) Inhibition of Criconemella xenoplax egg hatch by a strain of Pseudomonas aureofaciens. J Nematol 24:626

    Google Scholar 

  • Windham GL, Windham MT, Williams WP (1989) Effects of Trichoderma spp. on maize growth and Meloidogyne arenaria reproduction. Plant Dis 73:493–494

    Article  Google Scholar 

  • Xue JJ, Hou JG, Zhang YA, Wang CY, Wang Z, Yu JJ, Wang YB, Wang YZ, Wang QH, Sung CK (2014) Optimization of storage condition for maintaining long-term viability of nematophagous fungus Esteya vermicola as biocontrol agent against pinewood nematode. World J Microbiol Biotechnol 30(11):2805–2810

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Liang L, Zhang Y, Li J, Zhang L, Ye F, Gan Z, Zhang KQ (2007) Purification and cloning of a novel serine protease from the nematode-trapping fungus Dactylellina varietas and its potential roles in infection against nematodes. Appl Microbiol Biotechnol 75:557–565

    Article  PubMed  CAS  Google Scholar 

  • Zavaleta-Mejia E (1985) The effect of soil bacteria on Meloidogyne incognita (Kofoid & white) Chitwood infection. Dissertation Abstracts International B. Sci Eng 46(4):108

    Google Scholar 

  • Zeinat Kamel M, Nagwa M, Atef E-SSA, Abd El-Wahab GS (2010) Optimization of microbial biomass production as biocontrol agent against root knot nematode on faba plants. J Am Sci 6(6):245–255

    Google Scholar 

  • Zhang SX, Zhang X (2009) Effects of two composted plant pesticide residues, incorporated with Trichoderma viride on root-knot nematode in balloon flower. Agric Sci China 8:447–454

    Article  Google Scholar 

  • Zhang L, Yang J, Niu Q, Zhao X, Ye F, Liang L, Zhang KQ (2008) Investigation on the infection mechanism of the fungus Clonostachys rosea against nematodes using the green fluorescent protein. Appl Microbiol Biotechnol 78(6):983–990

    Article  PubMed  CAS  Google Scholar 

  • Zhao ML, Mo MH, Zhang KQ (2004) Characterization of a neutral serine protease and its full-length cDNA from the nematode trapping fungus Arthrobotrys oligospora. Mycologia 96:16–22

    Article  CAS  Google Scholar 

  • Zombolin L, Oliveira AAR (1986) Interacacoentre Glomus etunicatum and Meloidogyne javanica emfeijao (Phaseolus vulgaris L.). Fitopatologia Brasiliera 11:217

    Google Scholar 

  • Zuckerman BM, Jasson HB (1984) Nematode chemotaxis and possible mechanisms of host/prey recognition. Annu Rev Phytopathol 22:95–113

    Article  CAS  Google Scholar 

  • Zuckerman BM, Dicklow MB, Acosta N (1993) A strain of Bacillus thuringiensis for the control of plant-parasitic nematodes. Biocontrol Sci Tech 3:41–46

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. D Ramaiah, Director, CSIR-North East Institute of Science & Technology, Jorhat, Assam, India, and Dr. SC Nath, Chief Scientist, MAEP Division, for their consistent support to carry out this work. BSB is thankful to the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for financing the network project – PMSI (BSC-0117). SBW and RA are thankful to the DST, Government of India, for the financial support for EMPOWER project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Bhau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Wann, S.B. et al. (2016). Isolation, Characterization of Nematode-Controlling Bacteria and Fungi from Nature. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_16

Download citation

Publish with us

Policies and ethics