Skip to main content

Efficacy of Biofertilizers: Challenges to Improve Crop Production

  • Chapter
  • First Online:
Microbial Inoculants in Sustainable Agricultural Productivity

Abstract

Different kinds of soil microorganisms belonging to several taxa of the bacteria, fungi, and possibly, protozoa kingdoms, colonizing the rhizosphere or the plant tissues and promoting plant growth (PGPM), can be utilized for the production of microbial-based fertilizers (biofertilizers). However, their application in agricultural practice is still hindered by several factors. The main reasons derive from the unpredictability of results, problems to identify and track inoculated strains in the field, the poor understanding of the interrelationships between microorganisms and plants, and the technology of production. After describing in brief which microorganisms have been utilized up until now to improve plant productivity through enhanced nutrition, we mention for possible exploitation of new groups of microorganisms (e.g. non-mycorrhizal fungi). Furthermore, we review the factors affecting the efficacy of biofertilizers on crop productivity, from the point of view of the farmers, who appraise their application on the base of their efficacy. In particular, we consider the factors related to the production process (including quality and marketing standards), the persistence and traceability of inoculants, the relations between plant, soil conditions and microorganisms, as well as the effect of farmers’ practices (fertilization, soil management practices, application method). In conclusion, it emerges that biofertilizers could allow obtaining a crop productivity similar to that obtained with mineral fertilizers, but with a significant reduction of their use. Therefore, biofertilizers can play a key role to develop an integrated nutrient management system, sustaining agricultural productivity with low environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achal V, Savant VV, Reddy MS (2007) Phosphate solubilization by a wild type strain and UV induced mutants of Aspergillus tubingensis. Soil Biol Biochem 39:695–699

    Article  CAS  Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  CAS  PubMed  Google Scholar 

  • Agamy R, Hashem M, Alamri S (2013) Effect of soil amendment with yeasts as bio-fertilizers on the growth and productivity of sugar beet. Afr J Agric Res 8:46–56

    Google Scholar 

  • Ahmed N, Shahab S (2009) Phosphate solubilization: their mechanism genetics and application. Internet J Microb 9(1). https://ispub.com/IJMB/9/1/12025

  • Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol Plant Microbe Interact 15:334–340

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Alagawadi AR, Gaur AC (1988) Associative effect of Rhizobium and phosphate solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil 105:241–246

    Article  Google Scholar 

  • Albertsen A, Ravnskov S, Green H, Jensen DF, Larsen J (2006) Interactions between the externalmyceliumof themycorrhizal fungus Glomus intraradices and other soil microorganisms as affected by organic matter. Soil Biol Biochem 38(5):1008–1014

    Article  CAS  Google Scholar 

  • Alguacil MM, Torrecillas E, Lozano Z, Torres MP, Roldan A (2014) Prunus persica crop management differentially promotes arbuscular mycorrhizal fungi diversity in a tropical agro-ecosystem. PLoS ONE 9(2), e88454. doi:10.1371/journal.pone.0088454

    Article  PubMed Central  CAS  Google Scholar 

  • Amprayn K, Rose MT, Kecskés M, Pereg L, Nguyen HT, Kennedy IR (2012) Plant growth promoting characteristics of soil yeast (Candida tropicalis HY) and its effectiveness for promoting rice growth. Appl Soil Ecol 61:295–299

    Article  Google Scholar 

  • Antunes PM, Koch AM, Morton JB, Rillig MC, Klironomos JN (2011) Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytol 189:507–514

    Article  PubMed  Google Scholar 

  • Antunes PM, Lehmann A, Hart MM, Baumecker M, Rillig MC (2012) Long-term effects of soil nutrient deficiency on arbuscular mycorrhizal communities. Funct Ecol 26:532–540

    Article  Google Scholar 

  • Asea PEA, Kucey RMN, Stewart JWB (1988) Inorganic phosphate solubilization by two Penicilium species in solution culture and soil. Soil Biol Biochem 20:459–464

    Article  CAS  Google Scholar 

  • Aseri GK, Jain N, Panwar J, Rao AV, Meghwal PR (2008) Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar Desert. Sci Hortic 117:130–135

    Article  Google Scholar 

  • Azcón R, Rodríguez R, Amora-Lazcano E, Ambrosano E (2008) Uptake and metabolism of nitrate in mycorrhizal plants as affected by water availability and N concentration in soil. Eur J Soil Sci 59:131–138

    Article  CAS  Google Scholar 

  • Babić KH, Schauss K, Hai B et al (2008) Influence of different Sinorhizobium meliloti inocula on abundance of genes involved in nitrogen transformations in the rhizosphere of alfalfa (Medicago sativa L.). Environ Microbiol 10(11):2922–2930

    Article  PubMed  CAS  Google Scholar 

  • Bailey KL, Carisse O, Leggett M, Holloway G, Leggett F, Wolf TM, Shivpuri A, Derby JA, Caldwell B, Geissler HJ (2007) Effect of spraying adjuvants with the biocontrol fungus Microsphaeropsis ochracea at different water volumes on the colonization of apple leaves. Biocontrol Sci Technol 17:1021–1036

    Article  Google Scholar 

  • Bais HP, Weir LP, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillums seropidicae. Biol Fertil Soils 30:485–491

    Article  Google Scholar 

  • Banitz T, Wick LY, Fetzer I, Frank K, Harms H, Johst K (2011) Dispersal networks for enhancing bacterial degradation in heterogeneous environments. Environ Pollut 159(10):2781–2788. doi:10.1016/j.envpol.2011.05.008

    Article  CAS  PubMed  Google Scholar 

  • Banitz T, Johst K, Wick LY, Schamfuß S, Harms H, Frank K (2013) Highways versus pipelines: contributions of two fungal transport mechanisms to efficient bioremediation. Environ Microbiol Rep 5(2):211–218. doi:10.1111/1758-2229.12002

    Article  CAS  PubMed  Google Scholar 

  • Bardi L, Malusà E (2012) Drought and nutritional stresses in plant: alleviating role of rhizospheric microorganisms. In: Haryana N, Punj S (eds) Abiotic stress: new research. Nova Science Publishers Inc, Hauppauge, pp 1–57

    Google Scholar 

  • Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2010) Microbial populations of arid lands and their potential for restoration of deserts. In: Dion P (ed) Soil biology and agriculture in the tropics, Soil biology series. Springer, Berlin, pp 109–137

    Chapter  Google Scholar 

  • Bashan Y, Puente ME, Rodriguez-Mendoza MN, Toledo G, Holguin G, Ferrera-Cerrato R, Pedrin S (1995) Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types. Appl Environ Microbiol 61:1938–1945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Beauregard MS, Gauthier MP, Hamel C, Zhang T, Welacky T, Tan CS, St-Arnaud M (2013) Various forms of organic and inorganic P fertilizers did not negatively affect soil- and root-inhabiting AM fungi in a maize–soybean rotation system. Mycorrhiza 23:143–154

    Article  CAS  PubMed  Google Scholar 

  • Belanger RB, Bowen PA, Ehret DL, Menzies JG (1995) Soluble silicon: its role in crop and disease management of greenhouse crops. Plant Dis 79:329–336

    Article  Google Scholar 

  • Bell RW, Dell B (2008) Micronutrients for sustainable food, feed, fibre and bioenergy production. IFA, Paris

    Google Scholar 

  • Bennett PC, Choi WJ, Rogera JR (1998) Microbial destruction of feldspars. Mineral Manage 8:149–150

    Article  Google Scholar 

  • Bennett PC, Rogers JR, Choi WJ (2001) Silicates, silicate weathering, and microbial ecology. Geomicrobiol J 18:3–19

    Article  CAS  Google Scholar 

  • Bernard E, Larkin RP, Tavantzis S, Erich MS, Alyokhin A, Sewell G, Lannan A, Gross SD (2012) Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems. Appl Soil Ecol 52:29–41

    Article  Google Scholar 

  • Berthrong ST, Buckley DH, Drinkwater LE (2013) Agricultural management and labile carbon additions affect soil microbial community structure and interact with carbon and nitrogen cycling. Microb Ecol 66:158–170

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjya S, Chandra R (2013) Effect of inoculation methods of Mesorhizobium ciceri and PGPR in chickpea (Cicer aretinum L.) on symbiotic traits, yields, nutrient uptake and soil properties. Legume Res 36:331–337

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Biederbeck VO, Geissler HJ (1993) Effect of storage temperatures on Rhizobium meliloti survival in peat- and clay-based inoculants. Can J Plant Sci 73:101–110

    Article  Google Scholar 

  • Boberg JB, Finlay RD, Stenlid J, Lindahl BD (2009) Fungal C translocation restricts N-mineralization in heterogeneous environments. Funct Ecol 24:454–459

    Article  Google Scholar 

  • Boddey RM, Urquiaga S, Reis V, Döbereiner J (1991) Biological nitrogen fixation associated with sugar cane. Plant Soil 137:111–117

    Article  Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631

    Article  Google Scholar 

  • Brevik EC, Burgess LC (2012) Soils and human health. CRC Press, Boca Raton, 408 p

    Book  Google Scholar 

  • Burford EP, Gadd GM (2003) Geomycology: fungal growth in mineral substrata. Mycologist 17:98–107

    Article  Google Scholar 

  • Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67:1127–1155

    Article  CAS  Google Scholar 

  • Canfora L, Malusà E, Salvati L, Renzi G, Petrarulo M, Benedetti A (2015) Short-term impact of two liquid organic fertilizers on Solanum lycopersicum L. rhizosphere Eubacteria and Archaea diversity. Appl Soil Ecol 88:50–59

    Article  Google Scholar 

  • Castro IM, Fietto JLR, Vieira RX, Tropia MJM, Campos LMM, Paniago EB, Brandao RL (2000) Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometal 57:39–49

    Article  CAS  Google Scholar 

  • Cavagnaro TR, Smith FA, Smith SE, Jakobsen I (2005) Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ 28:642–650

    Article  CAS  Google Scholar 

  • Ceccarelli N, Curadi M, Martelloni L, Sbrana C, Picciarelli P, Giovannetti M (2010) Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335:311–323

    Article  CAS  Google Scholar 

  • Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25

    Article  CAS  Google Scholar 

  • Cheng Y, Ishimoto K, Kuriyama Y, Osaki M, Ezawa T (2013) Ninety-year, but not single, application of phosphorus fertilizer has a major impact on arbuscular mycorrhizal fungal communities. Plant Soil 365:397–407

    Article  CAS  Google Scholar 

  • Chuang C, Kuo YL, Chao CC, Chao WL (2007) Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biol Fertil Soils 43:575–584

    Article  CAS  Google Scholar 

  • Clayton GW, Rice WA, Lupwayi NZ, Johnston AM, Lafond GP, Grant CA, Walley F (2004) Inoculant formulation and fertilizer nitrogen effects on field pea: crop yield and seed quality. Can J Plant Sci 84:89–96

    Article  Google Scholar 

  • Corkidi L, Allen EB, Merhaut D, Allen MF, Downer J, Bohn J, Evans M (2004) Assessing the infectivity of commercial mycorrhizal inoculants in plant nursery conditions. J Environ Hortic 22:149–154

    Google Scholar 

  • Cummings SP (2009) The application of plant growth promoting rhizobacteria (PGPR) in low input and organic cultivation of graminaceous crops; potential and problems. Environ Biotechnol 5:43–50

    Google Scholar 

  • Daghino S, Martino E, Perotto S (2010) Fungal weathering and implications in the solubilization of metals from soil and from asbestos fibres. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 1, Microbiology book series, 2. Formatex Research Center, Badajoz, pp 329–338. ISBN: 9788461461943

    Google Scholar 

  • Date RA (2001) Advances in inoculant technology: a brief review. Anim Prod Sci 41:321–325

    Article  CAS  Google Scholar 

  • De La Providencia IE, De Souza FA, Fernández F, Delmas NS, Declerck S (2005) Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. New Phytol 165:261–271

    Article  PubMed  Google Scholar 

  • De Mico A, Pasquariello G, Pinzari F (2004) Study of surface morphologies in biologically degraded paper with variable pressure SEM couplet with Electronic Dispersion Spectroscopy (EDS). In: Abstracts of the 7th international symposium transitional metals in Paper University of Rome La Sapienza,- EU project EVK4 2002 ÷ 2010

    Google Scholar 

  • de Salamone IEG, Di Salvo LP, Ortega JSE, Sorte PMFB, Urquiaga S, Teixeira KRS (2010) Field response of rice paddy crop to Azospirillum inoculation: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant Soil 336(1):351–362

    Article  CAS  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology-a review. Soil Biol Biochem 36:1275–1288

    Article  CAS  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudatesmore important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327

    Article  CAS  PubMed  Google Scholar 

  • Duan T, Shen Y, Facelli E, Smith SE, Nan Z (2010) New agricultural practices in the Loess Plateau of China do not reduce colonisation by arbuscular mycorrhizal or root invading fungi and do not carry a yield penalty. Plant Soil 331:265–275

    Article  CAS  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345

    Article  PubMed  Google Scholar 

  • El-Tarabily KA, Sivasithamparam K (2006) Potential of yeasts as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Mycoscience 47:25–35

    Article  Google Scholar 

  • Enwall K, Philippot L, Hallin S (2005) Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl Environ Microbiol 71(12):8335–8343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esitken A, Karlidag H, Ercisli S, Turan M, Sahin F (2003) The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L. cv. Hacihaliloglu). Aust J Agric Res 54:377–380

    Article  Google Scholar 

  • Esperschutz J, Gattinger A, Mader P, Schloter M, Fliessbach A (2007) Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS Microbiol Ecol 61:26–37

    Article  PubMed  CAS  Google Scholar 

  • Faye A, Dalpé Y, Ndung’u-Magiroi K, Jefwa J, Ndoye ID, Lesueur D (2013) Evaluation of commercial arbuscular mycorrhizal inoculants on maize in Kenya. Can J Plant Sci 93:1201–1208

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different microorganisms. New Phytol 141:525–533

    Article  Google Scholar 

  • Fomina M, Ritz K, Gadd GM (2003) Nutritional influence on the ability of fungal mycelia to penetrate toxic metal-containing domains. Mycol Res 107:861–871

    Article  CAS  PubMed  Google Scholar 

  • Fomina M, Alexander IJ, Hillier S, Gadd GM (2004) Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrob J 21:351–366

    Article  CAS  Google Scholar 

  • Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866

    Article  CAS  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Article  CAS  Google Scholar 

  • Franke-Snyder M, Douds DD, Galvez L, Phillips JG, Wagoner P, Drinkwater L, Morton JB (2001) Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl Soil Ecol 16:35–48

    Article  Google Scholar 

  • Fray RG (2002) Altering plant–microbe interaction through artificially manipulating bacterial quorum sensing. Ann Bot 89:245–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentes-Ramirez LE, Caballero-Mellado J (2005) Bacterial biofertilizers. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 143–72

    Google Scholar 

  • Furuno S, Remer R, Chatzinotas A, Harms H, Wick LY (2012) Fungal mycelia as paths for the isolation of contaminant degrading soil bacteria. Microb Biotechnol 5:142–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2004) Mycotransformation of organic and inorganic substrates. Mycologist, vol 18, Part 2 May. Cambridge University Press, Cambridge, Printed in the United Kingdom. doi: 10.1017/S0269915XO4002022

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, biowatering and bioremediation. Mycol Res 111:3–49

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (ed) (2008) Fungi in bioremediation. Cambridge University Press, Cambridge, 481 pp. British Mycological Society Symposia N 23. ISBN: 9780521065313. Book doi: http://dx.doi.org/10.1017/CBO9780511541780

    Google Scholar 

  • Gascho GJ (2001) Silicon sources for agriculture. In: Datnoff LE, Snyder GH, Korndorfer GH (eds) Silicon in agriculture. Elsevier Science, Amsterdam

    Google Scholar 

  • Gemell LG, Hartley EJ, Herridge DF (2005) Point-of-sale evaluation of preinoculated and custom-inoculated pasture legume seed. Anim Prod Sci 45:161–169

    Article  Google Scholar 

  • Gera C, Srivastava S (2006) Quorum-sensing, the phenomenon of microbial communication. Curr Sci 90:566–677

    Google Scholar 

  • Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol 69:1800–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glowa KR, Arocena JM, Massicotte HB (2003) Extraction of potassium and/or magnesium from selected soil minerals by Piloderma. Geomicrobiol J 20:99–111

    Article  CAS  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  CAS  PubMed  Google Scholar 

  • Green LE, Porras-Alfaro A, Sinsabaugh RL (2008) Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J Ecol 96:1076–1085

    Article  CAS  Google Scholar 

  • Gryndler M, Hršelová H, Sudová R, Gryndlerová H, Řezáčová V, Merhautová V (2005) Hyphal growth and mycorrhiza formation by the arbuscular mycorrhizal fungus Glomus claroideum BEG 23 is stimulated by humic substances. Mycorrhiza 15:483–488

    Article  CAS  PubMed  Google Scholar 

  • Gryndler M, Larsen J, Hršelová H, Řezáčová V, Gryndlerova H, Kubat J (2006) Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza 16:159–166

    Article  CAS  PubMed  Google Scholar 

  • Grzyb ZS, Piotrowski W, Bielicki P, Sas Paszt L, Malusà E (2012) Effect of different fertilizers and amendments on the growth of apple and sour cherry rootstocks in an organic nursery. J Fruit Ornam Plant Res 20(1):43–53

    Google Scholar 

  • Grzyb ZS, Piotrowski W, Bielicki P, Sas-Paszt L, Malusà E (2013) Effect of organic fertilizers and soil conditioners on the quality of maiden apple trees. Acta Horticult 1001:311–322

    Article  Google Scholar 

  • Habteselassie MY, Xu L, Norton JM (2013) Ammonia-oxidizer communities in an agricultural soil treated with contrasting nitrogen sources. Front Microbiol 4(326):1–10. doi: 10.3389/fmicb.2013.00326

  • Halder AK, Mishra AK, Chakrabarty PK (1990) Solubilization of phosphate by Aspergillus niger. Sci Cult 56:455–457

    Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Han I, Lee TK, Han J, Doan TV, Kim SB, Park J (2012) Improved detection of microbial risk of releasing genetically modified bacteria in soil by using massive sequencing and antibiotic resistance selection. J Hazard Mat 227–228:172–178

    Article  CAS  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: Exploiting fungi in bioremediation, waste air and water treatment. Nat Rev Microbiol 9:177–192

    Article  CAS  PubMed  Google Scholar 

  • Hartley EJ, Gemell LG, Slattery JF, Howieson JG, Herridge DF (2005) Age of peat-based lupin and chickpea inoculants in relation to quality and efficacy. Anim Prod Sci 45:183–188

    Article  Google Scholar 

  • Hartmann M, Widmer F (2006) Community structure analyses are more sensitive to differences in soil bacterial communities than anonymous diversity indices. Appl Environ Microbiol 72:7804–7812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394, 431 (30 July 1998). doi :10.1038/28764

    Google Scholar 

  • Herridge DF (2008) Inoculation technology for legumes. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, pp 77–115

    Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97:8859–8873

    Article  CAS  PubMed  Google Scholar 

  • Hijri I, Sykorova Z, Oehl F, Ineichen K, Mader P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    Article  CAS  PubMed  Google Scholar 

  • Hirsch PR, Mauchline TH, Clark IM (2010) Culture independent molecular techniques for soil microbial ecology. Soil Biol Biochem 42(6):878–887

    Article  CAS  Google Scholar 

  • Hołownicki R (2014) Application methods for bioproducts in organic fruit production. In: International conference “Innovative technologies in organic horticultural production”, Skierniewice, 23–24 October 2014, pp 59–60

    Google Scholar 

  • Horiuchi J, Prithiviraj B, Bais HP, Kimball BA, Vivanco JM (2005) Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria. Planta 222:848–857

    Article  CAS  PubMed  Google Scholar 

  • Husen E, Simanungkalit RDM, Saraswati R (2007) Characterization and quality assessment of Indonesian commercial biofertilizers. Indones J Agric Sci 8:31–38

    Google Scholar 

  • Jain R, Saxena J, Sharma V (2012) Solubilization of inorganic phosphates by Aspergillus awamori S19 isolated from agricultural soil of semi-arid region. Ann Microbiol 62:725–735

    Article  CAS  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    Article  CAS  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176

    Article  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Jensen A, Jakobsen I (1980) The occurrence of vesicular arbuscular mycorrhiza in barley and wheat grown in some Danish soils with different fertilizer treatments. Plant Soil 55:403–414

    Article  CAS  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  CAS  PubMed  Google Scholar 

  • John RP, Tyagi RD, Brar SK, Surampalli RY, Prevost D (2011) Bioencapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31:211–226

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    Article  CAS  PubMed  Google Scholar 

  • Johnson D, Leake JR, Read DJ (2005) Liming and nitrogen fertilization affects phosphatase activities, microbial biomass and mycorrhizal colonisation in upland grassland. Plant Soil 271:157–164

    Article  CAS  Google Scholar 

  • Jongmans AG, Van Breemen N, Lundström US, Van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud P-A, Olsson M (1997) Rock-eating fungi. Nature 389:682–683

    Article  CAS  Google Scholar 

  • Jumpponen A, Trowbridge J, Mandyam K, Johnson L (2005) Nitrogen enrichment causes minimal changes in arbuscular mycorrhizal colonization but shifts community composition evidence from rDNA data. Biol Fertil Soils 41:217–224

    Article  CAS  Google Scholar 

  • Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R (2000) FZB24 Bacillus subtilis -mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz-Nachrichten Bayer 1:72–93

    Google Scholar 

  • Knox OGG, Killham K, Mullins CE, Wilson MJ (2003) Nematode-enhanced colonization of the wheat rhizosphere. FEMS Microbiol Lett 225:227–233

    Article  CAS  PubMed  Google Scholar 

  • Koch A, Antunes P, Barto E, Cipollini D, Mummey D, Klironomos J (2011) The effects of arbuscular mycorrhizal (AM) fungal and garlic mustard introductions on native AM fungal diversity. Biol Invasions 13:1627–1639

    Article  Google Scholar 

  • Kucey RMN (1983) Effect of Penicillium bilaji on the solubility and uptake of phosphorus and micronutrients from soil by wheat. Can J Soil Sci 68:261–270

    Article  Google Scholar 

  • Kumar V, Sarma MVRK, Saharan K, Srivastava R, Kumar L, Sahai V, Bisaria VS, Sharma AK (2012) Effect of formulated root endophytic fungus Piriformospora indica and plant growth promoting rhizobacteria fluorescent pseudomonads R62 and R81 on Vigna mungo. World J Microbiol Biotechnol 28:595–603

    Article  PubMed  Google Scholar 

  • Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415

    Article  CAS  Google Scholar 

  • Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207

    Article  CAS  PubMed  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Linderman RG, Davis EA (2003) Soil amendment with different peat mosses affects mycorrhizae of onion. Hortic Technol 13:285–289

    Google Scholar 

  • Lisette J, Xavier C, Germida JJ (2003) Selective interactions between arbuscular mycorrhizal fungi and Rhizobium leguminosarum bv. viceae enhance pea yield and nutrition. Biol Fertil Soils 37:261–267

    Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Application of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  CAS  PubMed  Google Scholar 

  • Lumini E, Vallino M, Alguacil MM, Romani M, Bianciotto V (2011) Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities. Ecol Appl 21:1696–1707

    Article  PubMed  Google Scholar 

  • Lupwayi NZ, Clayton GW, Rice WA (2006) Rhizobial inoculants for legume crops. J Crop Improv 15:289–321

    Article  CAS  Google Scholar 

  • Ma N, Yokoyama K, Marumoto T (2007) Effect of peat on mycorrhizal colonization and effectiveness of the arbuscular mycorrhizal fungus Gigaspora margarita. Soil Sci Plant Nutr 53:744–752

    Article  CAS  Google Scholar 

  • Mabood F, Zhou X, Smith D (2006) Preincubated with methyl jasmonates increases soybean nodulation and nitrogen fixation. Agron J 98:289–294

    Article  Google Scholar 

  • Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  PubMed  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  CAS  PubMed  Google Scholar 

  • Malik KA, Mirza MS, Hassan U, Mehnaz S, Rasul G, Haurat J et al (2002) The role of plant associated beneficial bacteria in rice-wheat cropping system. In: Kennedy IR, Chaudhry ATMA (ed) Biofertilisers in action. Rural industries research and development. Corporation, Canberra, pp 73–83

    Google Scholar 

  • Malusà E, Sas Paszt L (2009) The development of innovative technologies and products for organic fruit production. An integrated project. In: Proceedings of international plant nutrition Coll. XVI. Sacramento (USA). Paper 1359. http://repositories.cdlib.org/ipnc/xvi/1359, pp 1–4

  • Malusà E, Vassilev N (2014) A contribution to set a legal framework for biofertilizers. Appl Microbiol Biotechnol 98:6599–6607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malusà E, Sas-Paszt L, Zurawicz E, Popinska W (2007) The effect of a mycorrhiza-bacteria substrate and foliar fertilization on growth response and rhizosphere pH of three strawberry cultivars. Int J Fruit Sci 6:25–41

    Article  Google Scholar 

  • Malusà E, Sas-Paszt L, Trzcinski P, Górska A (2012) Influences of different organic fertilizers and amendments on nematode trophic groups and soil microbial communities during strawberry growth. Acta Hortic (ISHS) 933:253–260

    Article  Google Scholar 

  • Malusà E, Sala G, Chitarra W, Bardi L (2013) Improvement of response to low water availability in maize plants inoculated with selected rhizospheric microbial consortia under different irrigation regimes. EQA – Environ Quality 12:13–21

    Google Scholar 

  • Manikandan R, Saravanakumar D, Rajendran L, Raguchander T, Samiyappan R (2010) Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biol Control 54:83–89

    Article  Google Scholar 

  • Mansfeld-Giese K, Larsen J, Bodker L (2002) Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol 41:133–140

    Article  CAS  PubMed  Google Scholar 

  • Marketsandmarkets (2013) Global biofertilizers market by types, applications and geography – trends and Forecasts to 2017. Marketsandmarkets, Dallas

    Google Scholar 

  • Marks BB, Megías M, Nogueira MA, Hungria M (2013) Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize. AMB Exp 3:1–10

    Article  CAS  Google Scholar 

  • Marschner P, Timonen S (2005) Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl Soil Ecol 28:23–36

    Article  Google Scholar 

  • Marschner P, Timonen S (2006) Bacterial community composition and activity in rhizosphere of roots colonized by arbuscular mycorrhizal fungi. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer, Berlin, pp 139–154

    Google Scholar 

  • Marschner P, Crowley D, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261:199–208

    Article  CAS  Google Scholar 

  • Maurice S, Beauclair P, Giraud JJ, Sommer G, Hartmann A, Catroux G (2001) Survival and change in physiological state of Bradyrhizobium japonicum in soybean (Glycine max L. Merril) liquid inoculants after long-term storage. World J Microbiol Biotechnol 17:635–643

    Article  CAS  Google Scholar 

  • Meena VD, Dotaniya ML, Vassanda C, Rajendiran S, Ajay S, Kundu A, Rao S (2014) A case for silicon fertilization to improve crop yields in tropical soils. Proc Natl Acad Sci, Sect B Biol Sci 84(3):505–518

    Article  CAS  Google Scholar 

  • Morrison BA, Cozatl-Manzano R (2003) Initial evidence for use of periphyton as an agricultural fertilizer by the ancient Maya associated with El Eden wetland, Northern Quintana Roo, Mexico. In: Fedick S, Allen M, Jimenez-Osornio J, Gomez-Pompa A (eds) The Lowland Maya area: three millennia at the human-wildland interface. CRC Press, New York, pp 401–413

    Google Scholar 

  • Naiman AD, Latronico DA, de Salamone IEG (2009) Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: impact on the production and culturable rhizosphere microflora. Eur J Soil Biol 45(1):44–51

    Article  Google Scholar 

  • Nakayan P, Hameed A, Singh S, Young L-S, Hung M-H, Young C-C (2013) Phosphate-solubilizing soil yeast Meyerozyma guilliermondii CC1 improves maize (Zeamays L) productivity and minimizes requisite chemical fertilization. Plant Soil 373:301–315

    Article  CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K et al (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol 69:2816–2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oehl F, Sieverding E, Mäder P et al (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583

    Article  PubMed  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Olsen PE, Rice WA, Collins MM (1994) Biological contaminants in North American legume inoculants. Soil Biol Biochem 27:699–701

    Article  Google Scholar 

  • Olsen PE, Rice WA, Bordeleau LM, Demidoff AH, Collins MM (1996) Levels and identities of nonrhizobial microorganisms found in commercial legume inoculant made with nonsterile peat carrier. Can J Microbiol 42:72–75

    Article  CAS  PubMed  Google Scholar 

  • Olsson PA, Baath E, Jakobsen I, Söderström B (1996) Soil bacteria respond to presence of roots but not to mycelium of arbuscular mycorrhizal fungi. Soil Biol Biochem 28(4–5):463–470

    Article  CAS  Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  PubMed  CAS  Google Scholar 

  • Ortega-Larrocea MP, Siebe C, Bécard G, Mendez I, Webster R (2001) Impact of a century of wastewater irrigation on the abundance of arbuscular mycorrhizal spores in the soil of the Mezquital Valley of Mexico. Appl Soil Ecol 16:149–157

    Article  Google Scholar 

  • Owen D, Williams AP, Griffith GW, Withers PJA (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl Soil Ecol 86:41–54

    Article  Google Scholar 

  • Palacios OA, Bashan Y, de-Bashan LE (2014) Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria – an overview. Biol Fertil Soils 50:415–432

    Article  CAS  Google Scholar 

  • Paterson E (2003) Importance of rhizodeposition in the coupling of plant and microbial productivity. Eur J Soil Sci 54:741–750

    Article  Google Scholar 

  • Pellegrino E, Turrini A, Gamper HA, Cafà G, Bonari E, Young PW, Giovannetti M (2012) Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytol 194:810–822

    Article  CAS  PubMed  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground, molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Pinzari F, Dell’Abate MT, Benedetti A, Dazzi C (2001) Effects of Cedrus atlantica and Pinus halepensis on the chemistry and fertility of a Mediterranean soil after 40 years. Can J Soil Sci 81:553–560

    Article  Google Scholar 

  • Pinzari F, Tate J, Bicchieri M, Rhee YJ, Gadd GM (2012) Biodegradation of ivory (natural apatite): possible involvement of fungal activity in biodeterioration of the Lewis Chessmen. Environ Microbiol 15(4):1050–1062

    Article  PubMed  CAS  Google Scholar 

  • Pirlak L, Turan M, Sahin F, Esitken A (2007) Floral and foliar application of plant growth promoting rhizobacteria (PGPR) to apples increases yield, growth, and nutrient element contents of leaves. J Sustain Agric 30(4):145–155

    Article  Google Scholar 

  • Pradhan N, Sukla LB (2005) Solubilization of inorganic phosphate by fungi isolated from agricultural soil. Afr J Biotechnol 5:850–854

    Google Scholar 

  • Prasad H, Chandra R (2003) Growth pattern of urdbean Rhizobium sp. with PSB and PGPR in consortia. J Indian Soc Soil Sci 51:76–78

    Google Scholar 

  • Qu XH, Wang JG (2008) Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity. Appl Soil Ecol 39:172–179

    Article  Google Scholar 

  • Reddy CA, Janarthanam L (2014) Polymicrobial formulations for enhancing plant productivity. US Patent n. US8822190B2

    Google Scholar 

  • Reeve JR, Schadt CW, Carpenter-Boggs L, Kang S, Zhou J, Reganold JP (2010) Effects of soil type and farm management on soil ecological functional genes and microbial activities. ISME J 4:1099–1107

    Article  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  PubMed  Google Scholar 

  • Rice WA, Clayton GW, Olsen PE, Lupwayi NZ (2000) Rhizobial inoculant formulations and soil pH influence field pea nodulation and nitrogen fixation. Can J Soil Sci 80:395–400

    Article  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Robleto EA, Borneman J, Triplett EW (1998) Effects of bacterial antibiotic production on rhizosphere microbial communities from a culture-independent perspective. Appl Environ Microbiol 64(12):5020–5022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Ronn R, McGraig AE, Griffiths BS, Prosser JI (2002) Impact of protozoan grazing on the bacterial community structure in soil microcosms. Appl Environ Microbiol 68:6094–6105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Rowe HI, Brown CS, Claassen VP (2007) Comparisons of mycorrhizal responsiveness with field soil and commercial inoculum for six native montane species and Bromus tectorum. Restor Ecol 15:44–52

    Article  Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Savant NK, Datnoff LE, Snyder GH (1997) Depletion of plant available silicon in soils: a possible cause of declining rice yields. Commun Soil Sci Plant Anal 28(13&14):1245–1252

    Article  CAS  Google Scholar 

  • Savant NK, Korndorfer GH, Datnoff LE, Snyder GH (1999) Silicon nutrition and sugarcane production: A review. J Plant Nutri 22(12):1853–1903

    Google Scholar 

  • Saxena J, Basu P, Jaligam V, Chandra S (2013) Phosphate solubilization by a few fungal strains belonging to the genera Aspergillus and Penicillium. Afr J Microbiol Res 7(41):4862–4869

    Article  CAS  Google Scholar 

  • Sayer JA, Raggett SC, Gadd GM (1995) Solubilization of insoluble metal compounds by soil fungi: development of a screening method for solubilizing activity and metal tolerance. Mycol Res 99:987–993

    Article  CAS  Google Scholar 

  • Schoebitz M, Simonin H, Poncelet D (2012) Starch filler and osmoprotectants improve the survival of rhizobacteria in dried alginate beads. J Microencapsul 29:532–538

    Article  CAS  PubMed  Google Scholar 

  • Schwieger F, Tebbe CC (2000) Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album)—linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Appl Environ Microbiol 66(8):3556–3565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekar S, Kandavel D (2010) Interaction of plant growth promoting rhizobacteria (PGPR) and endophytes with medicinal plants– new avenues for phytochemicals. J Phytol 2:91–100

    Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Adholeya A (2003) Interactions between arbuscular mycorrhizal fungi and plant-growth promoting rhizobacteria. Mycorrhiza News 15:16–17

    Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singhal R, Gupta R, Saxena RK (1994) Rock phosphate solubilization under alkaline conditions by Aspergillus foetidus and A. japonicus. Folia Microbiol 39:33–36

    Article  Google Scholar 

  • Skorupska A, Wielbo J, Kidaj D, Marek-Kozaczuk M (2010) Enhancing Rhizobium–legume symbiosis using signaling factors. In: Khan MS (ed) Microbes for legume improvement. Springer, Wien, pp 27–54

    Chapter  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier/Academic, New York/London/Burlington/San Diego, p 605

    Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycology 104:1–13

    Article  Google Scholar 

  • Smits NAC, Bobbink R, Laanbroek HJ, Paalman AJ, Hefting MM (2010) Repression of potential nitrification activities by matgrass sward species. Plant Soil 337:435–445

    Article  CAS  Google Scholar 

  • Sood SG (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45:219–227

    Article  CAS  Google Scholar 

  • Stephens JHG, Rask HM (2000) Inoculant production and formulation. Field Crops Res 65:249–258

    Article  Google Scholar 

  • Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474

    Article  CAS  PubMed  Google Scholar 

  • Strigul NS, Kravchenko LV (2006) Mathematical modelling of PGPR inoculation into the rhizosphere. Environ Model Softw 21:1158–1171

    Article  Google Scholar 

  • Subramanian K, Charest C (1999) Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza 9:69–75

    Article  CAS  Google Scholar 

  • Sudhakar P, Chattopadhyay GN, Gangwar SK, Ghosh JK (2000) Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J Agric Sci 134:227–234

    Article  Google Scholar 

  • Sudhakara RM, Kumar S, Babita K, Reddy MS (2002) Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Bioresour Technol 84:187–189

    Article  Google Scholar 

  • Supanjani Han HS, Jung SJ, Lee KD (2006) Rock phosphate potassium and rock solubilizing bacteria as alternative sustainable fertilizers. Agro Sustain Dev 26:233–240

    Article  CAS  Google Scholar 

  • Świechowski W, Doruchowski G, Trzciński P (2012) Effect of spray application parameters on viability of bacterium Pseudomonas fluorescens used as bio-pesticide in organic fruit production. In: Granatstein D, Andrews P (ed) Proceedings of II International congress on organic fruit research symposium, 18–21 June 2012. ISHS, Leavenworth, p 9

    Google Scholar 

  • Sýkorová Z, Börstler B, Zvolenská S, Fehrer J, Gryndler M, Vosátka M, Redecker D (2012) Long-term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers. Mycorrhiza 22:69–80

    Article  PubMed  CAS  Google Scholar 

  • Tarbell TJ, Koske RE (2007) Evaluation of commercial arbuscular mycorrhizal inocula in a sand/peat medium. Mycorrhiza 18:51–56

    Article  CAS  PubMed  Google Scholar 

  • Tawaraya K, Naito M, Wagatsuma T (2006) Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi. J Plant Nutr 29:657–665

    Article  CAS  Google Scholar 

  • Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett 254:34–40

    Article  CAS  PubMed  Google Scholar 

  • Toljander JF, Santos-Gonzalez JC, Tehler A, Finlay RD (2008) Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiol Ecol 65:323–338

    Article  CAS  PubMed  Google Scholar 

  • Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  CAS  PubMed  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res Int 863240. doi: 10.1155/2013/863240

    Google Scholar 

  • Trabelsi D, Mengoni A, Ben Ammar H, Mhamdi R (2011) Effect of on-field inoculation of Phaseolus vulgaris with rhizobia on soil bacterial communities. FEMS Microbiol Ecol 77(1):211–222

    Article  CAS  PubMed  Google Scholar 

  • Trabelsi D, Ben Ammar H, Mengoni A, Mhamdi R (2012) Appraisal of the crop-rotation effect of rhizobial inoculation on potato cropping systems in relation to soil bacterial communities. Soil Biol Biochem 54:16

    Article  CAS  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Article  Google Scholar 

  • Uren NC (2007) Types, amounts and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinto RZ, Varanini PN (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. CRC Press, Boca Raton, pp 1–21

    Chapter  Google Scholar 

  • Van der Gast CJ, Gosling P, Tiwari B, Bending GD (2011) Spatial scaling of arbuscular mycorrhizal fungal diversity is affected by farming practice. Environ Microbiol 13:241–249

    Article  PubMed  Google Scholar 

  • van Overbeek L, van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64:283–296

    Article  PubMed  CAS  Google Scholar 

  • Van Schöll L, Kuyper TW, Smits MM, Landeweert R, Hoffland E, Van Breemen N (2008) Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant Soil 303(1–2):35–47

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Fenice M, Federici F (2001) Immobilized cell technology applied in solubilization of insoluble inorganic (rock) phosphates and P plant acquisition. Biores Technol 79:263–271

    Article  CAS  Google Scholar 

  • Vassilev N, Nikolaeva I, Vassileva M (2005) Polymer-based preparation of soil inoculants: applications to arbuscular mycorrhizal fungi. Rev Environ Sci Biotechnol 4:235–243

    Article  CAS  Google Scholar 

  • Vassilev N, Medina A, Azcon R, Vassilev M (2006a) Microbial solubilization of rock phosphate as media containing agro industrial wastes and effect of the resulting products on plant growth and phosphorus uptake. Plant Soil 287:77–84

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006b) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144

    Article  CAS  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vestergård M, Henry F, Rangel-Castro JI, Michelsen A, Prosser JI, Christensen S (2008) Rhizosphere bacterial community composition responds to arbuscular mycorrhiza, but not to reductions in microbial activity induced by foliar cutting. FEMS Microbiol Ecol 64:78–89

    Article  PubMed  CAS  Google Scholar 

  • Viti C, Tatti E, Decorosi F, Lista E, Rea E, Tullio M, Sparvoli E, Giovannetti L (2010) Compost effect on plant growth-promoting rhizobacteria and mycorrhizal fungi population in Maize cultivations. Comp Sci Utiliz 18(4):273–281

    Article  Google Scholar 

  • Wagner GM (1997) Azolla. A review of its biology and utilisation. Bot Rev 63:1–26

    Article  Google Scholar 

  • Wainwright M, Al-Wajeeh K, Grayston J (1997) Effect of silicic acid and other silicon compounds on fungal growth in oligotrophic and nutrient-rich media. Mycol Res 101(8):933–938

    Article  CAS  Google Scholar 

  • Wakelin SA, Gupta VVSR, Harvey PR, Ryder MH (2007) The effect of Penicillium fungi on plant growth and phosphorus mobilization in neutral to alkaline soils from southern Australia. Can J Microbiol 53:106–115

    Article  CAS  PubMed  Google Scholar 

  • Wamberg C, Christensen S, Jakobsen I, Müller AK, Sørensen SJ (2003) The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biol Biochem 35:1349–1357

    Article  CAS  Google Scholar 

  • Wang GM, Stribley DP, Tinker PB, Walker C (1993) Effects of pH on arbuscular mycorrhiza. 1. Field observations on the long-term liming experiments at Rothamsted and Woburn. New Phytol 124:465–472

    Article  CAS  Google Scholar 

  • Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Li X, Zhang J, Yao T, Wei D, Wang Y, Wang J (2012) Effect of root exudates on beneficial microorganisms – evidence from a continuous soybean monoculture. Plant Ecol 213:1883–1892

    Article  Google Scholar 

  • Watt M, Kirkegaard JA, Passioura JB (2006) Rhizosphere biology and crop productivity – a review. Aust J Soil Res 44:299–317

    Article  Google Scholar 

  • Wawrzyńczak P, Białkowski P, Rabcewicz J, Plaskota M, Gotowicki B (2011) Application of biofertilizers and biostimulants in organic orchards. In: Sas-Paszt L, Malusá E (eds) Proceedings of Ogólnopolską Naukową Konferencję Ekologiczną „Osiągnięcia i możliwości rozwoju badań i wdrożeń w ekologicznej produkcji ogrodniczej”. Skierniewice 6–7/10/2011 Skierniewice, Poland: Institute Horticultural Research, pp 85–86

    Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151

    Article  CAS  Google Scholar 

  • Wick LY, Furuno S, Harms H (2010) Fungi as transport vectors for contaminants and contaminant-degrading bacteria. In: Timmis K, Mc Genity T, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology, Part 8 (51), vol 2. Springer, Berlin/Heidelberg/New York, pp 1555–1561

    Chapter  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xiao C, Chi R, Pan X, Liu F, He J (2013) Rock phosphate solubilization by four yeast strains. Ann Microbiol 63:173–178

    Article  CAS  Google Scholar 

  • Xie X, Yoneyama K, Yoneyama K (2010) The strigolacone story. Annu Rev Phytopathol 48:93–117

    Article  CAS  PubMed  Google Scholar 

  • Yanni YG, Rizk RY, Abd El-Fattah FK, Squartini A, Corich V, Giacomini A, de Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M, Hollingsworth RI, Martinez-Molina E, Mateos P, Velazquez E, Wopereis E, Triplett E, Umali-Garcia M, Anarna JA, Rolfe BG, Ladha JK, Hill J, Mujoo R, Ng PK, Dazzo FB (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol 28:845–870

    CAS  Google Scholar 

  • Zoppellari F, Malusà E, Chitarra W, Lovisolo C, Spanna F, Bardi L (2014) Improvement of drought tolerance in maize (Zea mais L.) by selected rhizospheric microorganisms. Ital J Agrometeorol 18(1):5–18

    Google Scholar 

  • Zubek S, Mielcarek S, Turnau K (2012) Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work has been supported by a grant to E.M. from the EU Regional Development Fund through the Polish Innovation Economy Operational Program, contract N. UDA-POIG.01.03.01-10-109/08-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Malusà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Malusà, E., Pinzari, F., Canfora, L. (2016). Efficacy of Biofertilizers: Challenges to Improve Crop Production. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2644-4_2

Download citation

Publish with us

Policies and ethics