Skip to main content

Strategies for Characterization of Agriculturally Important Bacteria

  • Chapter
  • First Online:
Microbial Inoculants in Sustainable Agricultural Productivity

Abstract

The technology of plant production always faced fast-growing food and energy demands, but driven by a new approach, the answer for those demands must be socially and environmentally conscious. In this way we have a very powerful tool, bacteria, that benefit the plants. Therefore, to use that natural resource, some aspects must be observed, such as carrying out isolation of strains directed to the use (when possible) and correctly identify the strain used, not only by morphological techniques but also by molecular techniques, looking for the necessary biosafety for those who will use the developed technology. The characterization of strains will define the potential use that we want to follow: biofertilizer, phytostimulators, or biocontrol agents. After identifying the main characteristics of bacteria, there is a universe of possibilities regarding the plant interaction and bacteria, such as the signal recognition, penetration, and establishment, and whether the bacteria are endophytic, epiphytic, or rhizospheric. Before the immersion on the complexity of the issue, our aim was to contribute for the characterization of agricultural interest of bacteria, with attention to the desired characteristics, and discuss the mechanisms within each line of action – biofertilizer, phytostimulators, or biocontrol agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology. Academic, New York

    Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    Article  PubMed  CAS  Google Scholar 

  • Altomare C, Tringovska I (2011) Beneficial soil microorganisms, an ecological alternative for soil fertility management. In: Lichtfouse E (ed) Genetics, biofuels and local farming systems, vol 7, Sustainable agriculture reviews. Springer, Dordrecht, pp 161–214

    Chapter  Google Scholar 

  • Alves BJR et al (2000) Estimation of N2 fixation in Desmodium ovalifolium from the relative ureide abundance of stem solutes: comparison with the 15N-dilution and an in situ soil core technique. Nutr Cycl Agroecosyst 56:177–193

    Article  CAS  Google Scholar 

  • Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209

    Article  CAS  Google Scholar 

  • Atkins SD, Clark IM (2004) Fungal molecular diagnostics: a mini review. J Appl Genet 45:3–15

    PubMed  Google Scholar 

  • Azevedo JL (1998) Microorganismos endofíticos. In: Melo IS, Azevedo JL (eds) Ecologia microbiana. Embrapa Meio Ambiente, Jaguariuna, pp 117–137

    Google Scholar 

  • Badenoch-Jones J, Summons RE, Rolfe BG, Letham DS (1984) Phytohormones, Rhizobium mutants, and nodulation in legumes. IV. Auxin metabolites in pea root nodules. J Plant Growth Regul 3:23–39

    Article  CAS  Google Scholar 

  • Baker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    Article  Google Scholar 

  • Balachandar D (2012) Biofertilizers – what next? J Biofertil Biopestici. doi:10.4172/2155-6202.1000e108

  • Barra VR et al (2008) Potencialidade antagonística em alguns procariotas agentes de biocontrole de enfermidades de plantas. Summa Phytopathol 34(2):121–126

    Article  Google Scholar 

  • Barraquio WL et al (2000) Diazotrophic enterobacteria: what is their role in the rhizosphere of rice? In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. International Rice Research Institute IRRI, Manila, pp 93–118

    Google Scholar 

  • Barreto ES et al (2008) Diversity in antifungal activity of strains of Chromobacterium violaceum from the Brazilian Amazon. J Ind Microbiol Biotechnol 35(7):783–90

    Article  PubMed  CAS  Google Scholar 

  • Bartinicki-Garcia S (1968) Cell wall chemistry, morphogenesis and taxonomy of fungi. Annu Rev Microbiol 22:87–109

    Article  Google Scholar 

  • Belimov AA et al (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47(7):642–652

    Article  PubMed  CAS  Google Scholar 

  • Beneduzi AS (2008) Isolamento e caracterização de linhagens de Bacillus e Paenibacillus promotores de crescimento vegetal em lavouras de arroz e trigo do Rio Grande do Sul. Thesis, Universidade Federal do Rio Grande do Sul

    Google Scholar 

  • Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39:311–320

    Article  Google Scholar 

  • Benhamou N, Belanger RR (1998) Induction of systemic resistance to Pythium damping-off in cucumber plants by benzothiadiazole: ultrastructure and cytochemistry of the host response. Plant J 14:13–21

    Article  PubMed  CAS  Google Scholar 

  • Benite AMC, Machado SP, Machado BC (2002) Sideróforos: uma resposta dos microorganismos. Quim Nova 25:1155–1164

    Article  CAS  Google Scholar 

  • Bettoni MM, Mógor ÁF, Pauletti V, Goicoechea N (2014) Growth and metabolism of onion seedlings as affected by the application of humic substances, mycorrhizal inoculation and elevated CO2. Sci Hortic 180:227–235

    Article  CAS  Google Scholar 

  • Bevivino A, Dalmastri C, Tabacchioni S, Chiarini L (2000) Efficacy of Burkholderia cepacia MCI 7 in disease suppression and growth promotion of maize. Biol Fertil Soils 31:225–231

    Article  Google Scholar 

  • Blaha D, Prigent-Combaret C, Mirza MS, MoënneLoccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56(3):455–470

    Article  PubMed  CAS  Google Scholar 

  • Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177

    Article  PubMed  CAS  Google Scholar 

  • Bnayahu BY (1991) Root excretions and their environmental effects: influence on availability of phosphorus. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 529–557

    Google Scholar 

  • Boot KJM, van Brussel AAN, Tak T, Spaink HP, Kijne JW (1999) Lipochitin oligosaccharides from Rhizobium leguminosarum bv. viciae reduce auxin transport capacity in Vicia sativa subsp nigra roots. Mol Plant-Microbe Interact 12:839–844

    Article  CAS  Google Scholar 

  • Borriss R (2011) Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 41–76

    Chapter  Google Scholar 

  • Brasil (2004) Ministério da Agricultura, Pecuária e Abastecimento. Lei de Fertilizantes, Corretivos, Inoculantes, Estimulantes ou Biofertilizantes. Decreto n° 4.954 de 14 de janeiro de 2004, Brasília

    Google Scholar 

  • Brasil (2008) Ministério da Agricultura, Pecuária e Abastecimento. Regulamento Técnico que estabelece as normas técnicas para os Sistemas Orgânicos de Produção. Instrução Normativa n° 64 de 18 de dezembro de 2008, Brasília

    Google Scholar 

  • Braud A, Jézéquel K, Vieille E, Tritter A, Lebeau T (2006) Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Pollut 6:261–279

    Article  CAS  Google Scholar 

  • Cassán F, Lucangeli C, Bottini R, Piccoli P (2001) Azospirillum spp. Metabolize [17,17−2H2] Gibberellin A20 to [17,17−2H2] Gibberellin A1 in vivo in dy rice mutant seedlings. Plant Cell Physiol 42:763–767

    Google Scholar 

  • Cassán FD, Piccoli P, Bottini R (2003) Promoción del crecimiento vegetal por Azospirillum sp. a través de la producción de giberelinas. Un modelo alternativo para incrementar la producción agrícola. In: Albanesi A, Kunst C, Anriquez A, Luna S, Ledesma R (eds) Microbiología Agrícola. Un aporte de La investigación en Argentina para la sociedad. Universidad Nacional de Santiago del Estero, Santiago, pp 1–16

    Google Scholar 

  • Castric PA (1977) Glycine metabolism by Pseudomonas aeruginosa: hydrogen cyanide biosynthesis. J Bacteriol 130(2):826–831

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chagas Junior AF, Oliveira LA, Oliveira AN, Willerding AL (2010) Capacidade de solubilização de fosfatos e eficiência simbiótica de rizóbios isolados de solos da Amazônia. Acta Sci Agron 32(2):59–366

    Article  CAS  Google Scholar 

  • Cherif M, Benhamou N (1990) Cytochemical aspects of chitin breakdown during the parasitic action of a Trichoderma sp. on Fusarium oxysporum f. sp. Radicis-lycopersici. Phytopathology 80:1406–1414

    Article  CAS  Google Scholar 

  • Civiero JC et al (2013) Stem and root growth of sugar cane for the use of humic acid and L-glutamic acid. Braz J Appl Technol Agric Sci 6(1):47–51

    Google Scholar 

  • Compant S et al (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71(4):1685–1693

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Contesto C et al (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth promoting rhizobacteria. Plant Sci 175:178–189

    Article  Google Scholar 

  • Cook RJ, Baker KF (1989) The nature and practice of biological control of plant pathogens. St. Paul APS Press, Minnesota

    Google Scholar 

  • Dall’Agnol RF et al (2013) Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. Int J Syst Evol Microbiol 63:4167–4173

    Article  PubMed  Google Scholar 

  • Datta C, Basu PS (2000) Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol Res 155(2):123–127

    Article  PubMed  CAS  Google Scholar 

  • Davies PJ (2004) The plant hormones: their nature, occurrence, and functions. In: Davies PJ (ed) Plant hormones, biosynthesis, signal transduction, action. Kluwer Academic Publishers, Dordrecht, pp 1–15

    Google Scholar 

  • Deepa CK, Dastager SG, Pandey A (2010) Plant growth-promoting activity in newly isolated Bacillus thioparus (NII-0902) from Western ghat forest, India. World J Microbiol Biotechnol 26(12):2277–2283

    Article  Google Scholar 

  • Dobert RC, Rood SB, Blevins DG (1992) Gibberellins and the legume-Rhizobium symbiosis. I. Endogenous gibberellins of lima bean (Phaseolus lunatus L.) stems and nodules. Plant Physiol 98:221–224

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Durães FOM et al (2004) Caracterização de genótipos para uso e eficiência de nitrogênio em milho e influência da adubação nitrogenada sobre a incidência e severidade da mancha foliar de Phaeosphaeria maydis, Circular Técnica 53. Embrapa-CNPMS, Sete Lagoas

    Google Scholar 

  • Eady RR (1991) The Mo, V, and Fe based nitrogenase systems of Azotobacter. Adv Inorg Chem 36:77–102

    Article  CAS  Google Scholar 

  • Egebo LA, Nielsen SVS, Jochimsen BU (1991) Oxygen-dependent catabolism of indole-3-acetic acid in Bradyrhizobium japonicum. J Bacteriol 173:4897–4901

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fan B, Borriss R, Bleiss W, Wu X (2012) Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns. J Microbiol 50(1):38–44

    Article  PubMed  Google Scholar 

  • Feng K, Lu HM, Sheng HJ, Wang XL, Mao J (2004) Effect of organic ligands on biological availability of inorganic phosphorus in soils. Pedosphere 14(1):85–92

    CAS  Google Scholar 

  • Fernando WG, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37(5):955–964

    Article  CAS  Google Scholar 

  • Ferreira MCB, Fernandes MS, Döbereiner J (1987) Role of Azospirillum brasilense nitrate reductase in nitrate assimilation by wheat plants. Biol Fertil Soil 4:47–53

    CAS  Google Scholar 

  • Fogliano V et al (2002) Pseudomonas lipopeptides and fungal cell wall-degrading enzymes act synergistically in biological control. Mol Plant-Microbe Interact 15:323–333

    Article  PubMed  CAS  Google Scholar 

  • Franzini VI, Mendes FL, Muraoka T, Trevisam AR, Adu-Gyamfi JJ (2013) Biological nitrogen fixation efficiency in Brazilian common bean genotypes as measured by 15N methodology. In: Optimizing productivity of food crop genotypes in low nutrient soils, TECDOC series no, 1721. International Atomic Energy Agency IAEA, Vienna, pp 299–309

    Google Scholar 

  • Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K (2008) Cytokinin: secret agent of symbiosis. Trends Plant Sci 13:115–120

    Article  PubMed  CAS  Google Scholar 

  • Fukuhara H, Minakawa Y, Akao S, Minamisawa K (1994) The involvement of indole-3-acetic acid produced by Bradyrhizobium elkanii in nodule formation. Plant Cell Physiol 35(8):1261–1265

    CAS  Google Scholar 

  • Fürnkranz M, Mueller H, Berg G (2009) Characterization of plant growth promoting bacteria from crops in Bolivia. J Plant Dis Protect 4(6):149–155

    Google Scholar 

  • Garcia de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Article  PubMed  CAS  Google Scholar 

  • Gevers D et al (2005) Re-evaluating prokaryotic species. Nat Rev Immunol 3:733–739

    CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. doi:10.6064/2012/963401

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119(3):329–339

    Article  CAS  Google Scholar 

  • Guerinot ML, Ying Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104(3):815–820

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gutiérrez-Manero FJ et al (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Gütler V, Stanisich VA (1996) New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142:3–16

    Article  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  PubMed  CAS  Google Scholar 

  • Hallmann J, Quandt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Harris JK, Kelley ST, Spiegelman GB, Pace NR (2003) The genetic core of the universal ancestor. Genome Res 13:407–412

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Harthmann OEL, Mógor ÁF, Wordell Filho JA, Luz WC, Biasi LA (2009) Tratamento de sementes com rizobactérias na produção de cebola. Cienc Rural 39(9):2533–2538

    Article  Google Scholar 

  • Hedden P, Phillips AL, Rojas MC, Carrera E, Tudzynski B (2001) Gibberellin biosynthesis in plants and fungi: a case of convergent evolution? J. Plant Growth Regul 20:319–331

    Article  CAS  Google Scholar 

  • Hentschel U et al (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68(09):4431–40

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hernandez-Rodriguez A, Heydrich-Perez M, Acebo-Guerrero Y, Velazquez-Del Valle MG, Hernandez-Lauzardo AN (2008) Antagonistic activity of Cuban native rhizobacteria against Fusarium verticillioides (Sacc.) Nirenb. in maize (Zea mays L.). Appl Soil Ecol 39(2):180–186

    Article  Google Scholar 

  • Herzner AM et al (2011) Expression of the lantibiotic mersacidin in Bacillus amyloliquefaciens FZB42. PLoS One. doi:10.1371/journal.pone.0022389

    PubMed Central  PubMed  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657

    Article  PubMed  CAS  Google Scholar 

  • Hirsch AM (1992) Developmental biology of legume nodulation. New Phytol 122:211–237

    Article  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42(10):1825–1831

    Article  CAS  Google Scholar 

  • Hu QP, Xu JG (2011) A simple double-layered chrome azurol S agar (SD-CASA) plate assay to optimize the production of siderophores by a potential biocontrol agent Bacillus. Afr J Microbiol Res 5(25):4321–4327

    CAS  Google Scholar 

  • Hungria M, Neves MCP (1987) Partitioning of nitrogen from biological fixation and fertilizer in Phaseolus vulgaris. Physiol Plant 69(1):55–63

    Article  CAS  Google Scholar 

  • Hungria M et al (2006) Nitrogen nutrition of soybean in Brazil: contributions of biological N2 fixation and N fertilizer to grain yield. Can J Plant Sci 86(4):927–939

    Article  Google Scholar 

  • Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425

    Article  CAS  Google Scholar 

  • Hunter WJ (1987) Influence of 5-methyltryptophan-resistant Bradyrhizobium japonicum on soybean root nodule indole-3-acetic acid content. Appl Environ Microbiol 53:1051–1055

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hussain A, Hasnain S (2009) Cytokinin production by some bacteria: its impact on cell division in cucumber cotyledons. Afr J Microbiol Res 3(11):704–712

    CAS  Google Scholar 

  • Hussain A, Hasnain S (2011) Interactions of bacterial cytokinins and IAA in the rhizosphere may alter phytostimulatory efficiency of rhizobacteria. World J Microbiol Biotechnol 27:2645–2654

    Article  CAS  Google Scholar 

  • Ikeda AC et al (2013) Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microb Ecol 65:154–160

    Article  PubMed  Google Scholar 

  • Ines M et al (2012) Effect of dose-response of zinc and manganese on siderophores production. Am J Environ Sci 8:143–151

    Article  Google Scholar 

  • Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant-Microbe Interact 17:1078–1085

    Article  PubMed  CAS  Google Scholar 

  • Innerebner G, Knief C, Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 77(10):3202–3210

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • James EK, Gyaneshwar P, Barraquio WL, Mathan N, Ladha JK (2000) Endophytic diazotrophs associated with rice. In: Reddy PM (ed) The quest for nitrogen fixation in rice. International Rice Research Institute IRRI, Manila, pp 119–140

    Google Scholar 

  • Jannin L et al (2013) Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. J Plant Growth Regul 32(1):31–52

    Article  CAS  Google Scholar 

  • Joo GJ, Kim YM, Lee IJ, Song KS, Rhee IK (2004) Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol Lett 26(6):487–491

    Article  PubMed  CAS  Google Scholar 

  • Jurkevitch E, Hadar Y, Chen Y (1992) Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria. Appl Environ Microbiol 58(1):119–124

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  PubMed  CAS  Google Scholar 

  • Kang JG et al (2004) Isolation and anti-fungal activities of 2-Hydroxy-methyl-chroman-4-one produced by Burkholderia sp. MSSP. J Antibiot 57(11):726–731

    Article  PubMed  CAS  Google Scholar 

  • Kasiotis KM (2013) Biopesticides analysis: an editorial. J Biofertil Biopestici. doi:10.4172/2155-6202.1000e115

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27(1):29–43

    Article  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Ko HS, Jin RD, Krishnan HB, Lee SB, Kim KY (2009) Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic acid and several lytic enzymes. Curr Microbiol 59(6):608–615

    Article  PubMed  CAS  Google Scholar 

  • Kubicek CP (1992) The cellulase proteins of Trichoderma reesei: structure, multiplicity, mode of action and regulation of formation. Adv Biochem Eng Biotechnol 45:1–27

    CAS  Google Scholar 

  • Kucey RMN (1988) Effect of Penicillium bilagi on the solubility and uptake of P and micronutrients from soil by wheat. Can J Soil Sci 68:261–270

    Article  CAS  Google Scholar 

  • Kuss AV, Kuss VV, Lovato T, Ml F (2007) Fixação de nitrogênio e produção de ácido indol acético in vitro por bactérias diazotróficas endofíticas. PAB 42:1459–1465

    Google Scholar 

  • Laranjo M, Young JPW, Oliveira S (2012) Multilocus sequence analysis reveals multiple symbiovars within Mesorhizobium species. Syst Appl Microbiol 35:359–367

    Article  PubMed  CAS  Google Scholar 

  • Lee YS, Lee HY, Lee CH, Park HS (1995) Isolation of antibiotic-producing bacteria antagonistic to Fusarium oxysporum from sesame-growing soils and evaluation of their antifungal activity. J Microbiol Biotechnol 5:346–352

    Google Scholar 

  • Leveau JHJ, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71:2365–2371

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Libbert E, Risch H (1969) Interactions between plants and epiphytic bacteria regarding their auxin metabolism. V. Isolation and identification of the IAA-producing and -destroying bacteria from pea plants. Physiol Plant 22:51–58

    Article  Google Scholar 

  • Lim JH, Kim SD (2009) Synergistic plant growth promotion by the indigenous auxins-producing PGPR Bacillus subtilis AH18 and Bacillus licheniforims K11. J Korean Soc Appl Biol Chem 52(5):531–538

    Article  CAS  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85:843–847

    Article  Google Scholar 

  • Lonhienne T et al (2014) Yeast as a biofertilizer alters plant growth and morphology. Crop Sci 54(2):785–790

    Article  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65(12):5357–5363

    PubMed Central  PubMed  CAS  Google Scholar 

  • López-Bucio J et al (2002) Phosphate availability alters architecture and causes changes in hormone sansitivity in the Arabidopsis root systems. Plant Physiol 129:244–256

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Luz WC (1996) Rizobactérias promotoras de crescimento de plantas e de bioproteção. In: Luz WC, Fernandes JMC, Prestes AM, Picinini EC (eds) Revisão Anual de Patologia de Plantas 4:1–49

    Google Scholar 

  • M’Piga BRR, Paulitz TC, Benhamou N (1997) Increased resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato plants treated with the endophytic bacterium Pseudomonas fluorescens strain 6328. Physiol Mol Plant Pathol 50:301–320

    Article  Google Scholar 

  • Ma JF (2005) Plant root responses to three abundant soil minerals: silicon, aluminum and iron. Crit Rev Plant Sci 24(4):267–281

    Article  CAS  Google Scholar 

  • Ma W, Penrose DM, Glick BR (2002) Strategies used by rhizobia to lower plant ethylene levels and increase nodulation. Can J Microbiol 48(11):947–954

    Article  PubMed  CAS  Google Scholar 

  • Malarvizhi P, Ladha JK (1999) Influence of available nitrogen and rice genotype on associative nitrogen fixation. Soil Sci Soc Am J 63:93–99

    Article  CAS  Google Scholar 

  • Martens M et al (2007) Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 57:489–503

    Article  PubMed  CAS  Google Scholar 

  • Martin K et al (2007) Biochemistry and molecular biology of exocellular fungal β-(1,3)- and β-(1,6)-glucanases. FEMS Microbiol Rev 31:168–192

    Article  PubMed  CAS  Google Scholar 

  • Mathesius U (2008) Auxin: at the root of nodule development? Funct Plant Biol 35:651–668

    Article  CAS  Google Scholar 

  • Mathesius U et al (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J 14(1):23–34

    Article  PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18(2):49–53

    Article  PubMed  CAS  Google Scholar 

  • Mino Y (1970) Studies on the destruction of indole-3-acetic acid by a species of Arthrobacter. IV. Decomposition products. Plant Cell Physiol 11:129–138

    CAS  Google Scholar 

  • Mok DWS, Mok MC (1994) Cytokinins: chemistry, activity and function. CRC Press, Boca Raton

    Google Scholar 

  • Moraes WBC (1992) Controle alternativo de fitopatógenos. PAB 27:175–190

    Google Scholar 

  • Morrone D et al (2009) Gibberellin biosynthesis in bacteria: separate ent-copalyl diphosphate and ent-kaurene synthases in Bradyrhizobium japonicum. FEBS Lett 583(2):475–480

    Article  PubMed  CAS  Google Scholar 

  • Nascimento F, Brígido C, Alho L, Glick BR, Oliveira S (2012) Enhanced chickpea growth promotion ability of a mesorhizobia expressing an exogenous ACC deaminase gene. Plant Soil 353:221–230

    Article  CAS  Google Scholar 

  • Naser S et al (2005) Phylogeny and identification of enterococci using atpA gene sequence analysis. J Clin Microbiol 43:2224–2230

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  PubMed  CAS  Google Scholar 

  • Oliveira VM et al (1999) Discrimination of Rhizobium tropici and R. leguminosarum strains by PCR specific amplification of 16S-23S rDNA spacer region fragments and denaturing gradient gel electrophoresis (DGGE). Lett Appl Microbiol 28:137–141

    Article  PubMed  Google Scholar 

  • Pal KK, Tilak KVBR, Saxena AK, Dey R, Singh CS (2001) Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiol Res 156:209–223

    Article  PubMed  CAS  Google Scholar 

  • Pascholati SF, Leite B (1995) Hospedeiro: mecanismo de resistência. In: Bergamin Filho A, Kimati H, Amorim L (eds) Manual de fitopatologia princípios e conceitos. Agronômica Ceres, São Paulo

    Google Scholar 

  • Patriquin DG, Döbereiner J (1978) Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Can J Microbiol 24:734–742

    Article  PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42(3):207–220

    Article  PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria. Can J Microbiol 47(4):368–372

    Article  PubMed  CAS  Google Scholar 

  • Perneel M et al (2008) Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ Microbiol 10:778–788

    Article  PubMed  Google Scholar 

  • Pessi G, Haas D (2000) Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa. J Bacteriol 182:6940–6949

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pieterse CMJ et al (2005) Indução de resistência sistêmica por rizobactérias e comunicação na rota de sinalização para uma defesa refinada. Revisão Anual de Patologia de Plantas 13:277–295

    Google Scholar 

  • Pii Y, Crimi M, Cremonese G, Spena A, Pandolfini T (2007) Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biol. doi:10.1186/1471-2229-7-21

    PubMed Central  PubMed  Google Scholar 

  • Pitson SM, Seviour RJ, McDougall BM (1993) Noncellulolytic fungal glucanases: their physiology and regulation. Enzym Microb Technol 15:178–192

    Article  CAS  Google Scholar 

  • Plet J et al (2011) MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J 65:622–33

    Article  PubMed  CAS  Google Scholar 

  • Pliego C et al (2007) Selection for biocontrol bacteria antagonistic toward Rosellinia necatrix by enrichment of competitive avocado root tip colonizers. Res Microbiol 158:463–470

    Article  PubMed  CAS  Google Scholar 

  • Pliego C et al (2008) Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia neatrix hyphae. Environ Microbiol 10:3295–3304

    Article  PubMed  Google Scholar 

  • Punja ZK, Utkhede RS (2003) Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnol 21:400–407

    Article  PubMed  CAS  Google Scholar 

  • Quadt-Hallmann A, Hallmann J, Kloepper JW (1997) Bacterial endophytes in cotton: location and interaction with other plant-associated bacteria. Can J Microbiol 43(3):254–259

    Article  CAS  Google Scholar 

  • Quecine MC et al (2012) Sugarcane growth promotion by the endophytic bacterium Pantoea agglomerans 33.1. Appl Environ Microbiol 78(21):7511–7518

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, De Bruijn I, De Kock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp. diversity, activity, biosynthesis, and regulation. Mol Plant-Microbe Interact 19:699–710

    Article  PubMed  CAS  Google Scholar 

  • Rana A et al (2011) Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann Microbiol 61:893–900

    Article  CAS  Google Scholar 

  • Ratón TMO et al (2011) Isolation and characterisation of aerobic endospore forming Bacilli from sugarcane rhizosphere for the selection of strains with agriculture potentialities. World J Microbiol Biotechnol. doi:10.1007/s11274-011-0965-2

    Google Scholar 

  • Raza W, Yuan J, Ling N, Huang Q, Shen Q (2015) Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f. sp. niveum. Biol Control 80:89–95

    Article  CAS  Google Scholar 

  • Reis VM, Oliveira ALM, Baldani VLD, Olivares FL, Baldani JI (2006) Fixação biológica de nitrogênio simbiótica e associativa. In: Fernandes MS (ed) Nutrição Mineral de Plantas. Sociedade Brasileira de Ciência do Solo, Viçosa, pp p153–174

    Google Scholar 

  • Ribeiro RA, Barcellos FG, Thompson FL, Hungria M (2009) Multilocus sequence analysis of Brazilian Rhizobium microsymbionts of common bean (Phaseolus vulgaris L.) reveals unexpected taxonomic diversity. Res Microbiol 160:297–306

    Article  PubMed  CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001a) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25(6):641–649

    Article  PubMed  CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE, O’hara CP, Simpson RJ (2001b) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms. Plant Soil 229(1):47–56

    Article  CAS  Google Scholar 

  • Rijavec T, Lapanje A, Dermastia M, Rupnik M (2007) Isolation of bacterial endophytes from germinated maize kernels. Can J Microbiol 53:802–808

    Article  PubMed  CAS  Google Scholar 

  • Riviere J, Berthier B (1964) Action des microorganismes de la rhizosphère sur la croissance du blé. III. Isolement et identification des bacteries dégradant l’acide indole-3-acétique. Annales de l’Institut Pasteur 3:250–256

    Google Scholar 

  • Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91(11):552–555

    Article  PubMed  CAS  Google Scholar 

  • Romeiro RS (1985) Bioquímica da Interação Bactéria – Planta. Editora UFV, Viçosa

    Google Scholar 

  • Romeiro RS (1995) Bactérias Fitopatogênicas. Editora UFV, Viçosa

    Google Scholar 

  • Romeiro RS (1999) Indução de Resistência em plantas a patógenos. UFV, Cadernos didáticos. http://www.ufv.br/dfp/bac/indures.pdf. Acessed 13 July 2010

  • Romeiro RS, Kimura O (1997) Induced resistance in pepper leaves infiltrated with purified elicitors from Xanthomonas campestris pv. vesicatoria. J Phytopathol 145:495–498

    Article  CAS  Google Scholar 

  • Roncato-Maccari LDB et al (2003) Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. FEMS Microbiol Ecol 45:39–47

    Article  PubMed  CAS  Google Scholar 

  • Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    Article  PubMed  Google Scholar 

  • Rudrappa T et al (2010) The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integr Biol 3(2):130–138

    Article  PubMed Central  PubMed  Google Scholar 

  • Ryu C-M et al (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Sakakibara H et al (2005) Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc Natl Acad Sci U S A 102(28):9972–9977

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Salamone IEG, Hynes RK, Nelson LM (2005) Role of cytokinins in plant growth promotion by rhizosphere bacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Amsterdam, pp 173–195

    Chapter  Google Scholar 

  • Sayyed RZ, Badguzar MD, Sonawane HM, Mhaske MM, Chincholkar SB (2005) Production of microbial iron chelators (siderophores) by fluorescent Pseudomonads. Indian J Biotechnol 4:484–490

    CAS  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effects of cropping practices. Annu Rev Phytopathol 25:339–358

    Article  Google Scholar 

  • Schippers B, Bakker A, Bakker P, van Peer R (1990) Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. Plant Soil 129(1):75–83

    Article  CAS  Google Scholar 

  • Sgroy V et al (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85(2):371–381

    Article  PubMed  CAS  Google Scholar 

  • Sharma VK, Nowak J (1998) Enhancement of Verticillium wilt resistance in tomato transplants by in vitro co-culture of seedlings with a plant growth promoting rhizobacterium (Pseudomonas sp. strain PsJN). Can J Microbiol 44:528–536

    Article  CAS  Google Scholar 

  • Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35(7):887–894

    Article  CAS  Google Scholar 

  • Sharma SHS et al (2012) Biostimulant activity of brown seaweed species from Strangford Lough: compositional analyses of polysaccharides and bioassay of extracts using mung bean (Vigno mungo L.) and pak choi (Brassica rapa chinensis L.). J Appl Phycol 24:1081–1091

    Article  CAS  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49(4):427–434

    Article  PubMed  CAS  Google Scholar 

  • Silva HAS et al (2004) Rhizobacterial induction of systemic resistance in tomato plants: nonspecific protection and enzyme activities. Biol Control 29:288–295

    Article  CAS  Google Scholar 

  • Silva C, Vinuesa P, Eguiarte LE, Souza V, Martínez-Romero E (2005) Evolutionary genetics and biogeographic structure of Rhizobium gallicum sensu lato, a widely distributed bacterial symbiont of diverse legumes. Mol Ecol 14:4033–4050

    Article  PubMed  CAS  Google Scholar 

  • Simiyu NSW, Tarus D, Watiti J, Nang’ayo F (2013) Effective regulation of bio-fertilizers and bio-pesticides: a potential avenue to increase agricultural productivity. International Institute of Tropical Agriculture, Compro II policy series n1

    Google Scholar 

  • Singh P, Kumar P, Agrawal S (2014) Evaluation of phytase producing bacteria for their plant growth promoting activities. Int J Microbiol. doi:10.15/2014/426483

  • Song OR, Lee SJ, Lee SC, Kim KK, Choi YL (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Braz J Microbiol 39:151–156

    Article  PubMed Central  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a001438

    PubMed Central  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  PubMed  CAS  Google Scholar 

  • Sprent J (2001) Nodulation in legumes. Royal Botanic Gardens, Kew

    Google Scholar 

  • Sticher L, Mauch MB, Metraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    Article  PubMed  CAS  Google Scholar 

  • Stirk WA, Ördög V, van Staden J, Jäger K (2002) Cytokinin- and auxin-like activity in Cyanophyta and microalga. J Appl Phycol 14:215–221

    Article  CAS  Google Scholar 

  • Stowe BB, Yamaki T (1957) The history and physiological action of the gibberellins. Annu Rev Plant Physiol 8:181–216

    Article  CAS  Google Scholar 

  • Sun TP, Kamiya Y (1994) The Arabidopsis gal locus encodes the cyclase ent-kaurene synthetase-a of gibberellin biosynthesis. Plant Cell 6:1509–1518

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Szilagyi-Zecchin VJ et al (2014) Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express. doi:10.1186/s13568-014-0026-y

  • Taiz L, Zeiger E (2009) Fisiologia vegetal, 4th edn. Artmed, Porto Alegre

    Google Scholar 

  • Tao GC, Tian SJ, Cai MY, Xie GH (2008) Phosphate-solubilizing and -mineralizing abilities of bacteria isolated from. Pedosphere 18(4):515–523

    Article  CAS  Google Scholar 

  • Thompson FL et al (2005) Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71:5107–5115

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Throup J et al (1995) Signaling in bacteria beyond luminescence. In: Campbell AK, Kricka LJ, Standley PE (eds) Bioluminescence and chemiluminescence: fundamental and applied aspects. Wiley, Chichester, pp 89–92

    Google Scholar 

  • Ton J, van Pelt JA, van Loon LC, Pieterse CMJ (2002) Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol Plant-Microbe Interact 15:27–34

    Article  PubMed  CAS  Google Scholar 

  • Tully RE, van Berkum P, Lovins KW, Keister DL (1998) Identification and sequencing of a cytochrome P450 gene cluster from Bradyrhizobium japonicum. Biochim Biophys Acta 1398:243–255

    Article  PubMed  CAS  Google Scholar 

  • Vale M, Seldin L, Araújo FF, Lima R (2010) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, pp 21–43

    Google Scholar 

  • van Berkum P et al (2003) Discordant phylogenies within the rrn loci of Rhizobia. J Bacteriol 185:2988–2998

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van Loon LC, Pierpoint WS, Boller T, Conejero V (1994) Recommendations for naming plant pathogenesis related proteins. Plant Mol Biol 12:245–264

    Article  Google Scholar 

  • van Wees SCM, de Swart EAM, van Pelt JA, van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97:8706–8711

    Google Scholar 

  • Vandamme T et al (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant-Microbe Interact 20(4):441–447

    Article  PubMed  CAS  Google Scholar 

  • Vinale F (2014) Biopesticides and biofertilizers based on fungal secondary metabolites. J Biofertil Biopestici. doi:10.4172/2155-6202.1000e119

  • Viterbo A, Ramot O, Chernin L, Chet I (2002) Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie Van Leeuwenhoek 81:549–556

    Article  PubMed  CAS  Google Scholar 

  • Ward ER et al (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Woese C, Fox G (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci 74(11):5088–5090

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr Microbiol 32(2):67–71

    Article  CAS  Google Scholar 

  • Xu M et al (2014) Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World J Microbiol Biotechnol 30(3):835–845

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S et al (1996) Molecular cloning and characterization of a cDNA encoding the gibberellin biosynthetic enzyme ent-kaurene synthase B from pumpkin (Cucurbita maxima L.). Plant J 10(2):203–213

    Article  PubMed  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Yoneyama T, Muraoka T, Kim TH, Dacanay EV, Nakanishi Y (1997) The natural 15N abundance of sugarcane and neighbouring plants in Brazil, the Philippines and Miyako (Japan). Plant Soil 189:239–244

    Article  CAS  Google Scholar 

  • Yuhashi KI et al (2000) Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl Environ Microbiol 66(6):2658–2663

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zdor RE, Anderson AJ (1991) Influence of root colonizing bacteria on the defense responses of beans. Bull-SROP 14(8):187–190

    Google Scholar 

  • Zehr JP, Capone DG (1996) Problems and promises of assaying the genetic potential for nitrogen fixation in the marine environment. Microb Ecol 32:263–281

    PubMed  CAS  Google Scholar 

  • Zeilinger S, Omann M (2007) Trichoderma biocontrol: involvement of signal transduction pathways in host sensing and mycoparasitism. Gene Regul Syst Biol 1:227–234

    Google Scholar 

  • Zhan J, Sun QY (2011) Diversity of free-living nitrogen-fixing microorganisms in wastelands of copper mine tailings during the process of natural ecological restoration. J Environ Sci 23(3):476–487

    Article  CAS  Google Scholar 

  • Zhang YF et al (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83(1):57–62

    Article  PubMed  CAS  Google Scholar 

  • Zhao ZR, Wu ZL, Huang GQ, Li GR (1992) An improved disk bioassay for determining activities of plant growth regulators. J Plant Growth Regul 11:209–213

    Article  CAS  Google Scholar 

  • Zucchi TD, Melo IS (2009) Controle Biológico de Fungos Aflatoxigênicos. In: Bettiol W, Morandi MAB (eds) Biocontrole de doenças de plantas: uso e perspectivas. Embrapa Meio Ambiente, Jaguariúna

    Google Scholar 

  • Zuo Y, Zhang F (2011) Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 339:83–95

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. J. Szilagyi-Zecchin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Szilagyi-Zecchin, V.J., Mógor, Á.F., Figueiredo, G.G.O. (2016). Strategies for Characterization of Agriculturally Important Bacteria. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_1

Download citation

Publish with us

Policies and ethics