Skip to main content

Remediation of Heavy Metal-Contaminated Agricultural Soils Using Microbes

  • Chapter
  • First Online:
Microbial Inoculants in Sustainable Agricultural Productivity

Abstract

Heavy metals are widely spread and accumulated in soil due to various inappropriate human activities, because of which metal pollution in soil has become one of the most serious environmental problems today. In this chapter, various microbial remediation mechanisms to remediate heavy metal-contaminated soils have been described. Microbial remediation, an emerging cost-effective, renewable, nonintrusive and aesthetically pleasing technology, uses the remarkable ability of microbes to remove and transform heavy metals from contaminated soils. The very limited understanding pertaining to heavy metal removal and transformation is hindering its effective application. Due to its great potential as a viable alternative to conventional contaminated soil remediation techniques, microbial remediation is currently being looked upon as an exciting area of basic and applied research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RA, Ghanem K, Ghanem N, Al-Kolaibe A (2008) The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils. World J Microbiol Biotechnol 24(2):253–262

    Article  CAS  Google Scholar 

  • Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV, Harvie BA (2015) Mechanisms behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. J Hazard Mater 283:490–499

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257. doi:http://dx.doi.org/10.1016/j.biortech.2005.12.006

    Google Scholar 

  • Akcil A, Erust C, Ozdemiroglu S, Fonti V, Beolchini F (2015) A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J Clean Prod 86:24–26

    Article  CAS  Google Scholar 

  • Ali N, Dashti N, Al-Mailem D, Eliyas M, Radwan S (2012) Indigenous soil bacteria with the combined potential for hydrocarbon consumption and heavy metal resistance. Environ Sci Pollut Res 19(3):812–820

    Article  CAS  Google Scholar 

  • Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotechnol 3(1):71–90. doi:10.1023/B:RESB.0000040059.70899.3d

    Article  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250–251:477–483

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi:10.1146/annurev.arplant.57.032905.105159

    Article  CAS  PubMed  Google Scholar 

  • Bakshi S, He ZL, Harris WG (2015) Natural nanoparticles: implications for environment and human health. Crit Rev Environ Sci Technol 45(8):861–904

    Article  CAS  Google Scholar 

  • Bandara JMRS (2011) Bioremediation of heavy metals in the ecosytem. In: Bioprocess sciences and technology. Nova Science Publishers, Hauppauge, pp 471–484

    Google Scholar 

  • Banni AS, Faituri MY (2013) The role of arbuscular mycorrhizae Glomus spp (mixed) and Glomus fasciculatum in growth and copper uptake of maize grown in soil contaminated with copper. Middle East J Sci Res 17(1):77–83

    Google Scholar 

  • Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81(1–4):343–351

    Article  CAS  PubMed  Google Scholar 

  • Barea J-M, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778. doi:10.1093/jxb/eri197

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4 Suppl):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennisse R, Labat M, Elasli A, Brhada F, Chandad F, Liegbott P-P, Hibti M, Qatibi A-i (2004) Rhizosphere bacterial populations of metallophyte plants in heavy metal-contaminated soils from mining areas in semiarid climate. World J Microbiol Biotechnol 20(7):759–766. doi:10.1007/s11274-004-5812-2

    Article  CAS  Google Scholar 

  • Beolchini F, Dell’Anno A, De Propris L, Ubaldini S, Cerrone F, Danovaro R (2009) Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals. Chemosphere 74(10):1321–1326

    Article  CAS  PubMed  Google Scholar 

  • Bhatia D, Malik DK (2011) Plant-microbe interaction with enhanced bioremediation. Res J Biotechnol 6(4):72–79

    Google Scholar 

  • Bolan NS, Choppala G, Kunhikrishnan A, Park J, Naidu R (2013) Microbial transformation of trace elements in soils in relation to bioavailability and remediation. Rev Environ Contam Toxicol 225:1–56

    CAS  PubMed  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  CAS  PubMed  Google Scholar 

  • Braud A, Jézéquel K, Vieille E, Tritter A, Lebeau T (2006) Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Pollut Focus 6(3–4):261–279

    Article  CAS  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74(2):280–286

    Article  PubMed  CAS  Google Scholar 

  • Braud A, Geoffroy V, Hoegy F, Mislin GLA, Schalk IJ (2010) Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. Environ Microbiol Rep 2(3):419–425. doi:10.1111/j.1758-2229.2009.00126.x

    Article  CAS  PubMed  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46(3):237–245

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 25(10):1829–1836

    Article  CAS  Google Scholar 

  • Chen SY, Lin JG (2001) Effect of substrate concentration on bioleaching of metal-contaminated sediment. J Hazard Mater 82(1):77–89

    Article  CAS  PubMed  Google Scholar 

  • Chen YX, Yuan PW, Lin Q, Yong ML (2005) Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environ Int 31(6):861–866

    Article  CAS  PubMed  Google Scholar 

  • Chompoothawat N, Wongthanate J, Ussawarujikulchai A, Prapagdee B (2010) Removal of cadmium ion from aqueous solution by exopolysaccharide-producing bacterium, Ralstonia sp. Fresenius Environ Bull 19(12):2919–2923

    CAS  Google Scholar 

  • Colin VL, Castro MF, Amoroso MJ, Villegas LB (2013) Production of bioemulsifiers by Amycolatopsis tucumanensis DSM 45259 and their potential application in remediation technologies for soils contaminated with hexavalent chromium. J Hazard Mater 261:577–583

    Article  CAS  PubMed  Google Scholar 

  • Cornu JY, Elhabiri M, Ferret C, Geoffroy VA, Jezequel K, Leva Y, Lollier M, Schalk IJ, Lebeau T (2014) Contrasting effects of pyoverdine on the phytoextraction of Cu and Cd in a calcareous soil. Chemosphere 103:212–219

    Article  CAS  PubMed  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245(1):35–47

    Article  CAS  Google Scholar 

  • De Philippis R, Colica G, Micheletti E (2011) Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl Microbiol Biotechnol 92(4):697–708. doi:10.1007/s00253-011-3601-z

    Article  CAS  PubMed  Google Scholar 

  • Del Val C, Barea JM, Azcón-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65(2):718–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delvasto P, Ballester A, Muñoz JA, González F, Blázquez ML, Igual JM, Valverde A, García-Balboa C (2009) Mobilization of phosphorus from iron ore by the bacterium Burkholderia caribensis FeGL03. Miner Eng 22(1):1–9

    Article  CAS  Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152(1):1–31. doi:http://dx.doi.org/10.1016/j.jhazmat.2007.10.043

    Google Scholar 

  • Di Gregorio S, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31(2):233–241

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa CO, Merten D, SvatoÅ¡ A, Büchel G, Kothe E (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41(1):154–162

    Article  CAS  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri A (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59(2–3):143–152. doi:10.1007/s00253-002-1024-6

    CAS  PubMed  Google Scholar 

  • Esringü A, Turan M, GüneÅŸ A, Karaman MR (2014) Roles of Bacillus megaterium in remediation of boron, lead, and cadmium from contaminated soil. Commun Soil Sci Plant Anal 45(13):1741–1759

    Article  CAS  Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Fomina M, Alexander IJ, Hillier S, Gadd GM (2004) Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiol J 21(5):351–366

    Article  CAS  Google Scholar 

  • Fomina M, Hillier S, Charnock JM, Melville K, Alexander IJ, Gadd GM (2005) Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Appl Environ Microbiol 71(1):371–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franzetti A, Tamburini E, Banat IM (2010) Applications of biological surface active compounds in remediation technologies. Adv Exp Med Biol 672:121–134

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (1993) Interactions of fungip with toxic metals. New Phytol 124(1):25–60. doi:10.1111/j.1469-8137.1993.tb03796.x

    Article  CAS  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11(3):271–279

    Article  CAS  PubMed  Google Scholar 

  • Gadd G, Griffiths A (1977) Microorganisms and heavy metal toxicity. Microb Ecol 4(4):303–317. doi:10.1007/bf02013274

    Article  CAS  PubMed  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86(4):528–534

    CAS  Google Scholar 

  • Gaur N, Flora G, Yadav M, Tiwari A (2014) A review with recent advancements on bioremediation-based abolition of heavy metals. Environ Sci Processes Impacts 16(2):180–193

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30(10–11):1389–1414. doi:http://dx.doi.org/10.1016/S0038-0717(97)00270-8

    Google Scholar 

  • Glassman SI, Casper BB (2012) Biotic contexts alter metal sequestration and AMF effects on plant growth in soils polluted with heavy metals. Ecology 93(7):1550–1559

    Article  PubMed  Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15(2):353–378

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26(5–6):227–242

    Article  CAS  Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223(6):1115–1122

    Article  PubMed  CAS  Google Scholar 

  • González-Chávez MC, Carrillo-González R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130(3):317–323

    Article  PubMed  CAS  Google Scholar 

  • Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G (1997) Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53(2–3):133–162

    Article  CAS  Google Scholar 

  • Gorny J, Billon G, Lesven L, Dumoulin D, Madé B, Noiriel C (2015) Arsenic behavior in river sediments under redox gradient: a review. Sci Total Environ 505:423–434

    Article  CAS  PubMed  Google Scholar 

  • Gullap MK, Dasci M, Erkovan HÄ°, Koc A, Turan M (2014) Plant growth-promoting rhizobacteria (PGPR) and phosphorus fertilizer-assisted phytoextraction of toxic heavy metals from contaminated soils. Commun Soil Sci Plant Anal 45(19):2593–2606

    Article  CAS  Google Scholar 

  • Han F, Shan X, Zhang S, Wen B, Owens G (2006) Enhanced cadmium accumulation in maize roots – the impact of organic acids. Plant Soil 289(1–2):355–368

    Article  CAS  Google Scholar 

  • Haselwandter K (2008) Structure and function of siderophores produced by mycorrhizal fungi. Mineral Mag 72(1):61–64

    Article  CAS  Google Scholar 

  • Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manage 92(10):2355–2388. doi:http://dx.doi.org/10.1016/j.jenvman.2011.06.009

    Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598

    Article  Google Scholar 

  • He LY, Chen ZJ, Ren GD, Zhang YF, Qian M, Sheng XF (2009) Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. Ecotoxicol Environ Saf 72(5):1343–1348

    Article  CAS  PubMed  Google Scholar 

  • Herman DC, Artiola JF, Miller RM (1995) Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant. Environ Sci Technol 29(9):2280–2285. doi:10.1021/es00009a019

    Article  CAS  PubMed  Google Scholar 

  • Hietala KA, Roane TM (2009) Microbial remediation of metals in soils. In: Singh A, Kuhad RC, Ward OP (eds) Advances in applied bioremediation, vol 17, Soil biology. Springer, Berlin/Heidelberg, pp 201–220. doi:10.1007/978-3-540-89621-0_11

    Chapter  Google Scholar 

  • Imran M, Husain FH, Ahmad I (2011) Free living soil fungi: interaction with heavy metals and plant growth promoting activities. In: Microbial ecology of tropical soils. Nova Science Publishers, New York, pp 159–205

    Google Scholar 

  • Jang GG, Jacobs CB, Gresback RG, Ivanov IN, Meyer HM III, Kidder M, Joshi PC, Jellison GE Jr, Phelps TJ, Graham DE, Moon JW (2015) Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules. J Mater Chem C 3(3):644–650

    Article  CAS  Google Scholar 

  • Javanbakht V, Alavi SA, Zilouei H (2014) Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci Technol 69(9):1775–1787

    Article  CAS  PubMed  Google Scholar 

  • Jeyanthi V, Ganesh P (2013) Production, purification and characterization of siderophore from Pseudomonas fluorescence. J Pure Appl Microbiol 7(4):3193–3199

    CAS  Google Scholar 

  • Jing Y-d, He Z-l, Yang X-e (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8(3):192–207. doi:10.1631/jzus.2007.B0192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, Yuan M, de Cai X, Li SB (2014) Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Int J Phytoremediation 16(4):321–333

    Article  CAS  PubMed  Google Scholar 

  • Jones D (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205(1):25–44. doi:10.1023/a:1004356007312

    Article  CAS  Google Scholar 

  • Joshi PM, Juwarkar AA (2009) In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ Sci Technol 43(15):5884–5889

    Article  CAS  PubMed  Google Scholar 

  • Juwarkar AA, Singh SK (2010) Microbe-assisted phytoremediation approach for ecological restoration of zinc mine spoil dump. Int J Environ Pollut 43(1–3):236–250

    Google Scholar 

  • Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68(10):1996–2002

    Article  CAS  PubMed  Google Scholar 

  • Juwarkar AA, Kamat MP, Singh SK, Yadav SK (2011) Biosurfactants: potential biomolecules for bioremediation of metals. In: Bioremediation: biotechnology, engineering and environmental management. Nova Science Publishers, pp 207–232

    Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzym Res 2011:11. doi:10.4061/2011/805187

    Article  CAS  Google Scholar 

  • Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum. Appl Environ Microbiol 66(3):1050–1056. doi:10.1128/aem.66.3.1050-1056.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kassab DM, Roane TM (2006) Differential responses of a mine tailings Pseudomonas isolate to cadmium and lead exposures. Biodegradation 17(4):379–387. doi:10.1007/s10532-005-9010-1

    Article  CAS  PubMed  Google Scholar 

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28(1):61–69. doi:http://dx.doi.org/10.1016/j.biotechadv.2009.09.002

    Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18(4):355–364. doi:10.1016/j.jtemb.2005.02.006

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Zaidi A, Wani P, Oves M (2009a) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7(1):1–19. doi:10.1007/s10311-008-0155-0

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009b) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7(1):1–19

    Article  CAS  Google Scholar 

  • Krupa P, Kozdrój J (2007) Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water Air Soil Pollut 182(1–4):83–90. doi:10.1007/s11270-006-9323-7

    Article  CAS  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304(1–2):35–44

    Article  CAS  Google Scholar 

  • Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli AR, Sessitsch A (2010) Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108(4):1471–1484

    Article  CAS  PubMed  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31(1):109–120

    Article  CAS  PubMed  Google Scholar 

  • Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153(3):497–522. doi:http://dx.doi.org/10.1016/j.envpol.2007.09.015

    Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7(3):139–153. doi:10.1007/s005720050174

    Article  CAS  Google Scholar 

  • Li WC, Ye ZH, Wong MH (2010) Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii. Plant Soil 326(1–2):453–467. doi:10.1007/s11104-009-0025-y

    Article  CAS  Google Scholar 

  • Lima TMS, Procópio LC, Brandão FD, Carvalho AMX, Tótola MR, Borges AC (2011) Simultaneous phenanthrene and cadmium removal from contaminated soil by a ligand/biosurfactant solution. Biodegradation 22(5):1007–1015

    Article  CAS  PubMed  Google Scholar 

  • Lima de Silva AA, de Carvalho MAR, de Souza SAL, Dias PM, da Silva Filho RG, de Saramago CS, de Melo Bento CA, Hofer E (2012) Heavy metal tolerance (Cr, Ag and Hg) in bacteria isolated from sewage. Braz J Microbiol 43:1620–1631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, Lelie D (2001) The effect of recombinant heavy metal-resistant endophytic bacteria on heavy metal uptake by their host plant. Int J Phytoremediation 3(2):173–187. doi:10.1080/15226510108500055

    Article  CAS  Google Scholar 

  • Lynch JM, Moffat AJ (2005) Bioremediation – prospects for the future application of innovative applied biological research. Ann Appl Biol 146(2):217–221. doi:10.1111/j.1744-7348.2005.040115.x

    Article  Google Scholar 

  • Ma Y, Rajkumar M, Vicente JAF, Freitas H (2010) Inoculation of Ni-resistant plant growth promoting Bacterium Psychrobacter sp. Strain SRS8 for the improvement of nickel phytoextraction by energy crops. Int J Phytoremediation 13(2):126–139. doi:10.1080/15226511003671403

    Article  CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011a) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258. doi:http://dx.doi.org/10.1016/j.biotechadv.2010.12.001

    Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011b) Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazard Mater 195(0):230–237. doi:http://dx.doi.org/10.1016/j.jhazmat.2011.08.034

    Google Scholar 

  • Machuca A, Pereira G, Aguiar A, Milagres AMF (2007) Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Lett Appl Microbiol 44(1):7–12

    Article  CAS  PubMed  Google Scholar 

  • Machuca A, Navias D, Milagres AMF, Chávez D, Guillén Y (2014) Effects of metal ions (Cd2+, Cu2+, Zn2+) on the growth and chelating-compound production of three ectomycorrhizal fungi. Interciencia 39(4):221–227

    Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69(2):220–228

    Article  CAS  PubMed  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11(3):843–872

    Article  CAS  Google Scholar 

  • Mani D, Kumar C, Kumar Patel N (2015) Integrated micro-biochemical approach for phytoremediation of cadmium and zinc contaminated soils. Ecotoxicol Environ Saf 111:86–95

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Jiang R, Xiao W, Yu J (2015) Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater 285:419–435

    Article  CAS  PubMed  Google Scholar 

  • Maqbool Z, Asghar HN, Shahzad T, Hussain S, Riaz M, Ali S, Arif MS, Maqsood M (2015) Isolating, screening and applying chromium reducing bacteria to promote growth and yield of okra (Hibiscus esculentus L.) in chromium contaminated soils. Ecotoxicol Environ Saf 114:343–349

    Article  CAS  PubMed  Google Scholar 

  • Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35(1):133–141

    Article  CAS  Google Scholar 

  • Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107(11):1253–1265

    Article  CAS  PubMed  Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29(6):645–653

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Malik A (2012) Recent advances in microbial metal bioaccumulation. Crit Rev Environ Sci Technol 43(11):1162–1222. doi:10.1080/10934529.2011.627044

    Article  CAS  Google Scholar 

  • Mishustin EN (1975) Microbial associations of soil types. Microb Ecol 2(2):97–118. doi:10.1007/bf02010433

    Article  CAS  PubMed  Google Scholar 

  • Monachese M, Burton JP, Reid G (2012) Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appl Environ Microbiol 78(18):6397–6404. doi:10.1128/aem.01665-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mudhoo A, Garg VK, Wang S (2012) Removal of heavy metals by biosorption. Environ Chem Lett 10(2):109–117

    Article  CAS  Google Scholar 

  • Müller MM, Hörmann B, Syldatk C, Hausmann R (2011) Microbial rhamnolipids. In: Carbohydrate-modifying biocatalysts. Pan Stenford Publishing, pp 585–623

    Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85(1–2):111–125

    Article  CAS  PubMed  Google Scholar 

  • Muthukumar T, Bagyaraj DJ (2010) Use of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Proc Natl Acad Sci India Sect B Biol Sci 80(PART 2):103–121

    Google Scholar 

  • Neilson JW, Artiola JF, Maier RM (2003) Characterization of lead removal from contaminated soils by nontoxic soil-washing agents. J Environ Qual 32(3):899–908

    Article  CAS  PubMed  Google Scholar 

  • O’Brien S, Hodgson DJ, Buckling A (2014) Social evolution of toxic metal bioremediation in Pseudomonas aeruginosa. Proc R Soc B Biol Sci 281:20140858

    Google Scholar 

  • Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12(1):633–654. doi:10.3390/ijms12010633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pajuelo E, Rodríguez-Llorente ID, Lafuente A, Pérez-Palacios P, Doukkali B, Caviedes MA (2014) Engineering the rhizosphere for the purpose of bioremediation: an overview. CAB Rev Perspect Agric Vet Sci Nutr Nat Res 9:(001)

    Google Scholar 

  • Park JH, Bolan N, Megharaj M, Naidu R (2011) Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J Hazard Mater 185(2–3):829–836

    Article  CAS  PubMed  Google Scholar 

  • Pattus F, Abdallah MA (2000) Siderophores and iron-transport in microorganisms. J Chin Chem Soc 47(1):1–20

    Article  CAS  Google Scholar 

  • Podgorskii VS, Kasatkina TP, Lozovaia OG (2004) [Yeasts – biosorbents of heavy metals]. Mikrobiolohichnyi zhurnal (Kiev, Ukraine: 1993) 66(1):91–103

    Google Scholar 

  • Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41(9):935–944

    CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574. doi:http://dx.doi.org/10.1016/j.biotechadv.2012.04.011

    Google Scholar 

  • Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol 44(2):185–195

    CAS  Google Scholar 

  • Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106(10):1123–1142

    Article  CAS  Google Scholar 

  • Rittmann BE, Hausner M, Loffler F, Love NG, Muyzer G, Okabe S, Oerther DB, Peccia J, Raskin L, Wagner M (2006) A vista for microbial ecology and environmental biotechnology. Environ Sci Technol 40(4):1096–1103

    Article  PubMed  Google Scholar 

  • Rojas-Tapias DF, Bonilla R, Dussán J (2014) Effect of inoculation and co-inoculation of Acinetobacter sp. RG30 and Pseudomonas putida GN04 on growth, fitness, and copper accumulation of maize (Zea mays). Water Air Soil Pollut 225(12):1–13

    Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Biol 52:527–560

    Article  CAS  Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97(3):1005–1016. doi:10.1007/s00253-012-4641-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha R, Saha N, Donofrio RS, Bestervelt LL (2013) Microbial siderophores: a mini review. J Basic Microbiol 53(4):303–317. doi:10.1002/jobm.201100552

    Article  PubMed  Google Scholar 

  • Sánchez-Marín P, Beiras R (2012) Quantification of the increase in Pb bioavailability to marine organisms caused by different types of DOM from terrestrial and river origin. Aquat Toxicol 110–111:45–53

    Article  PubMed  CAS  Google Scholar 

  • Sandy M, Butler A (2009) Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 109(10):4580–4595. doi:10.1021/cr9002787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66(9):1794–1798

    Article  CAS  PubMed  Google Scholar 

  • Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26(2):100–108

    Article  CAS  PubMed  Google Scholar 

  • Sayer JA, Cotter-Howells JD, Watson C, Millier S, Gadd GM (1999) Lead mineral transformation by fungi. Curr Biol 9(13):691–694

    Article  CAS  PubMed  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13(11):2844–2854. doi:10.1111/j.1462-2920.2011.02556.x

    Article  CAS  PubMed  Google Scholar 

  • Schütze E, Ahmed E, Voit A, Klose M, Greyer M, SvatoÅ¡ A, Merten D, Roth M, Holmström SJM, Kothe E (2014) Siderophore production by streptomycetes – stability and alteration of ferrihydroxamates in heavy metal-contaminated soil. Environ Sci Pollut Res 1–8 (Epub ahead of print).

    Google Scholar 

  • Seo H, Sun E, Roh Y (2013) Remediation of chromium-contaminated water using biogenic nano-sized materials and metal-reducing bacteria. J Nanosci Nanotechnol 13(6):4405–4408

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng X, He L, Wang Q, Ye H, Jiang C (2008a) Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. J Hazard Mater 155(1–2):17–22

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008b) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156(3):1164–1170

    Article  CAS  PubMed  Google Scholar 

  • Shi J-Y, Lin H-R, Yuan X-F, Chen X-C, Shen C-F, Chen Y-X (2011) Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur. Molecules 16(2):1409–1417

    Article  CAS  PubMed  Google Scholar 

  • Shim J, Babu AG, Velmurugan P, Shea PJ, Oh BT (2014) Pseudomonas fluorescens JH 70–4 promotes Pb stabilization and early seedling growth of Sudan grass in contaminated mining site soil. Environ Technol 35(20):2589–2596

    Article  CAS  PubMed  Google Scholar 

  • Shukla VY, Tipre DR, Dave SR (2014) Optimization of chromium(VI) detoxification by Pseudomonas aeruginosa and its application for treatment of industrial waste and contaminated soil. Biorem J 18(2):128–135

    Article  CAS  Google Scholar 

  • Singh AK, Cameotra SS (2013a) Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil. Environ Sci Pollut Res 20(10):7367–7376

    Article  CAS  Google Scholar 

  • Singh AK, Cameotra SS (2013b) Rhamnolipids production by multi-metal-resistant and plant-growth-promoting rhizobacteria. Appl Biochem Biotechnol 170(5):1038–1056

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Kumar A, Kirrolia A, Kumar R, Yadav N, Bishnoi NR, Lohchab RK (2011) Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study. Bioresour Technol 102(2):677–682. doi:10.1016/j.biortech.2010.08.041

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56(1):55–60

    Article  CAS  PubMed  Google Scholar 

  • Sivaruban T, Barathy S, Sivakumar S, Goel M, Das A, Ravi Kumar K, Maran S (2014) Microbial removal of high concentration heavy metal in tannery. Res J Pharm Biol Chem Sci 5(4):217–224

    CAS  Google Scholar 

  • Slobodkin AI (2005) Thermophilic microbial metal reduction. Microbiology 74(5):501–514

    Article  CAS  Google Scholar 

  • Sowmya M, Rejula MP, Rejith PG, Mohan M, Karuppiah M, Hatha AAM (2014) Heavy metal tolerant halophilic bacteria from vembanad lake as possible source for bioremediation of lead and cadmium. J Environ Biol 35(4):655–660

    CAS  PubMed  Google Scholar 

  • Stenuit B, Eyers L, Schuler L, Agathos SN, George I (2008) Emerging high-throughput approaches to analyze bioremediation of sites contaminated with hazardous and/or recalcitrant wastes. Biotechnol Adv 26(6):561–575. doi:http://dx.doi.org/10.1016/j.biotechadv.2008.07.004

    Google Scholar 

  • Subrahmanyam G, Hu HW, Zheng YM, Gattupalli A, He JZ, Liu YR (2014) Response of ammonia oxidizing microbes to the stresses of arsenic and copper in two acidic alfisols. Appl Soil Ecol 77:59–67

    Article  Google Scholar 

  • Sultana MY, Akratos CS, Pavlou S, Vayenas DV (2014) Chromium removal in constructed wetlands: a review. Int Biodeterior Biodegrad 96:181–190

    Article  CAS  Google Scholar 

  • Tahri Joutey N, Bahafid W, Sayel H, Ananou S, El Ghachtouli N (2014) Hexavalent chromium removal by a novel Serratia proteamaculans isolated from the bank of Sebou River (Morocco). Environ Sci Pollut Res 21(4):3060–3072

    Article  CAS  Google Scholar 

  • Tangahu BV, Sheikh Abdullah RS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. doi:10.1155/2011/939161

    Google Scholar 

  • Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol 49(2):195–204

    Article  CAS  PubMed  Google Scholar 

  • Thatoi H, Das S, Mishra J, Rath BP, Das N (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manage 146(0):383–399. doi:http://dx.doi.org/10.1016/j.jenvman.2014.07.014

    Google Scholar 

  • Tikhonova TV, Popov VO (2015) Structural and functional studies of multiheme cytochromes c involved in extracellular electron transport in bacterial dissimilatory metal reduction. Biochem Mosc 79(13):1584–1601

    Article  CAS  Google Scholar 

  • Topolska J, Latowski D, Kaschabek S, Manecki M, Merkel BJ, Rakovan J (2014) Pb remobilization by bacterially mediated dissolution of pyromorphite Pb5(PO4)3Cl in presence of phosphate-solubilizing Pseudomonas putida. Environ Sci Pollut Res 21(2):1079–1089

    Article  CAS  Google Scholar 

  • Torsvik V, Goksøyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56(3):782–787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Umrania VV (2006) Bioremediation of toxic heavy metals using acidothermophilic autotrophes. Bioresour Technol 97(10):1237–1242. doi:http://dx.doi.org/10.1016/j.biortech.2005.04.048

    Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17(8):378–387

    Article  CAS  PubMed  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16(7):765–794. doi:10.1007/s11356-009-0213-6

    Article  CAS  Google Scholar 

  • Vassilev A, Schwitzguebel J-P, Thewys T, van der Lelie D, Vangronsveld J (2004) The use of plants for remediation of metal-contaminated soils. Sci World J 4:9–34. doi:10.1100/tsw.2004.2

    Article  CAS  Google Scholar 

  • Venkatesh NM, Vedaraman N (2012) Remediation of soil contaminated with copper using Rhamnolipids produced from Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Ann Microbiol 62(1):85–91. doi:10.1007/s13213-011-0230-9

    Article  CAS  Google Scholar 

  • Vieira FCS, Nahas E (2005) Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiol Res 160(2):197–202. doi:http://dx.doi.org/10.1016/j.micres.2005.01.004

    Google Scholar 

  • Vivas A, Vörös A, Biró B, Barea JM, Ruiz-Lozano JM, Azcón R (2003) Beneficial effects of indigenous Cd-tolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp. in improving plant tolerance to Cd contamination. Appl Soil Ecol 24(2):177–186

    Article  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24(5):427–451. doi:http://dx.doi.org/10.1016/j.biotechadv.2006.03.001

    Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226. doi:http://dx.doi.org/10.1016/j.biotechadv.2008.11.002

    Google Scholar 

  • Wang T, Sun H, Jiang C, Mao H, Zhang Y (2014a) Immobilization of Cd in soil and changes of soil microbial community by bioaugmentation of UV-mutated Bacillus subtilis 38 assisted by biostimulation. Eur J Soil Biol 65:62–69

    Article  CAS  Google Scholar 

  • Wang T, Sun H, Mao H, Zhang Y, Wang C, Zhang Z, Wang B, Sun L (2014b) The immobilization of heavy metals in soil by bioaugmentation of a UV-mutant Bacillus subtilis 38 assisted by novoGro biostimulation and changes of soil microbial community. J Hazard Mater 278:483–490

    Article  CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Chromium reduction, plant growth-promoting potentials, and metal solubilizatrion by Bacillus sp. isolated from alluvial soil. Curr Microbiol 54(3):237–243

    Article  CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2009) Rhizoremediation of heavy metals by symbiotic nitrogen fixing microorganisms. In: Microbes in sustainable agriculture. Nova Science Publishers, New York, pp 183–206

    Google Scholar 

  • Watts M, Lloyd J (2012) Bioremediation via microbial metal reduction. In: Gescher J, Kappler A (eds) Microbial metal respiration. Springer, Berlin/Heidelberg, pp 161–201. doi:10.1007/978-3-642-32867-1_7

    Google Scholar 

  • Wei S, Zhou Q, Zhang K, Liang J (2003) Roles of rhizosphere in remediation of contaminated soils and its mechanisms. Chin J Appl Ecol 14(1):143–147

    Google Scholar 

  • Wenzel W (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321(1–2):385–408. doi:10.1007/s11104-008-9686-1

    Article  CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20(2):248–254. doi:http://dx.doi.org/10.1016/j.copbio.2009.02.012

    Google Scholar 

  • Weyens N, Beckers B, Schellingen K, Ceulemans R, Croes S, Janssen J, Haenen S, Witters N, Vangronsveld J (2013) Plant-associated bacteria and their role in the success or failure of metal phytoextraction projects: first observations of a field-related experiment. Microbiol Biotechnol 6(3):288–299. doi:10.1111/1751-7915.12038

    Article  CAS  Google Scholar 

  • Yakout SM, Abdeltawab AA, Mostafa AA (2014) Heavy metals bioremediation from soil and water using microorganisms. J Pure Appl Microbiol 8(SPEC. ISS. 1):281–292

    Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4. doi:10.1016/j.tplants.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Tu S, Wang G, Liao X, Yan X (2012) Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. Int J Phytoremediation 14(1):89–99

    Article  PubMed  Google Scholar 

  • Yu X, Li Y, Zhang C, Liu H, Liu J, Zheng W, Kang X, Leng X, Zhao K, Gu Y, Zhang X, Xiang Q, Chen Q (2014) Culturable heavy metal-resistant and plant growth promoting bacteria in V-Ti magnetite mine tailing soil from Panzhihua, China. PLoS One 9(9):e106618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan M, He H, Xiao L, Zhong T, Liu H, Li S, Deng P, Ye Z, Jing Y (2014) Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 103:99–104

    Article  CAS  PubMed  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64(6):991–997

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Khan MS, Wani PA, Ahemad M (2009) Bioremediation of heavy metals by plant growth promoting rhizobacteria. In: Microbes in sustainable agriculture. Nova Science Publishers, New York, pp 55–90

    Google Scholar 

  • Zheng S, Su J, Wang L, Yao R, Wang D, Deng Y, Wang R, Wang G, Rensing C (2014) Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil. BMC Microbiol 14(1):204

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu SC, Tang JX, Zeng XX, Wei BJ, Yang SD, Huang B (2015) Isolation of Mucor circinelloides Z4 and Mucor racemosus Z8 from heavy metal-contaminated soil and their potential in promoting phytoextraction with Guizhou oilseed rap. J Cent S Univ 22(1):88–94

    Article  CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33(3):406–413

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Braj Raj Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Singh, B.R., Singh, A., Mishra, S., Naqvi, A.H., Singh, H.B. (2016). Remediation of Heavy Metal-Contaminated Agricultural Soils Using Microbes. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2644-4_8

Download citation

Publish with us

Policies and ethics