Skip to main content

Beneficial Effects and Molecular Diversity of Endophytic Bacteria in Legume and Nonlegumes

  • Chapter
  • First Online:
Microbial Inoculants in Sustainable Agricultural Productivity

Abstract

Endophytes colonize the plant inner tissues, commonly coming from the soil. Endophytes could be considered of two types, one having plant growth-promoting activity, while another type having the ability to fix nitrogen. Endophytic bacteria can stimulate plant growth directly through production of phytohormones and volatiles, enhance nutrient acquisition, and suppress stress-induced ethylene synthesis. Bacterial endophytes protect against disease, against abiotic stresses of salinity and heavy metals. Pathogenic, symbiotic nitrogen fixers and mycorrhiza coordinate sequential expression of plant or microbial genes. But in both types of endophytic association, partial interactions, signaling pathways, coordination, and gene expression of host and bacteria are known. To obtain nitrogen-fixing cereals, now emphasis has been shifted from rhizobia to actinorhizal symbiosis based on the recent studies on model legumes. Endophytic bacteria have been found in almost every plant studied. All plants may harbor one or more number of bacteria of genera mainly Bacillus, Paracoccus, Sphingomonas, Inquilinus, Pseudomonas, Serratia, Mycobacterium, Nocardia, Brevibacillus, Staphylococcus, Lysinibacillus, Bosea, Rhodopseudomonas, Phyllobacterium, Ochrobactrum, Starkeya, Agromyces, Ornithinicoccus, Actinobacterium, Paenibacillus, Methylobacterium, Pedobacter, Aerococcus, Stenotro-phomonas, Streptomyces, Dyella, and others. Most of the endophytic isolates upon inoculation in different agricultural crops significantly increased plant growth under greenhouse conditions. This plant growth promotion is the result of many different factors that can act directly or indirectly. Efficacy of two endophytic bacterial strains Bacillus subtilis and B. licheniformis under field conditions showed that an increase up to 22.5 % in grain yield of chickpea was observed with Bacillus subtilis inoculation. However, inoculation with all the recommended biofertilizers – Mesorhizobium, PSB and PGPR – could increase up to 14.4 % grain yield in chickpea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano-Anaya M, Salvador-Figueroa M, Ocampo JA, Garcia-Romera I (2005) Plant cell-wall degrading hydrolytic enzymes of Gluconacetobacter diazotrophicus. Symbiosis 40:151–156

    CAS  Google Scholar 

  • Alqueres S, Menses C, Rouws L, Rothballer M, Baldani I, Schmid M et al (2013) The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus strain PAL5. Mol Plant Microbe Interact 26:937–945

    Article  CAS  PubMed  Google Scholar 

  • Angulo VC, Sanfuentes EA, Rodríguez F, Sossa KE (2014) Characterization of growth-promoting rhizobacteria in Eucalyptus nitens seedlings. Rev Argent Microbiol 46(4):338–347

    Google Scholar 

  • Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal (loid) – contaminated mining site soil. J Environ Manage 151:160–166

    Article  CAS  PubMed  Google Scholar 

  • Bacilio M, Rodriguez H, Moreno M, Hernandez JP, Bashan Y (2004) Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biol Fertil Soils 40:188–193

    Article  CAS  Google Scholar 

  • Balsanelli E, Serrato RV, de Baura VA et al (2010) Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization. Environ Microbiol 12:2233–2244

    CAS  PubMed  Google Scholar 

  • Beatty PH, Good AG (2011) Plant science: future prospects for cereals that fix nitrogen. Science 333:416–417

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Dietz KJ (2000) Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations. Microbiol Res 155:113–121

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen fixing bacteria as biofertilizer for non-legumes: prospects and challenges. Appl Environ Microbiol 80:199–209

    CAS  Google Scholar 

  • Bhattacharya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  Google Scholar 

  • Boddey RM, Urquiaga S, Reis VM (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149

    Article  CAS  Google Scholar 

  • Böhm M, Hurek T, Reinhold-Hurek B (2007) Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. strain BH72. Mol Plant Microbe Interact 20:526–533

    Article  PubMed  Google Scholar 

  • Burdman S, Dulguerova G, Okon Y, Jurkevitch E (2001) Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation. Mol Plant Microbe Interact 14:555–561

    Article  CAS  PubMed  Google Scholar 

  • Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carole S, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767

    Article  Google Scholar 

  • Carvalho TL, Balsemão-Pires E, Saraiva RM, Ferreira PC, Hemerly AS (2014) Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. J Exp Bot 65(19):5631–5642

    Article  CAS  PubMed  Google Scholar 

  • Charpentier M, Oldroyd G (2010) How close are we to nitrogen-fixing cereals? Curr Opin Plant Biol 13:556–564

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Tu C, Burton MG, Watson DM, Burkey KO, Hu S (2007) Plant nitrogen acquisition and interactions under elevated carbon dioxide: impact of endophytes and mycorrhizae. Global Change Biol 13:1238–1249

    Article  Google Scholar 

  • Cheng C, Tennant SM, Azzopardi KI, Bennett-Wood V, Hartland EL, Robins-Browne RM, Tauschek M (2009) Contribution of the pst-phoU operon to cell adherence by atypical enteropathogenic Escherichia coli and virulence of Citrobacter rodentium. Infect Immun 77:1936–1944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cocking EC (2009) The challenge of establishing symbiotic nitrogen fixation in cereals. In: Emerich DW, Krishnan HB (eds) Nitrogen fixation in crop production. American Society of Agronomy, Madison, pp 35–63

    Google Scholar 

  • Compant S, Marcel GA, van der Heijden MG, Sessitsch A (2010) Climate change effects on beneficial plant microorganism interactions. FEMS Microbiol Ecol 73:197–214

    CAS  PubMed  Google Scholar 

  • Conn VM, Walker AR, Franco CM (2008) Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant Microbe Interact 21:208–218

    Article  CAS  PubMed  Google Scholar 

  • Coutinho BG, Licastro D, Mendonça-Previato L, Cámara M, Venturi V (2015) Plant-influenced gene expression in the rice endophyte Burkholderia kururiensis M130. Mol Plant Microbe Interact 28(1):10–21

    Article  PubMed  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (1996) Azospirillum inoculation in pre germinating wheat seeds. Can J Microbiol 42:83–86

    Article  CAS  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (1997) Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiol Biochem 35:939–944

    CAS  Google Scholar 

  • da Silva D, Cotta S, Vollú R, de Jurelevicius D, Marques J, Marriel I, Seldin L (2014) Endophytic microbial community in two transgenic maize genotypes and in their near-isogenic non-transgenic maize genotype. BMC Microbiol 14(1):6

    Article  Google Scholar 

  • Dourado MN, Bogas AC, Pomini AM, Andreote FD, Quecine MC, Marsaioli AJ, Araújo WL (2013) Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules. Braz J Microbiol 44:1331–1339

    Article  PubMed Central  PubMed  Google Scholar 

  • Downie JA (2010) The role of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34:150–170

    Article  CAS  PubMed  Google Scholar 

  • Dudeja SS, Giri R (2014) Beneficial properties, colonization, establishment and molecular diversity of endophytic bacteria. Afr J Microbiol Res 8(15):1562–1572

    Article  Google Scholar 

  • Dudeja SS, Nidhi (2014) Molecular diversity of rhizobial and non rhizobial bacteria from nodules of cool season legumes In: Salar RK, Gahlawat SK, Siwach P, Duhan JS (eds) Biotechnology: prospects and applications. Springer, New York. doi:10.1007/978-81-322-1683-4_10, © Springer India 2014

    Google Scholar 

  • Dudeja SS, Giri R, Saini R, Suneja-Madan P, Kothe E (2012a) Interaction of endophytic microbes with legumes. J Basic Microbiol 52:248–260

    Article  CAS  PubMed  Google Scholar 

  • Dudeja SS, Sheokand S, Kumari S (2012b) Legume root nodule development and functioning under tropics and subtropics: perspectives and challenges. Legume Res 35:85–103

    Google Scholar 

  • Etesami H, Mirsyedhosseini H, Alikhani HA (2013) Rapid screening of berseem clover (Trifolium alexandrinum) endophytic bacteria for rice plant seedlings growth-promoting agents. ISRN Soil Sci Article ID 371879, 9 pages, http://dx.doi.org/10.1155/2013/371879

  • Faria DC, Dias AC, Melo IS, de Carvalho CFE (2013) Endophytic bacteria isolated from orchid and their potential to promote plant growth. World J Microbiol Biotechnol 29(2):217–221

    Article  PubMed  Google Scholar 

  • Garcia-Gutiérrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Pérez-Garcia A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate – and salicylic acid – dependent defence response. Microb Biotechnol 6:264–274

    Article  PubMed Central  PubMed  Google Scholar 

  • Geurts R, Lillo A, Bisseling T (2012) Exploiting an ancient signalling machinery to enjoy a nitrogen fixing symbiosis. Curr Opin Plant Biol 15:1–6

    Article  Google Scholar 

  • Gherbi H, Markmann K, Svistoonoff S et al (2008a) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Natl Acad Sci U S A 105:4928–4932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gherbi H, Nambiar-Veetil M, Zhong C et al (2008b) Post-transcriptional gene silencing in the root system of the actinorhizal tree Allocasuarina verticillata. Mol Plant Microbe Interact 21:518–524

    Article  CAS  PubMed  Google Scholar 

  • Giri R, Dudeja SS (2013a) Host specificity of plant endophytic bacterial interactions: root and nodule colonization under sterilized sand conditions in disposable coffee cups. Cent European J Exptl Biol 2(4):22–26

    Google Scholar 

  • Giri R, Dudeja SS (2013b) Root colonization of root and nodule endophytic bacteria in legume and non legume plants grown in liquid medium. J Microbiol Res 1(6):75–82

    Google Scholar 

  • Giri R, Dudeja SS (2015) Beneficial properties, establishment, identification and beneficial effects of root and nodule endophytic bacteria in chickpea and wheat crops. Microbiol Res (submitted)

    Google Scholar 

  • Glick BR (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291–312

    Article  CAS  PubMed  Google Scholar 

  • Godfroy O, Debellé F, Timmers T, Rosenberg C (2006) A rice calcium- and calmodulin-dependent protein kinase restores nodulation to a legume mutant. Mol Plant Microbe Interact 19:495–501

    Article  CAS  PubMed  Google Scholar 

  • Gond SK, Bergen MS, Torres MS, White JF Jr (2014) Endophytic Bacillus spp. produce antifungal lipo peptides and induce host defence gene expression in maize. Microbiol Res pii: S0944-5013(14)00143-8. doi:10.1016/j.micres.2014.11.004. [Epub ahead of print]

    Google Scholar 

  • Gristwood T, Fineran PC, Everson L, Williamson NR, Salmond GP (2009) The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate. BMC Microbiol 9:112

    Article  PubMed Central  PubMed  Google Scholar 

  • Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183(8):2634–2645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han Y, Wang R, Yang Z, Zhan Y, Ma Y, Ping S, Zhang L, Lin M, Yan Y (2015) Amino cyclo propane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals. J Microbiol Biotechnol 25(7):1119–1128

    Google Scholar 

  • Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Rothballer M, Burkhard AH, Schröder P (2014) Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci 5:1–4

    Article  CAS  Google Scholar 

  • Hocher V, Alloisio N, Auguy F et al (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156:700–711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoque MS, Broadhurst LM, Thrall PH (2011) Genetic characterisation of root nodule bacteria associated with Acacia salicina and Acacia stenophylla (Mimosaceae) across Southeastern Australia. Int J Syst Evol Microbiol 61(2):299–309

    Article  CAS  PubMed  Google Scholar 

  • Hurek T, Handley LL, Reinhold-Hurek B, Piché Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant Microbe Interact 15:233–242

    Article  CAS  PubMed  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni-hyper accumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jia SH, Gururanib MA, Chuna SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169:83–98

    Article  Google Scholar 

  • Jofré E, Lagares A, Mori G (2004) Disruption of dTDP-rhamnose biosynthesis modifies lipo polysaccharide core, exo polysaccharide production and root colonization in Azospirillum brasilense. FEMS Microbiol Letters 231:267–275

    Article  Google Scholar 

  • Jourand P, Renier A, Rapior S, Faria SM, Prin Y, Galiana A, Giraud E, Dreyfus B (2005) Role of methylotrophy during symbiosis between Methylobacterium nodulans and Crotalaria podocarpa. Mol Plant Microbe Interact 18:1061–1068

    Article  CAS  PubMed  Google Scholar 

  • Kolbas A, Kidd P, Guinberteau J, Jaunatre R, Herzig R, Mench M (2015) Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower. Environ Sci Pollut Res Int. 2015 Jan 7. [Epub ahead of print]

    Google Scholar 

  • Kramer EM, Bennett MJ (2006) Auxin transport: a field in flux. Trends Plant Sci 11:382–386

    Article  CAS  PubMed  Google Scholar 

  • Krause A, Ramakumar A, Bartels D et al (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24:1385–1391

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Pathak DV, Dudeja SS, Saini R, Giri R, Narula S, Anand RC (2013) Legume nodule endophytes more diverse than endophytes from roots of legumes or non legumes in soils of Haryana, India. J Microbiol Biotechnol Res 3(3):83–92

    Google Scholar 

  • Li Y, Zhang Y (2007) PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob Agents Chemother 51:2092–2099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li YH, Zhu JN, Zhai ZH, Zhang Q (2010) Endophytic bacterial diversity in roots of Phragmites australis in constructed Beijing Cuihu Wetland (China). FEMS Microbiol Lett 309(1):84–93

    CAS  PubMed  Google Scholar 

  • Ma L, Cao YH, Cheng MH, Huang Y, Mo MH, Wang Y, Yang JZ, Yang FX (2013) Phylogenetic diversity of bacterial endophytes of Panax notoginseng with antagonistic characteristics towards pathogens of root – rot disease complex. Antonie Van Leeuwenhoek 103(2):299–312

    Article  PubMed  Google Scholar 

  • Markmann K, Giczey GB, Parniske M (2008) Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol 6:e68. http://dx.doi.org/10.1371/journal.pbio.0060068

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Mingma R, Duangmal K, Thamchaipenet A, Trakulnaleamsai S, Matsumoto A, Takahashi Y (2015) Streptomyces oryzae sp. nov., an endophytic actinomycete isolated from stems of rice plant. J Antibiot (Tokyo). 2015 Jan 14. doi:10.1038/ja.2014.166

    Google Scholar 

  • Muresu R, Polone E, Sulas L, Baldan B, Tondello A, Delogu G, Cappuccinelli P, Alberghini S, Benhizia Y, Benhizia H, Benguedouar A, Mori B, Calamassi R, Dazzo FB, Squartini A (2008) Co existence of predominantly non culturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol 63:383–400

    Article  CAS  PubMed  Google Scholar 

  • Muthukumar A, Bhaskaran R, Kumar SK (2010) Efficacy of endophytic Pseudomonas fluorescens (Trevisan) migula against chilli damping-off. J Biopest 3(1):105–109

    Google Scholar 

  • Narula S, Anand RC, Dudeja SS (2013a) Beneficial traits of endophytic bacteria from field pea nodules and plant growth promotion of field pea. J Food Legume 36(4):344–350

    Google Scholar 

  • Narula S, Anand RC, Dudeja SS, Kumar V, Pathak DV (2013b) Molecular diversity of root and nodule endophytic bacteria from field pea (Pisum sativum L.). Legume Res 36(4):344–350

    Google Scholar 

  • Olivares FL, Baldani VLD, Reis VM, Baldani JI, Döbereiner JJ (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biol Fertil Soils 21:197–200

    Article  Google Scholar 

  • Palaniappan P, Chauhan PS, Saravanan VS, Anandham R, Sa T (2010) Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp. Biol Fertil Soils 46:807–816

    Article  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a play ground and battlefield for soil borne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  PubMed  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:111–117

    Article  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Rossetto PB, Dourado MN, Quecine MC, Andreote FD, Araújo WL, Azevedo JL, Pizzirani-Kleiner AA (2011) Specific plant induced biofilm formation in Methylobacterium species. Braz J Microbiol 42:878–883

    PubMed Central  PubMed  Google Scholar 

  • Rungin S, Indananda C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A (2012) Plant growth enhancing effects by a siderophore producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van Leeuwenhoek 102(3):463–472

    Article  CAS  PubMed  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Medicine Res 21:1–30

    Google Scholar 

  • Saini R, Dudeja SS, Giri R, Kumar V (2015a) Isolation, characterization and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. J Basic Microbiol 55:74–81

    Article  CAS  PubMed  Google Scholar 

  • Saini R, Kumar V, Dudeja SS, Pathak DV (2015b) Beneficial effects of inoculation of endophytic bacterial isolates from roots and nodules in chickpea. Int J Curr Microbiol App Sci 4(10):207–221

    Google Scholar 

  • Sanches-Contreras M, Bauer WD, Gao M, Robinson JB, Downie A (2007) Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philos Trans Roy Soc B 362:1149–1163

    Article  Google Scholar 

  • Schmid M, Hartmann A (2007) Molecular phylogeny and ecology of root associated diazotrophic alpha – and beta – proteobacteria. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, New York, pp 21–40

    Chapter  Google Scholar 

  • Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 25:28–36

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Lou K, Li C (2009) Promotion of plant growth by phytohormone-producing endophytic microbes of sugar beet. Biol Fertil Soils 45:645–653

    Article  CAS  Google Scholar 

  • Singh B, Kaur T, Kaur S, Manhas RK, Kaur A (2015) An alpha – glucosidase inhibitor from an endophytic Cladosporium sp. with potential as a biocontrol agent. Appl Biochem Biotechnol 175(4):2020–2034

    Article  CAS  PubMed  Google Scholar 

  • Soto MJ, Sanjuán J, Olivares J (2006) Rhizobia and plant-pathogenic bacteria: common infection weapons. Microbiology 152:3167–3174

    Article  CAS  PubMed  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. J Appl Soil Ecol 15:183–190

    Article  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25:13–19

    Article  Google Scholar 

  • Sy MO, Hocher V, Gherbi H, Laplaze L, Auguy F, Franche C (2007) The cell-cycle promoter cdc2aAt from Arabidopsis thaliana is induced in lateral roots of the actinorhizal tree Allocasuarina verticillata during early stages of the symbiotic interaction with Frankia. Physiol Plant 130:409–417

    Article  CAS  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209–219

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang K, Yan PS, Ding QL, Wu QX, Wang ZB, Peng J (2013) Diversity of culturable root associated/endophytic bacteria and their chitinolytic and aflatoxin inhibition activity of peanut plant in China. World J Microbiol Biotechnol 29(1):1–10

    Article  PubMed  Google Scholar 

  • Wei S, Wu XB (2012) Isolation, classification and biosynthetic potential of endophytic actinomycetes from Stemona. Antonie Van Leeuwenhoek 52(3):389–395

    Google Scholar 

  • White EW, Winans SC (2007) Cell-cell communication in the plant pathogen Agrobacterium tumefaciens. Philos Trans Roy Soc B 362:1135–1148

    Article  CAS  Google Scholar 

  • Williams CJ, Yavitt JB (2009) Temperate wetland methanogenesis: the importance of vegetation type and root ethanol production. Soil Sci Soc Am J 74:317–325

    Article  Google Scholar 

  • Wu Y, Shi F, Hamid MI, Zhu Y (2014). Endophytic bacterial diversity of wild soybean (Glycine soja) varieties with different resistance to soybean cyst nematode (Heterodera glycines). Wei Sheng Wu Xue Bao. 54(8):926–935

    Google Scholar 

  • Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zhao LF, Xu YJ, Ma ZQ, Deng ZS (2013) Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules. Braz J Microbiol 44:629–637

    Article  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the holo genome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surjit Singh Dudeja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Dudeja, S.S. (2016). Beneficial Effects and Molecular Diversity of Endophytic Bacteria in Legume and Nonlegumes. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_14

Download citation

Publish with us

Policies and ethics