Skip to main content

Advances in Formulation Development Technologies

  • Chapter
  • First Online:
Book cover Microbial Inoculants in Sustainable Agricultural Productivity

Abstract

The increasing need for environmentally friendly agricultural applications is motivating the use of fertilizers based on beneficial microorganisms called biofertilizers. These biofertilizers could be defined as formulations containing one or more beneficial and efficient microbial strains (or species) loaded on economically safe and easy-to-use carrier material. Productions of biofertilizers require integration of physical, chemical, and biological parameters to increase the populations and survival of these microorganisms. The most common biofertilizers are nitrogen fixers; phosphate solubilizers; potassium mobilizers; sulfur oxidizers; Pseudomonas fluorescens, which is known as the most common plant-growth-promoting rhizobacteria (PGPR); and mycorrhizae. Productions of efficient biofertilizers require selection of good microbial strain(s), selection of good carrier, and using a suitable formulation process. Selected strains must be effective and competitive against soil indigenous populations. Good carriers must be characterized by their ability to deliver the right number of viable cells in good physiological condition and at the right time. The formulation process refers to the laboratory or industrial process for unifying the carrier with the bacterial strain. There are different formulation technologies that were utilized during the last decades at which four basic dispersal types from microbial inoculant were produced (powder, granule, slurry, and liquid). High-quality microbial inoculants should meet farmers’ and manufacturers’ requirements, which include the following: contains large population of one or several strains; has consistent and reproducible efficacy under different field conditions; free from significant contamination and opportunistic pathogens for humans, animals, and plants; has an extended shelf life and resistance to mishandling by the farmers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Fattah DA, Eweda WE, Zayed MS, Hassanein MK (2013) Effect of carrier materials, sterilization method, and storage temperature on survival and biological activities of Azotobacter chroococcum inoculant. Ann Agric Sci 58(2):111–118

    Google Scholar 

  • Abd El-Fattah D, Eweda WE, Zayed MS (2014) Production of effective bacterial formulations. Effective bacterial formulations. LAP LAMBERT Academic Publishing, Saarbrücken Deutschland/ Germany

    Google Scholar 

  • Albareda M, Rodríguez-Navarro DN, Camacho M, Temprano FJ (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40(11):2771–2779

    Article  CAS  Google Scholar 

  • Amiet-Charpentier C (1999) Rhizobacteria microencapsulation: properties of microparticles obtained by spray-drying. J Microencapsul 16(2):215–229

    Article  CAS  PubMed  Google Scholar 

  • Ayanaba A, Weiland KD, Zablotowicz RM (1986) Evaluation of diverse antisera, conjugates, and support media for detecting Bradyrhizobium japonicum by indirect enzyme-linked immunosorbent assay. Appl Environ Microbiol 52(5):1132–1138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bashan Y (1986) Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl Environ Microbiol 51(5):1089–1098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16(4):729–770

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43(2):103–121

    Article  CAS  Google Scholar 

  • Bashan Y, Puente ME, Rodriguez-Mendoza MN, Toledo G, Holguin G, Ferrera-Cerrato R, Pedrin S (1995) Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types. Appl Environ Microbiol 61(5):1938–1945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bashan Y, Hernandez J-P, Leyva LA, Bacilio M (2002) Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol Fertil Soils 35(5):359–368

    Article  Google Scholar 

  • Bharathi R, Vivekananthan R, Harish S, Ramanathan A, Samiyappan R (2004) Rhizobacteria-based bio-formulations for the management of fruit rot infection in chillies. Crop Prot 23(9):835–843

    Article  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG (2000) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92(5):880–886

    Article  Google Scholar 

  • Board N (2004) The complete technology book on bio-fertilizer and organic farming. National Institute of Industrial Research, Delhi,

    Google Scholar 

  • Brahmaprakash G, Sahu PK (2012) Biofertilizers for sustainability. J Indian Inst Sci 92(1):37–62

    CAS  Google Scholar 

  • Brar SK, Verma M, Tyagi R, Valéro J (2006) Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem 41(2):323–342

    Article  CAS  Google Scholar 

  • Brazil G, Kenefick L, Callanan M, Haro A, De Lorenzo V, Dowling D, O’gara F (1995) Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol 61(5):1946–1952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burdman S, Volpin H, Kigel J, Kapulnik Y, Okon Y (1996) Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Appl Environ Microbiol 62(8):3030–3033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burton J (1964) The Rhizobium-legume association. In: Gilmour CM, Allen N (eds) Microbiology and soil fertility. Oregon State University Press, Corvallis, pp 107–134

    Google Scholar 

  • Burton JC (1967) Rhizobium culture and use. In: Peppler J (ed) Microbial technology. Reinhold Publishing Corporation, New York, pp 1–33

    Google Scholar 

  • Caesar AJ, Burr T (1991) Effect of conditioning, betaine, and sucrose on survival of rhizobacteria in powder formulations. Appl Environ Microbiol 57(1):168–172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cassidy M, Lee H, Trevors J (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16(2):79–101

    Article  CAS  Google Scholar 

  • Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230(1):21–30

    Article  CAS  Google Scholar 

  • Date R (2001) Advances in inoculant technology: a brief review. Anim Prod Sci 41(3):321–325

    Article  CAS  Google Scholar 

  • Date R, Roughley R (1977) Preparation of legume seed inoculants. A treatise on dinitrogen fixation. Section IV Agronomy and ecology. Wiley, New York, pp 243–275

    Google Scholar 

  • Daza A, Santamarıa C, Rodrıguez-Navarro D, Camacho M, Orive R, Temprano F (2000) Perlite as a carrier for bacterial inoculants. Soil Biol Biochem 32(4):567–572

    Article  CAS  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology—a review. Soil Biol Biochem 36(8):1275–1288

    Article  CAS  Google Scholar 

  • Deschodt C, Strijdom B (1976) Suitability of a coal-bentonite base as carrier of rhizobia in inoculants. Phytophylactica 8(1):1–6

    CAS  Google Scholar 

  • Dommergues Y, Diem HG, Divies C (1979) Polyacrylamide-entrapped Rhizobium as an inoculant for legumes. Appl Environ Microbiol 37(4):779–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dube J, Mahere D, Rawat A (1980) Development of coal as a carrier for rhizobial inoculants. Sci Cult 46(8)

    Google Scholar 

  • Fages J (1990) An optimized process for manufacturing an Azospirillum inoculant for crops. Appl Microbiol Biotechnol 32(4):473–478

    Article  CAS  Google Scholar 

  • Fattah DAAE, Eweda WE, Zayed MS (2014) Production of effective bacterial formulation effective bacterial formulation. LAMBERT Academic Publishing, Saarbrücken

    Google Scholar 

  • Ferreira EM, Ie Castro IV (2005) Residues of the cork industry as carriers for the production of legume inoculants. Silva Lusitana 13(2):159–167

    Google Scholar 

  • Friedrich S, Platonova N, Karavaiko G, Stichel E, Glombitza F (1991) Chemical and microbiological solubilization of silicates. Acta Biotechnol 11(3):187–196

    Article  CAS  Google Scholar 

  • Fusconi A, Gnavi E, Trotta A, Berta G (1999) Apical meristems of tomato roots and their modifications induced by arbuscular mycorrhizal and soilborne pathogenic fungi. New Phytol 142(3):505–516

    Article  Google Scholar 

  • Futai K, Taniguchi T, Kataoka R (2008) Ectomycorrhizae and their importance in forest ecosystems. In: Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 241–285

    Google Scholar 

  • Gaskins M, Albrecht S, Hubbell D (1985) Rhizosphere bacteria and their use to increase plant productivity: a review. Agric Ecosyst Environ 12(2):99–116

    Article  Google Scholar 

  • Gaur R, Shani N, Johri B, Rossi P, Aragno M (2004) Diacetylphloroglucinol-producing pseudomonads do not influence AM fungi in wheat rhizosphere. Curr Sci 86(3):453–457

    CAS  Google Scholar 

  • Gholami A, Shahsavani S, Nezarat S (2009) The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int J Biol Life Sci 1(1):35–40

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117

    Article  CAS  Google Scholar 

  • Gouzou L, Burtin G, Philippy R, Bartoli F, Heulin T (1993) Effect of inoculation with Bacillus polymyxa on soil aggregation in the wheat rhizosphere: preliminary examination. Geoderma 56(1):479–491

    Article  Google Scholar 

  • Graham-Weiss L, Bennett ML, Paau AS (1987) Production of bacterial inoculants by direct fermentation on nutrient-supplemented vermiculite. Appl Environ Microbiol 53(9):2138–2141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman JM, O’Neill BE, Tsai SM, Liang B, Neves E, Lehmann J, Thies JE (2010) Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microb Ecol 60(1):192–205

    Article  CAS  PubMed  Google Scholar 

  • Guleri R, Gupta R, Gosal S, Pandher M, Gosal S (2005) In vitro and in situ mycorrhization of micropropagated sugarcane plants and its effect on yield. Indian J Microbiol 45(1):71

    Google Scholar 

  • Harlow E, Lane D (1988) Antibodies: a laboratory manual, vol 559. Cold Spring Harbor Laboratory Cold Spring Harbor, New York

    Google Scholar 

  • Hegde S, Brahmaprakash G (1992) A dry granular inoculant of Rhizobium for soil application. Plant Soil 144(2):309–311

    Article  Google Scholar 

  • Hemming B (1986) Microbial iron interactions in the plant rhizosphere. An overview. J Plant Nutr 9(3–7):505–521

    Article  CAS  Google Scholar 

  • Hemphill D Jr (1982) Anticrustant effects on soil mechanical resistance and seedling emergence [Vermiculite, carrot, cucumber, lettuce, onion]. HortScience (USA)

    Google Scholar 

  • Herridge D (2007) Inoculation technology for legumes. In: Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, pp 77–115

    Chapter  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311(1–2):1–18

    Article  CAS  Google Scholar 

  • Heulin T, Berge O, Mavingui P, Gouzou L, Hebbar K, Balandreau J (1994) Bacillus polymyxa and Rahnella aquatilis, the dominant N2-fixing bacteria associated with wheat rhizosphere in French soils. Eur J Soil Biol 30(1):35–42

    Google Scholar 

  • Iswaran V (1972) Growth and survival of Rhizobium trifolii in coir dust and soybean meal compost. Madras Agric J 59:52–53

    Google Scholar 

  • Jha CK, Saraf M (2012) Evaluation of multispecies plant-growth-promoting consortia for the growth promotion of Jatropha curcas L. J Plant Growth Regul 31(4):588–598

    Article  CAS  Google Scholar 

  • Jisha M, Alagawadi A (1996) Nutrient uptake and yield of sorghum (Sorghum bicolor L. Moench) inoculated with phosphate solubilizing bacteria and cellulolytic fungus in a cotton stalk amended vertisol. Microbiol Res 151(2):213–217

    Article  CAS  Google Scholar 

  • John RP, Tyagi R, Brar S, Surampalli R, Prévost D (2011) Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31(3):211–226

    Article  CAS  PubMed  Google Scholar 

  • Johnston WR (1962) Process for preparing viable dry. Google Patents

    Google Scholar 

  • Khan A (2001) Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil. Environ Int 26(5):417–423

    Article  CAS  PubMed  Google Scholar 

  • Kharbanda P, Yang J, Beatty P, Jensen S, Tewari J (1999) Biocontrol of Leptosphaeria maculans and other pathogens of canola with Paenibacillus polymyxa PKB1. In: Proceedings of the 10th international rapeseed congress, Canberra, Australia. http://www.regional.org.au/au/gcirc

  • Khatri AA, Choksey M, D’Silva E (1973) Rice husk as the medium for legume inoculants. Sci Cult 39:194–196

    Google Scholar 

  • Kim K, Jordan D, McDonald G (1997) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26(2):79–87

    Article  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7(2):39–44

    Article  Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11):1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Kosanke J, Osburn R, Shuppe G, Smith R (1992) Slow rehydration improves the recovery of dried bacterial populations. Can J Microbiol 38(6):520–525

    Article  CAS  PubMed  Google Scholar 

  • Kremer RJ, Peterson HL (1983) Effects of carrier and temperature on survival of Rhizobium spp. in legume inocula: development of an improved type of inoculant. Appl Environ Microbiol 45(6):1790–1794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuenen J, Beudeker R, Shively J, Codd G (1982) Microbiology of Thiobacilli and other sulphur-oxidizing autotrophs, mixotrophs and heterotrophs [and discussion]. Philos Trans R Soc Lond B Biol Sci 298(1093):473–497

    Article  CAS  PubMed  Google Scholar 

  • Laird DA (2008) The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100(1):178–181

    Article  Google Scholar 

  • Lebuhn M, Heulin T, Hartmann A (1997) Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol Ecol 22(4):325–334

    Article  CAS  Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5(7):381–387

    Article  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. Earthscan, London/Sterling VA

    Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota–a review. Soil Biol Biochem 43(9):1812–1836

    Article  CAS  Google Scholar 

  • Lima JdA, Souza A, Castor O, de Menezes Sobrinho J (1984) Effects of organic matter and vermiculite on garlic yields [Allium sativum]. Pesquisa Agropecuaria Brasileira (Brazil)

    Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86(1):1–25

    Article  CAS  PubMed  Google Scholar 

  • Lupwayi NZ, Olsen PE, Sande ES, Keyser HH, Collins MM, Singleton PW, Rice WA (2000) Inoculant quality and its evaluation. Field Crops Res 65(2–3):259–270. doi: http://dx.doi.org/10.1016/S0378-4290(99)00091-X

    Google Scholar 

  • Lupwayi NZ, Clayton GW, Rice WA (2006) Rhizobial inoculants for legume crops. J Crop Improve 15(2):289–321

    Article  CAS  Google Scholar 

  • Marx DH, Kenney DS (1982) Production of ectomycorrhizal fungus inoculum. In: Schenck NC (ed) Methods and principles of Mycorrhizal research. The American Phytopathological Society, St. Paul, pp 131–146

    Google Scholar 

  • Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012

    Google Scholar 

  • Manikandan R, Saravanakumar D, Rajendran L, Raguchander T, Samiyappan R (2010) Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biol Control 54(2):83–89

    Article  Google Scholar 

  • Mathur N, Vyas A (2000) Influence of arbuscular mycorrhizae on biomass production, nutrient uptake and physiological changes in Ziziphus mauritiana Lam. under water stress. J Arid Environ 45(3):191–195

    Article  Google Scholar 

  • McLeod R, Roughley R (1961) Freeze-dried cultures as commercial legume inoculants. Anim Prod Sci 1(1):29–33

    Article  Google Scholar 

  • McQuilken MP, Halmer P, Rhodes DJ (1998) Application of microorganisms to seeds. In: Formulation of microbial biopesticides. Springer, Dordrecht, pp 255–285

    Chapter  Google Scholar 

  • Meyer SL, Roberts DP, Chitwood DJ, Carta LK, Lumsden R (2001) Application of Burkholderia cepacia and Trichoderma virens, alone and in combinations, against Meloidogyne incognita on bell pepper. Nematropica 31(1):75–86

    Google Scholar 

  • Mishra B, Dadhich S (2010) Methodology of nitrogen biofertilizer production. J Adv Dev Res 1(1):3–6

    Article  Google Scholar 

  • Mishra M, Kumar U, Mishra PK, Prakash V (2010) Efficiency of plant growth promoting rhizobacteria for the enhancement of Cicer arietinum L. growth and germination under salinity. Adv Biol Res 4(2):92–96

    CAS  Google Scholar 

  • Mohammadi O, Lahdenperä ML (1994) Impact of application method on efficacy of Mycostop biofungicide. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with Rhizosphere bacteria. Division of Soils CSIRO, Adelaide, pp 279–281

    Google Scholar 

  • Mugnier J, Jung G (1985) Survival of bacteria and fungi in relation to water activity and the solvent properties of water in biopolymer gels. Appl Environ Microbiol 50(1):108–114

    Google Scholar 

  • Mulligan CN, Cooper DG (1985) Pressate from peat dewatering as a substrate for bacterial growth. Appl Environ Microbiol 50(1):160–162

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56(4):662–676

    PubMed  PubMed Central  Google Scholar 

  • Olsen PE, Rice WA (1989) Rhizobium strain identification and quantification in commercial inoculants by immunoblot analysis. Appl Environ Microbiol 55(2):520–522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen P, Rice W, Collins M (1995) Biological contaminants in North American legume inoculants. Soil Biol Biochem 27(4):699–701

    Article  CAS  Google Scholar 

  • Olsen PE, Sande ES, Keyser HH, Singleton PW, Rice WA (1998) A very rapid enzyme immunoassay for confirmation of rhizobial identity and estimation of cell numbers in fresh broth culture. Can J Microbiol 44(4):382–385

    Article  CAS  Google Scholar 

  • Paau AS (1988) Formulations useful in applying beneficial microorganisms to seeds. Trends Biotechnol 6(11):276–279

    Article  Google Scholar 

  • Paau A, Graham L, Bennett M (1991) Progress in formulation research for PGPR and biocontrol inoculants. Bulletin OILB SROP (France)

    Google Scholar 

  • Paul E, Fages J, Blanc P, Goma G, Pareilleux A (1993) Survival of alginate-entrapped cells of Azospirillum lipoferum during dehydration and storage in relation to water properties. Appl Microbiol Biotechnol 40(1):34–39

    CAS  Google Scholar 

  • Penna C, Massa R, Olivieri F, Gutkind G, Cassán F (2011) A simple method to evaluate the number of bradyrhizobia on soybean seeds and its implication on inoculant quality control. AMB Express 1(1):1–10

    Article  Google Scholar 

  • Pugashetti B, Gopalgowda H, Patil R (1971) Cellulose powder as legume inoculant base. Curr Sci 40(18):494–495

    Google Scholar 

  • Rose MT, Deaker R, Potard S, Tran CKT, Vu NT, Kennedy IR (2011) The survival of plant growth promoting microorganisms in peat inoculant as measured by selective plate counting and enzyme-linked immunoassay. World J Microbiol Biotechnol 27(7):1649–1659

    Article  CAS  Google Scholar 

  • Roughley R (1970) The preparation and use of legume seed inoculants. Plant Soil 32(1):675–701

    Article  Google Scholar 

  • Sadasivam K, Tyagi R, Ramarethinam S (1986) Evaluation of some agricultural wastes as carriers for bacterial inoculants. Agric Wastes 17(4):301–306

    Article  Google Scholar 

  • Saha A, Kapadnis P (2001) Studies on survival of Rhizobium in the carriers at different temperatures using green fluorescent protein marker. Curr Sci 80(5)

    Google Scholar 

  • Saravanakumar D, Lavanya N, Muthumeena K, Raguchander T, Samiyappan R (2009) Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. Biocontrol 54(2):273–286

    Article  Google Scholar 

  • Saxena J (2011) Efficacy of rhizobacterial strains encapsulated in nontoxic biodegradable gel matrices to promote growth and yield of wheat plants. Appl Soil Ecol 48(3):301–308

    Article  Google Scholar 

  • Schisler D, Slininger P, Behle R, Jackson M (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94(11):1267–1271

    Article  CAS  PubMed  Google Scholar 

  • Schulz TJ, Thelen KD (2008) Soybean seed inoculant and fungicidal seed treatment effects on soybean. Crop Sci 48(5):1975–1983

    Article  CAS  Google Scholar 

  • Sheng X, He L, Huang W (2002) The conditions of releasing potassium by a silicate dissolving bacterial strain NBT. Agric Sci China 1

    Google Scholar 

  • Siddiqui ZA, Pichtel J (2008) Mycorrhizae: an overview. In: Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 1–35

    Google Scholar 

  • Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR, Canberra, pp 52–66

    Google Scholar 

  • Smidsrød O (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    Article  PubMed  Google Scholar 

  • Smith R (1995) Inoculant formulations and applications to meet changing needs. In: Nitrogen fixation: fundamentals and applications. Springer, Dordrecht/Boston, pp 653–657

    Google Scholar 

  • Smith SE, Barker SJ (2002) Plant phosphate transporter genes help harness the nutritional benefits of arbuscular mycorrhizal symbiosis. Trends Plant Sci 7(5):189–190

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (1996) Mycorrhizal symbiosis. Academic Press, San Diego

    Google Scholar 

  • Somasegaran P (1985) Inoculant production with diluted liquid cultures of Rhizobium spp. and autoclaved peat: Evaluation of diluents, Rhizobium spp., peats, sterility requirements, storage, and plant effectiveness. Appl Environ Microbiol 50(2):398–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Somasegaran P, Hoben HJ (1994) Handbook for rhizobia: methods in legume-Rhizobium technology. Springer, New York

    Book  Google Scholar 

  • Somasegaran P, Reyes V, Hoben H (1984) The influence of high temperatures on the growth and survival of Rhizobium spp. in peat inoculants during preparation, storage, and distribution. Can J Microbiol 30(1):23–30

    Article  Google Scholar 

  • Stamford N, Freitas A, Ferraz D, Santos C (2002) Effect of sulphur inoculated with Thiobacillus on saline soils amendment and growth of cowpea and yam bean legumes. J Agric Sci 139(03):275–281

    Article  CAS  Google Scholar 

  • Stephens J, Rask H (2000) Inoculant production and formulation. Field Crop Res 65(2):249–258

    Article  Google Scholar 

  • Strijdom B, Deschodt C (1976) 13. Carriers of rhizobia and the effects of prior treatment on the survival of rhizobia. Symbiotic Nitrogen Fixat Plants 7(30):151

    Google Scholar 

  • Strijdom BW, van Rensburg HJ (1981) Effect of steam sterilization and gamma irradiation of peat on quality of Rhizobium inoculants. Appl Environ Microbiol 41(6):1344–1347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strullu D-G, Plenchette C (1990) Encapsulation de la forme intraracinaire de Glomus dans l’alginate et utilisation des capsules comme inoculum. Comptes rendus de l’Académie des sciences Série 3. Sciences de la vie 310(10):447–452

    Google Scholar 

  • Taurian T, Anzuay MS, Angelini JG, Tonelli ML, Ludueña L, Pena D, Ibáñez F, Fabra A (2010) Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant Soil 329(1–2):421–431

    Article  CAS  Google Scholar 

  • Thompson JA (1991) [Legume inoculant production and quality control], Consultation d’Experts sur la Production et le Controle de Qualite des Inoculums pour Legumineuses, Rome (Italy), pp 19–21

    Google Scholar 

  • Tilak K, Subba-Rao N (1978) Carriers for legume (Rhizobium) inoculants. Fertiliser News

    Google Scholar 

  • Tittabutr P, Payakapong W, Teaumroong N, Singleton PW, Boonkerd N (2007) Growth, survival and field performance of bradyrhizobial liquid inoculant formulations with polymeric additives. Sci Asia 33(1):69–77

    Article  CAS  Google Scholar 

  • Trevors J, Van Elsas J, Lee H, Van Overbeek L (1992) Use of alginate and other carriers for encapsulation of microbial cells for use in soil. Microb Releases 1:61–69

    Google Scholar 

  • Trivedi P, Pandey A, Palni LMS (2005) Carrier-based preparations of plant growth-promoting bacterial inoculants suitable for use in cooler regions. World J Microbiol Biotechnol 21(6–7):941–945

    Article  Google Scholar 

  • Van Elsas J, Heijnen C (1990) Methods for the introduction of bacteria into soil: a review. Biol Fertil Soils 10(2):127–133

    Article  Google Scholar 

  • Van Schreven D (1970) Some factors affecting growth and survival of Rhizobium spp. in soil-peat cultures. Plant Soil 32(1–3):113–130

    Google Scholar 

  • van Straaten P (2002) Rocks for crops: agrominerals of sub-Saharan Africa. ICRAF, Nairobi, 338 p

    Google Scholar 

  • van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61(2):121–135

    PubMed  PubMed Central  Google Scholar 

  • Vassilev N, Nikolaeva I, Vassileva M (2005) Polymer-based preparation of soil inoculants: applications to arbuscular mycorrhizal fungi. Rev Environ Sci Bio/Technol 4(4):235–243

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Vidyalakshmi R, Paranthaman R, Bhakyaraj R (2009) Sulphur oxidizing bacteria and pulse nutrition – a review. World J Agric Sci 5(3):270–278

    CAS  Google Scholar 

  • Viveganandan G, Jauhri K (2000) Growth and survival of phosphate-solubilizing bacteria in calcium alginate. Microbiol Res 155(3):205–207

    Article  CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70(1):36–45

    Article  CAS  PubMed  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens 1. Annu Rev Phytopathol 40(1):309–348

    Article  CAS  PubMed  Google Scholar 

  • Xavier IJ, Holloway G, Leggett M (2004) Development of rhizobial inoculant formulations. Crop Manag 3(1)

    Google Scholar 

  • Yabur R, Bashan Y, Hernández-Carmona G (2007) Alginate from the macroalgae Sargassum sinicola as a novel source for microbial immobilization material in wastewater treatment and plant growth promotion. J Appl Phycol 19(1):43–53

    Article  CAS  Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WT Jr (2003) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168

    Article  CAS  Google Scholar 

  • Zayed MS, Eweda WE, Selim SM (2014) Mass production of ectomycorrhizae as a biofertilizer. Ectomycorrhizae as a biofertilizer. LAP LAMBERT Academic Publishing, Saarbrücken

    Google Scholar 

  • Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107(1):39–50

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona S. Zayed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Zayed, M.S. (2016). Advances in Formulation Development Technologies. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2644-4_14

Download citation

Publish with us

Policies and ethics