Skip to main content

Microbial Inoculants as Biofertilizers and Biopesticides

  • Chapter
  • First Online:
Microbial Inoculants in Sustainable Agricultural Productivity

Abstract

Bioinoculants are ecofriendly as they don’t have any adverse effect on soil fauna and flora. These bioinoculants can also be used as biopesticides which do not have any residual effect on crop products. But the main problem with the bioinoculants is its quality, as the private agencies which supply various biofertilizers and biopesticides don’t care for their quality parameters. The availability of good quality bioinoculants to the farmers is main hurdle in their success. There is lack of co-ordination between the extension workers and scientists. Due attention is needed regarding Azotobacter, Azolla, Acetobacter, Trichoderma, Bacillus thuriengensis, and Azospirillum and their application in various cereal and vegetable crops. These biofertilizers should be integrated with organic manures and chemical fertilizers to enhance the soil organic carbon and maintain sustainability in field and horticultural crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Composting culture –1 kg for 2–3 metric ton of agricultural waste.

References

  • Arcand MM, Schneider KD (2006) Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review. Ann Braz Acad Sci 78(4):791–807

    Article  CAS  Google Scholar 

  • Bottini R, Cassan F, Picolli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Cavalcante VA, Dobereiner J (1988) A new acid tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23–31

    Article  Google Scholar 

  • Gillis M, Kerters B, Hoste DJ, Kroppenstedt RM, Stephan MP, Teixeira KRS, Do’bereiner J, De Ley J (1989) Azotobacter diazotrophicus sp. nov., a nitrogen fixing acetic acid bacterium associated with sugarcane. Int J Syst Bacteriol 39:361–364

    Article  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41(Suppl 2):109–114

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Goel AK, Laura RD, Pathak DV, Goel A (1999) Use of biofertilizers: potential, constraints and future strategies review. Int J Trop Agric 17:1–18

    Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Hilda R, Fraga R (2000) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–359

    Google Scholar 

  • Ishizuka J (1992) Trends in biological nitrogen fixation research and application. Plant Soil 141:197–209

    Article  CAS  Google Scholar 

  • Joseph B, Patra RR, Lawrence R (2007) Characterization of plant growth promoting Rhizobacteria associated with chickpea (Cicer arietinum L). Int J Plant Prod 1(Suppl 2):141–152

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inoculums for enhancing crop productivity. Trends Biotechnol 7(Suppl 2):39–43

    Article  Google Scholar 

  • Lakshminarayana K (1993) Influence of Azotobacter on nitrogen nutrition of plants and crop productivity. Proc Indian Natl Sci Acad 59:303–308

    Google Scholar 

  • Martinez-Toledo MV, de la Rubia T, Moreno J, Gonzalez Lopez J (1988) Root exudates of Zea mays and production of auxins, gibberellins and cytokinins by Azotobacter chroococcum. Plant Soil 110:149–152

    Article  CAS  Google Scholar 

  • Montanez A, Rodriguez Blanco A, Barlocco C, Beracochea M, Sicardi M (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol 58:21–28

    Article  Google Scholar 

  • Moore WEC, Moore LVH (1992) Index of the bacterial and yeast nomenclature changes. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Nahas E, Banzatto DA, Assis LC (1990) Fluorapatite solubilization by Aspergillus niger in vinasse medium. Soil Biol Biochem 22:1097–1110

    Article  CAS  Google Scholar 

  • Narula N, Nijahwan DC, Lakshminarayana K, Kapoor RL, Verma OPS (1991) Response of pearl millet (Pennisetum glaucum) to soil isolates and analogue resistant mucants of Azotobacter choococcum. Indian J Agric Sci 61:484–487

    Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. Commonwealth Scientific and Industrial Research Organization, Adelaide, pp 274–278

    Google Scholar 

  • Pathak DV, Khurana AL, Singh S (1997) Biofertilizers for enhancement of crop productivity – a review. Agric Rev 18:155–166

    Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase containing plant growth promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Pelt JA, Verhagen BWM, Jurriaan T, Wees SCM, Léon-Kloosterziel KM, Loon LC (2003) Induced systemic resistance by plant growth-promoting rhizobacteria. Symbiosis 35(Suppl 1–3):39–54

    CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Saikia SP, Jain V (2007) Biological nitrogen fixation with non-legumes: an achievable target or a dogma? Curr Sci 92(3):317–322

    CAS  Google Scholar 

  • Schlesinger WH (1991) Biogeochemistry: an analysis of global change. Academic, San Diego

    Google Scholar 

  • Sharma PK, Dey SK, Chahal VPS (1986) In vitro interactions between phytopathogens and two Azotobacter spp. Phytopathol Notes 39:117–119

    Google Scholar 

  • Shende ST, Apte RJ, Singh T (1977) Influence of Azotobacter on germination of rice and cotton seeds. Curr Sci 46:675

    Google Scholar 

  • Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312:15–23

    Article  CAS  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Verma A, Kukreja K, Pathak DV, Suneja S, Narula N (2001) In-vitro production of plant growth regulators (PGPRs) by A. Chroococcum. Indian J Microbiol 41:305–307

    Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 22(9):174

    Article  Google Scholar 

  • Wagner SC (2012) Biological nitrogen fixation. Nat Educ Knowl 3(10):15

    Google Scholar 

  • Yadav E, Pathak DV, Sharma SK, Kumar M, Sharma PK (2007) Isolation and characterization of mutants of Pseudomonas maltophilia PM4 altered in chitinolytic activity and antagonistic activity against root rot pathogens of cluster bean (Cyamposis tetragonoloba). Indian J Microbiol 47:64–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Pathak, D.V., Kumar, M. (2016). Microbial Inoculants as Biofertilizers and Biopesticides. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_11

Download citation

Publish with us

Policies and ethics