Skip to main content

Formulations of Biofertilizers – Approaches and Advances

  • Chapter
  • First Online:

Abstract

The use of microorganisms in agriculture as bioinoculant is a very important practice and a growing need too. In spite of countless research, the rate of success is remarkably low. To get success, there is a need to examine this aspect from various differ angles apart from conventional approaches. This chapter focuses on a few of these aspects of biofertilizer formulations, along with current approaches, and discusses the ideal bioformulation; the present scenario of solid-carrier-based bioformulations; liquid inoculants and their benefits; polymer entrapped formulation and its slow releasing quality; advances in formulations: fluid bed dried bioformulation technique and its scope; forms of mycorrhizal inoculants; bottlenecks which prevent from realization of inoculant potential; major factor for the failure of bioinoculant: rhizocompetence; different forms and their role in the success of bioinoculant, and an outlook for furtherance of biofertilizer formulation. The chapter set sights on the present scenario of biofertilizer formulation, pros and cons of on-hand techniques, and latitude of advancement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aino M, Maekawa Y, Mayama S et al (1997) Biocontrol of bacterial wilt of tomato by producing seedlings colonized with endophytic antagonistic pseudomonads. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth-promoting Rhizobacteria – present status and future prospects. Faculty of Agriculture, Hokkaido University, Sapporo, pp 120–123

    Google Scholar 

  • Akhtar MJ, Asghar HN, Shahzad K et al (2009) Role of plant growth promoting rhizobacteria applied in combination with compost and mineral fertilizers to improve growth and yield of wheat (Triticum aestivum L.). Pak J Bot 41:281–290

    Google Scholar 

  • Albareda M, Rodriguez-Navarro DN, Camacho M et al (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40(11):2771–2779

    Article  CAS  Google Scholar 

  • Ali SM, Hamza MA, Amin G et al (2005) Production of biofertilizers using baker's yeast effluent and their application to wheat and barley grown in north Sinai deserts. Arch Agron Soil Sci 51(6):589–604

    Article  Google Scholar 

  • Alla MHA, Omar SA (2001) Survival of rhizobia or bradyrhizobia and a rock-phosphate-solubilizing fungus Aspergillus niger on various carriers from some agro-industrial wastes and their effects on nodulation and growth of beans and soybean. J Plant Nutr 24:261–272

    Article  Google Scholar 

  • Aparna G, Balasaheb K, Namdeo P (2012) Agroindustry by-products as a carrier resource for plant-growth-promoting rhizobacterium, Bacillus subtilis. J Mater Cycles Waste 14(3):274–280

    Article  Google Scholar 

  • Apte SK, Bhagwat AA (1989) Salinity-stress-induced proteins in two nitrogen fixing Anabaena strains differentially tolerant to salt. J Bacteriol 171:909–915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bagyaraj DJ (1984) Biological interaction with VA mycorrhizal fungi. In: Powell CL, Bagyaraj DJ (eds) VA Mycorrhiza. CRC Press, New York, pp 131–153

    Google Scholar 

  • Bagyaraj DJ, Mehrotra VS, Suresh CK (2002) Vesicular arbuscular mycorrhizal biofertilizer for tropical forest plants. In: Kannaiyan S (ed) Biotechnology of biofertilizers. Narosa publishing House, New Delhi, pp 299–311

    Google Scholar 

  • Bahl N, Jauhri S (1986) Spent mushroom compost as a carrier for bacterial inoculant production. In: Proceedings of the International symposium on scientific and technological aspects of cultivating edible fungi, The Pennsylvania State University, University Park, PA, pp 63–68

    Google Scholar 

  • Bajpai PD, Gupta BF, Bambal IM (1978) Studies on survival of Rhizobium leguminosarum as affected by moisture and temperature conditions. Indian J Agric Res 12:39–43

    Google Scholar 

  • Bashan Y (1998) Inoculants for plant growth promoting bacteria for use in agriculture. Adv Biotechnol 16:729–770

    Article  CAS  Google Scholar 

  • Bashan Y, Carrillo A (1996) Bacterial inoculants for sustainable agriculture. In: Pérez-Moreno J, Ferrera-Cerrato R (eds) New horizons in agriculture: agroecology and sustainable development. Proceedings of the 2nd international symposium on agroecology, sustainable agriculture and education, San Luis Potosi, Mexico Published by Colegio de Postgraduados en ciencias agricolas, Montecillo, Mexico, 16–18 Nov 1994, p 125–155

    Google Scholar 

  • Bashan Y, Gonzalez LE (1999) Long-term survival of the plant-growth-promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Appl Microbiol Biotechnol 51:262–266

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H, Ziv-Vecht O (1987) The fate of field-inoculated Azospirillum brasilense Cd in wheat rhizosphere during the growing season. Can J Microbiol 33:107

    Article  Google Scholar 

  • Bazilah ABI, Sariah M, Abidin MAZ et al (2011) Influence of carrier materials and storage temperature on survivability of Rhizobial inoculants. Asian J Plant Sci 10:331–337

    Article  Google Scholar 

  • Bell A, Hubbard JC, Liu L et al (1998) Effects of chitin and chitosan on the incidence and severity of Fusarium yellows of celery. Plant Dis 82:322–328

    Article  CAS  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685

    Article  CAS  PubMed  Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 62(3):617–631

    Article  Google Scholar 

  • Brahmaprakash GP, Sahu PK (2012) Biofertilizers for sustainability. J Indian Inst Sci 92(1):37–62

    CAS  Google Scholar 

  • Brahmaprakash GP, Girisha HC, Navi V et al (2007) Liquid Rhizobium inoculant formulations to enhance biological nitrogen fixation in food legumes. J Food Legume 20:75–79

    Google Scholar 

  • Chao WL, Alexander M (1984) Mineral soils as carriers for Rhizobium inoculants. Appl Environ Microbiol 47:94–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper AJ (1985) Crop production recirculating nutrient solution. Sci Hort 3:35–38

    Google Scholar 

  • Dayamani KJ (2010) Formulation and determination of effectiveness of liquid inoculants of plant growth promoting rhizobacteria. PhD thesis, University of Agricultural Sciences, Bangalore, India

    Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology- a review. Soil Biol Biochem 36:75–88

    Article  Google Scholar 

  • Dehne HW, Baekhaus GF (1986) The use of vesicular-arbuscular mycorrhizal fungi in plant production. I Inoculum production. J Plant Dis Protect 93(4):415–424

    Google Scholar 

  • Digat B (1991) A new encapsulation technology for bacterial inoculants and seed bacterization. In: Keel C, Koller B, Défago G (eds) Plant growth-promoting rhizobacteria- progress and prospects. IOBC/WPRS Bulletin, Zurich, pp 383–391

    Google Scholar 

  • Diop TA, Piche Y (1990) Long-term outcome of an endomycorrhizal symbiosis under aseptic conditions. In: Wyoming MFA (ed) Innovation and Hierarchical integration. Proceedings of the eighth North American conference on Mycorrhiza, 5–8 Sept 1990, University of Wyoming, p 81

    Google Scholar 

  • Dommergues YR, Diem HG, Divies C (1979) Polyacrylamide entrapped Rhizobium as an inoculant for legumes. Appl Environ Microbiol 37:779–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Douds DD, Gadkar V, Adholeya A (2000) Mass production of VAM fungus biofertilizer. In: Mukerji KG, Chamola BP (eds) Mycorrhizal biology. Kluwer Academic Publishers, New York, pp 197–215

    Chapter  Google Scholar 

  • Dube JN, Mahere DP, Bawat AF (1980) Development of coal as a carrier for rhizobial inoculants. Sci Cult 46:304

    Google Scholar 

  • Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    CAS  PubMed  PubMed Central  Google Scholar 

  • El Shafie AE, El Hussein AA (1991) An evaluation of Rhizobium survival in two carriers new to Sudan. Exp Agric 27:319–321

    Article  Google Scholar 

  • Fages J (1990) An optimized process for manufacturing an Azospirillum inoculant for crops. Appl Microbiol Biotechnol 32:473–478

    Article  CAS  Google Scholar 

  • Fages J (1992) An industrial view of Azospirillum inoculants: formulation and application technology. Symbiosis 13:15–26

    Google Scholar 

  • Figuiredo MD, Stamford NP, Vilar JJ et al (1995) Effectiveness of Bradyrhizobium sp. inoculants on different substrates. Revistade Microbiol 26(3):160–164

    Google Scholar 

  • Fravel DR, Marois JJ, Lumsden RD et al (1985) Encapsulation of potential biocontrol agents in an alginate-clay matrix. Phytopathology 75:774–777

    Article  Google Scholar 

  • Gandhi A, Saravanakumar K (2009) Studies on shelf life of Azospirillum lipoferum, Bacillus megaterium and Pseudomonas fluorescens in vermicompost carrier. J Phytol 1(2):100–107

    Google Scholar 

  • Ganry F, Diem HG, Dommergues YR (1982) Effect of inoculation with Glomus mosseae on nitrogen fixation by field grown soybeans. Plant Soil 68:321–329

    Article  CAS  Google Scholar 

  • Garbaye L (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Girisha HC, Brahmaprakash GP, Mallesha BC (2006) Effect of osmoprotectant (PVP-40) on survival of Rhizobium in different inoculants formulation and nitrogen fixation in cowpea. Geobios 33:151–156

    Google Scholar 

  • Glaser B (2007) Prehistorically modified soils of central Amazonia, a model for sustainable agriculture in the twenty-first century. Philos Trans R Soc B 362:187–196

    Article  CAS  Google Scholar 

  • Hale L, Luth M, Kenney R et al (2014) Evaluation of pinewood biochar as a carrier of bacterial strain Enterobacter cloacae UW5 for soil inoculation. Appl Soil Ecol 84:192–199

    Article  Google Scholar 

  • Hegde SV, Brahmaprakash GP (1992) A dry granular inoculant of Rhizobium for soil application. Plant Soil 144(2):309–311

    Article  Google Scholar 

  • Hitbold AE, Thurlow N, Skipper HD (1980) Evaluation of commercial soybean inoculants by various techniques. Agron J 72:675–681

    Article  Google Scholar 

  • Ho WC, Ko WH (1985) Soil microbiostasis: effects of environmental and edaphic factors. Soil Biol Biochem 17:167–170

    Article  Google Scholar 

  • Hua SST (1990) Prospects for axenic growth and feasibility of genetic modification of vesicular-arbuscular mycorrhizal (VAM) fungi. In: Wyoming MFA (ed) Innovation and Hierarchical integration. Proceedings of the Eighth North American conference on Mycorrhiza, 5–8 Sept 1990, University of Wyoming, p 145

    Google Scholar 

  • Huber DM, El-Nasshar L, Moore HW et al (1989) Interaction between a peat carrier and bacterial seed treatments evaluated for biological control of the take –all diseases of wheat (Triticum aestivum L.). Biol Fertil Soils 8:166–171

    Article  Google Scholar 

  • Hung LLL, Sylvia DM (1988) Production of Vesicular-Arbuscular Mycorrhizal Fungus Inoculum in Aeroponic Culture. Appl Environ Microbiol 54(2):353–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iswaran V (1972) Growth and survival of Rhizobium trifoli in coir dust and soybean meal compost. Madras Agric J 59:52–53

    Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  • Jousset A, Lara E, Wall LG et al (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol 72:7083–7090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung G, Mugnier J, Diem HG et al (1982) Polymer entrapped Rhizobium as an inoculant for legume. Plant Soil 65:219–231

    Article  CAS  Google Scholar 

  • Kandaswamy R, Prasad N (1971) Lignite as a carrier of rhizobia. Curr Sci 40:496

    Google Scholar 

  • Keyser HH, Somasegaran P, Bohlool BB (1993) Rhizobial ecology and technology. In: Metting Jr FB (ed) Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker Inc NY, pp 205–226

    Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005) Biological control of late leaf spot of peanut (Arachis hypogea L.) with chitinolytic bacteria. Phytopathology 95:1157–1165

    Article  CAS  PubMed  Google Scholar 

  • Kitamikado M, Yamaguchi K, Tseng CH et al (1990) Methods designed to detect alginate-degrading bacteria. Appl Environ Microbiol 56:2939–2940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar Rao JVDK, Mohankumar KC, Patil RB (1983) Alternative carrier materials for Rhizobium inoculant production. Mysore Agric J 17(13):252–255

    Google Scholar 

  • Le Tacon F, Jung G, Mugnier J et al (1985) Efficiency in a forest nursery of an ectomycorrhizal fungus inoculum produced in a fermentor and entrapped in polymeric gels. Can J Bot 63:1664–1668

    Article  Google Scholar 

  • Lewis JA, Papavizas GC (1985) Characteristics of alginate pellets formulated with Trichoderma and Gliocladium and their effect on the proliferation of the fungi in the soil. Plant Pathol 34:571–577

    Article  Google Scholar 

  • Li CY, Huang LL (1987) Nitrogen fixing (acetylene reducing) bacteria associated with ectomycorrhizae of Douglas -fir. Plant Soil 98:425–428

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lupwayi NZ, Olsen PE, Sonde ES et al (2000) Inoculant quality and its evaluation. Field Crops Res 65:259–270

    Article  Google Scholar 

  • Madhok MR (1934) The use of soil as a medium for distributing legume organism culture to cultivators. Agric Livestock India 4:670–682

    CAS  Google Scholar 

  • Mishra BK, Dahich SK (2010) Methodology of nitrogen biofertilizer production. J Adv Dev Res 1:3–6

    Article  Google Scholar 

  • Moënne-Loccoz Y, Powell J, Higgins P et al (1998) Effect of the biocontrol agent Pseudomonas fluorescens F113 released as sugarbeet inoculant on the nutrient contents of soil and foliage of a red clover rotation crop. Biol Fertil Soils 27:380–385

    Article  Google Scholar 

  • Mugnier J, Jung G (1985) Survival of bacteria and fungi in relation to water activity and the solvent properties of water in biopolymer gels. Appl Environ Microbiol 50:108–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munchbach M, Nocker A, Narberhaus F (1999) Multiple small heat shock proteins in rhizobia. J Bacteriol 181:83–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muresu R, Sulas L, Caredda S (2003) Legume—Rhizobium symbiosis: characteristics and prospects of inoculation. Rivoluzione Agronomica 37:33–45

    Google Scholar 

  • Nandakumar R, Babu S, Viswanathan R (2001) A new bioformulation containing plant growth promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in rice. Biocontrol 46:493–510

    Article  Google Scholar 

  • Napamornbodi O, Rajanasiriwong W, Thamsurakul S (1988) Production of VAM fungi, Glomus intraradices and G. mosseae in tissue culture. In: Mycorrhiza for green Asia. University of Madras, Tamil Nadu, pp 351–376

    Google Scholar 

  • Nopcharoenkul W, Pinphanichakarn P, Pinyakong O (2011) The development of a liquid formulation of Pseudoxanthomonas sp. RN402 and its application in the treatment of pyrene-contaminated soil. J Appl Microbiol 111:36–47

    Article  CAS  PubMed  Google Scholar 

  • Olsen PE, Rice WA, Bordeleau LM et al (1994) Analysis and regulation of legume inoculants in Canada: the need for an increase in standards. Plant Soil 161:127–134

    Article  Google Scholar 

  • Pandya U, Saraf M (2010) Application of fungi as a biocontrol agent and their biofertilizer potential in agriculture. J Adv Dev Res 1(1):90–99

    Google Scholar 

  • Patil N, Gaikwad P, Shinde S et al (2012) Liquid formulations of Acetobacter diazotrophicus L1 and Herbaspirillum seropedicae J24 and their field trials on wheat. Int J Environ Sci 3(3):1116–1129

    Google Scholar 

  • Rovira AD (1956) A study of the development of the root surface microflora during the initial stages of plant growth. J Appl Bacteriol 19:72–79

    Article  Google Scholar 

  • Sadasivam KV, Tyagi RK, Ramarethinam S (1986) Evaluation of some agricultural wastes as carriers for bacterial inoculants. Agric Wastes 17:301–306

    Article  Google Scholar 

  • Saha AK, Deshpande MV, Kapadnis BP (2001) Studies on survival of Rhizobium in the carriers at different temperature using green fluorescent protein marker. Curr Sci 80(5):69–671

    Google Scholar 

  • Sahu PK (2012) Development of Fluid Bed Dried (FBD) inoculant formulation of consortium of agriculturally important microorganisms (AIM). M.Sc. thesis, University of Agricultural Sciences, Bangalore, India

    Google Scholar 

  • Sahu PK, Lavanya G, Brahmaprakash GP (2013) fluid bed dried microbial inoculants formulation with improved survival and reduced contamination level. J Soil Biol Ecol 33(1–2):81–94

    Google Scholar 

  • Saranya K, Santhana Krishnan P, Kumutha K et al (2011) Biochar as an alternate carrier to lignite for the preparation of biofertilizers in India. Int J Curr Res 3(5):009–013

    Google Scholar 

  • Saxena D, Mohammed A, Khanna S (1996) Modulation of protein profiles in Rhizobium sp under salt stress. Can J Microbiol 42:617–620

    Article  CAS  Google Scholar 

  • Sekar KR, Karmegam N (2010) Earthworm casts as an alternate carrier material for biofertilizers: Assessment of endurance and viability of Azotobacter chroococcum, Bacillus megaterium and Rhizobium leguminosarum. Sci Hort 124(2):286–289

    Article  Google Scholar 

  • Shanmugam V, Kanoujia N, Singh M et al (2011) Biocontrol of vascular wilt and corm rot of gladiolus caused by Fusarium oxysporum f. sp. gladioli using plant growth promoting rhizobacterial mixture. Crop Prot 30(7):807–813

    Article  Google Scholar 

  • Shariati S, Alikhani HA, Pourbabaei A (2013) Application of vermicompost as a carrier of phosphate solubilizing bacteria (Pseudomonas fluorescens) in increase growth parameters of maize. Int J Agron Plant Prod 4(8):2010–2017

    Google Scholar 

  • Sharma CR, Verma V (1979) Performance of lignite based carrier on survival of Rhizobium. Sci Cult 45:493–495

    Google Scholar 

  • Sharma MVRK, Saharan K, Prakash A et al (2009) Application of fluorescent pseudomonads inoculant formulation on Vigna mungo through field trials. Int J Bio Life Sci 1:1–4

    CAS  Google Scholar 

  • Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR Proceeding 109e, Australian Centre for International Agricultural Research, Canberra, Australia, pp 52–66

    Google Scholar 

  • Sivasakthivelan P, Saranraj P (2013) Azospirillum and its formulations: a review. Int J Microbiol Res 4(3):275–287

    Google Scholar 

  • Smith RS (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492

    Article  Google Scholar 

  • Smith RS (1995) Inoculant formulations and applications to meet changing needs. In: Tikhonovich IA, Provorov NA, Romanov VI, Newton WE (eds) Nitrogen fixation: fundamentals and applications. Kluwer Academic Publishers, Dordrecht, pp 653–657

    Chapter  Google Scholar 

  • Sougoufara B, Diem HG, Dommergues YR (1989) Response of field -grown Casuarina equisetifolia to inoculation with Frankia strain ORS 021001 entrapped in alginate beads. Plant Soil 118:133–137

    Article  Google Scholar 

  • Sparrow SD, Ham GE (1983) Survival of Rhizobium phaseoli in six carrier materials. J Agron 75:181–184

    Article  Google Scholar 

  • Sreenivasa MN, Bagyaraj DJ (1987) Selection of a suitable substrate for mass multiplication of Glomus fasciculatum. In: Verma AK, Oka AK, Mukerji KG, Tilak KVBR, Janak Raj (eds) Mycorrhiza round table: Proceedings of a workshop. JNU-IDRC, Canada sponsored national workshop on Mycorrhizae, New Delhi, India, 13–15 March 1987, pp 592–599

    Google Scholar 

  • Sridhar V, Brahmaprakash GP, Hegde SV (2004) Development of a liquid inoculant using osmoprotectants for Phosphate solubilizing bacteria. Karnataka J Agric Sci 17:251–257

    Google Scholar 

  • Srivastava S, Mishra G (2010) Fluid bed technology: overview and parameters for process selection. Int J Pharm Sci Drug Res 2(4):236–246

    Google Scholar 

  • Stella D, Sivasakthivelan P (2009) Effect of different organic amendments addition into Azospirillum bioinoculant with lignite as carrier material. Bot Res Int 2:229–232

    Google Scholar 

  • Tittabutr P, Payakapong W, Teaumroong N et al (2007) Growth, survival and field performance of bradyrhizobial liquid inoculant formulations with polymeric additives. Sci Asia 33:69–77

    Article  CAS  Google Scholar 

  • Validov S (2007) Biocontrol of tomato foot and root rot by Pseudomonas bacteria in stonewool. PhD thesis. Leiden University

    Google Scholar 

  • Van Elsas JD, Heijnen CE (1990) Methods for the introduction of bacteria into soil: a review. Biol Fertil Soils 10:127–133

    Article  Google Scholar 

  • Velineni S, Brahmaprakash GP (2011) Survival and phosphate solubilizing ability of Bacillus megaterium in liquid inoculants under high temperature and desiccation stress. J Agric Sci Tech 13:795–802

    CAS  Google Scholar 

  • Vithal Navi (2004) Development of Liquid Inoculant Formulations for Bradyrhizobium sp. (Arachis), Azospirillum lipoferum and Azotobacter chroococcum. PhD thesis, University of Agricultural Sciences, Bangalore

    Google Scholar 

  • Walter JF, Paau AS (1993) Microbial inoculant production and formulation. In: Metting Jr FB (ed) Soil microbial ecology. Marcel Dekker Inc, New York, pp 579–594

    Google Scholar 

  • Wani SP, Lee KK (1991) Role of biofertilizers in upland crop production. In: Tandon HLS (ed) Fertilizers of organic manures. Recycle waste and biofertilizers. Fertilizer development and Consultaion Organization, New Delhi, pp 91–112

    Google Scholar 

  • Warren GP, Robinson JS, Someus E (2009) Dissolution of phosphorus from animal bone char in 12 soils. Nutr Cycl Agroecosyst 84:167–178

    Article  Google Scholar 

  • Wu SC, Cao ZH, Li ZG et al (2005) Effects of biofertilizer containing N-fixer, P and K solubilizer and AM fungi on maize growth: a greenhouse trial. Geoderma 125(1–2):155–166

    Article  Google Scholar 

  • Xavier IJ, Holloway G, Leggett M (2004) Development of rhizobial inoculant formulations. In: Proceedings of the great plains inoculant forum. Plant Management Network, Saskatoon, Saskatchewan

    Google Scholar 

  • Yadav AK (2009) Glimpses of fertilizer (Control) order, 1985 for biofertilizers (amendment, November 2009), National center for organic farming, Department of Agriculture and cooperation, Government of India. Biofertilizer News 17(2):11–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. K. Sahu or G. P. Brahmaprakash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Sahu, P.K., Brahmaprakash, G.P. (2016). Formulations of Biofertilizers – Approaches and Advances. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2644-4_12

Download citation

Publish with us

Policies and ethics