Skip to main content

Organic Acids in the Rhizosphere: Their Role in Phosphate Dissolution

  • Chapter
  • First Online:
Microbial Inoculants in Sustainable Agricultural Productivity

Abstract

Phosphorus is an essential plant nutrient that is made available to plants primarily from the soil phosphorus reserves. But its limited mobility in the soil and high fixation capabilities within in the soil matrix necessitate the use of fertilizer forms of phosphorus, which are again prone to fixation, thereby reducing the availability of this crucial element for plant nutrition. Soil microbes play a crucial role in mobilizing various forms of phosphorus (inorganic and organic) and making them available for plant nutrition. Microbe-mediated phosphorus mobilizing processes involve either organic acids that solubilize the inorganic forms of phosphorus or enzymes that mobilize the organic sources of phosphorus. The organic acids that play a crucial role in the dissolution of phosphates can be of plant and microbial origins and vary in their nature and properties depending on the soil, plant, and microbial species involved. Besides playing a crucial role in P cycling, they also perform assorted functions that have a direct bearing on the plant growth and development. This chapter attempts to capture the information on the nature, properties, and functions of organic acids in the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ae N, Arihara J, Okada K et al (1990) Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent. Science 248:477–480

    Article  CAS  PubMed  Google Scholar 

  • Alam S, Khalil S, Ayub N et al (2002) In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganism (PSM) from maize rhizosphere. Intl J Agric Biol 4:454–458

    CAS  Google Scholar 

  • Archana G, Buch A, Kumar GN (2012) Pivotal role of organic acid secretion by rhizobacteria in plant growth promotion. In: Satyanarayana T (ed) Microorganisms in sustainable agriculture and biotechnology. Springer, Dordrecht, pp 35–53

    Chapter  Google Scholar 

  • Asao T, Hasegawa K, Sueda Y et al (2003) Autotoxicity of root exudates from taro. Sci Hort 97:389–396

    Article  CAS  Google Scholar 

  • Bais HP, Walker TS, Schweizer HP et al (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 40:983–995

    Article  CAS  Google Scholar 

  • Banik S, Dey BK (1982) Available phosphate content of an alluvial soil is influenced by inoculation of some isolated phosphate solubilizing microorganisms. Plant Soil 69:353–364

    Article  CAS  Google Scholar 

  • Baziramakenga R, Simard RR, Leroux GD (1995) Determination of organic acids in soil extracts by ion chromatography. Soil Biol Biochem 27:349–356

    Article  CAS  Google Scholar 

  • Bergelin PA, Van Hees W, Wahlberg O et al (2000) The acid–base properties of high and low molecular weight organic acids in soil solutions of podzolic soils. Geoderma 94:223–235

    Article  CAS  Google Scholar 

  • Bergman J (1999) ATP: the perfect energy currency for the cell. Creation Res Soc Quart 36:2–9

    Google Scholar 

  • Bohn HL, Myer RA, O’Connor GA (2002) Soil chemistry. Wiley, USA

    Google Scholar 

  • Bolan NS, Naidu R, Mahimairaja S et al (1994) Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biol Fertil Soils 18:311–319

    Article  CAS  Google Scholar 

  • Boutler D, Jeremy JJ, Wilding M (1966) Amino acids liberated into the culture medium by pea seedling roots. Plant Soil 24:121–127

    Article  Google Scholar 

  • Van Breeman N, Driscoll CT, Mulder J (1984) Acidic deposition and internal proton sources in acidification of soils and waters. Nature 307:599–604

    Article  Google Scholar 

  • Busman L, Lamb J, Randall G, Rehm G, Schmitt M (2002) Phosphorus in the agricultural environment: the nature phosphorus in soils. University of Minnesota, Minneapolis

    Google Scholar 

  • Busman L, Lamb J, Randall G et al (2009) The nature of phosphorus in soils. University of Minnesota–Extension. WW-06795-GO

    Google Scholar 

  • Chen Y, Barak P (1982) Iron nutrition of plants in calcareous soils. Adv Agron 35:217–240

    Article  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB et al (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Condron LM, Turner BL, Cade-Menun BJ (2005) Chemistry and dynamics of soil organic phosphorus. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Inc., Madison, pp 87–121

    Google Scholar 

  • Cordell D, White S (2011) Peak phosphorus: clarifying the key issues of a vigorous debate about long term phosphorus security. Sustainability 3:2027–2049

    Article  Google Scholar 

  • Dibb DW, Fixen PE, Murphy LS (1990) Balanced fertilization with particular reference to phosphates: interaction of phosphorus with other inputs and management practices. Fertil Res 26:29–52

    Article  CAS  Google Scholar 

  • Dinkelaker B, Marschner H (1992) In vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plants. Plant Soil 144:199–205

    Article  CAS  Google Scholar 

  • Drever JI, Stillings LL (1997) The role of organic acids in mineral weathering. Colloids Surf A 120:167–181

    Article  CAS  Google Scholar 

  • Duff SMG, Sarath G, Plaxton WC (1994) The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant 90:791–800

    Article  CAS  Google Scholar 

  • Fox TR, Comerford NB (1990) Low-molecular weight organic acids in selected forest soils of the southeastern USA. Soil Sci Soc Am J 54:1139–1144

    Article  CAS  Google Scholar 

  • Fries N, Forsman B (1951) Quantitative determination of certain nucleic acid derivatives in pea root exudate. Physiol Plant 4:210–234

    Google Scholar 

  • Gagnon H, Ibrahim RK (1998) Aldonic acids: a novel family of nod gene inducers of Mesorhizobium loti, Rhizobium lupini and Sinorhizobium meliloti. Mol Plant Microbe Interact 11:988–998

    Article  CAS  Google Scholar 

  • Gardner LR (1990) Geochemical analysis of silicate rocks and soils using pressed powders and a two-stage calibration procedure. Chem Geol 88:169–182

    Article  CAS  Google Scholar 

  • Gardner WK, Barber DA, Parberry DG (1983) The acquisition of phosphorus by Lupinus albus L. 111. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant Soil 70:107–124

    Article  CAS  Google Scholar 

  • Gilbert GA, Knight JD, Allan DL et al (1999) Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant Cell Environ 22:801–810

    Article  CAS  Google Scholar 

  • Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol Agric Hortic 12:185–193

    Article  Google Scholar 

  • Goldstein AH (1996) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by Gram-negative bacteria. In: Gorini AT, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Goldstein AH, Rogers RD, Mead G (1993) Mining with microbes – separating phosphate from ores via bioprocessing. Biotechnology 11:1250–1254

    CAS  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Article  Google Scholar 

  • Gulati A, Vyas P, Rahi P et al (2009) Plant growth promoting and rhizosphere competent Acinetobacter rhizosphere strain BIHB 723 from the cold deserts of Himalayas. Curr Microbiol 58:371–377

    Article  CAS  PubMed  Google Scholar 

  • Gyaneshwar P, Kumar N, Parekh G et al (1998) Effect of buffering on the phosphate solubilizing ability of microorganisms. World J Microbiol Biotechnol 14:669–673

    Article  CAS  Google Scholar 

  • Halder AK, Chakrabartty PK (1993) Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38:325–330

    Article  CAS  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharyya P et al (1990) Solubilization of rock phosphate by Rhizhobium and Bradyrhizobium. J Gen Appl Microbiol 36:81–92

    Article  CAS  Google Scholar 

  • Halvorson JJ, Gonzalez JM, Hagerman AE et al (2009) Sorption of tannin and related phenolic compounds and effects on soluble-N in soil. Soil Biol Biochem 41:2002–2010

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hoffland E, Van Den Boogaard R, Nelemans J et al (1992) Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants. New Phytol 122:675–680

    Article  CAS  Google Scholar 

  • Illmer PA, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Iyamuremye F, Dick RP (1996) Organic amendments and phosphorus sorption by soils. Adv Agron 56:139–185

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247–257

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA et al (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi–current perspective. Arch Agron Soil Sci 56:73–98

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87

    Article  CAS  Google Scholar 

  • Krzyszowska AJ, Blaylock MJ, Vance GF et al (1996) Ion-chromatographic analysis of low molecular weight organic acids in spodosol forest floor solutions. Soil Sci Soc Am J 60:1565–1571

    Article  CAS  Google Scholar 

  • Kucey RMN, Janzen HH, Legget ME (1989) Microbial mediated increases in plant available phosphorus. Adv Agron 42:199–228

    Article  CAS  Google Scholar 

  • Lan M, Comerford NB, Fox TR (1995) Organic anions effect on phosphorus release from spodic horizons. Soil Sci Soc Am J 59:1745–1749

    Article  CAS  Google Scholar 

  • Liao YC, Chien SWC, Wang MC et al (2006) Effect of transpiration on Pb uptake by lettuce and on water soluble low molecular weight organic acids in rhizosphere. Chemosphere 65:343–351

    Article  CAS  PubMed  Google Scholar 

  • Lima DLD, Santos SM, Scherer HW et al (2009) Effects of organic and inorganic amendments on soil organic matter properties. Geoderma 150:38–45

    Article  CAS  Google Scholar 

  • Lin TF, Huang HI, Shen FT et al (2006) The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174. Bioresour Technol 97:957–960

    Article  CAS  PubMed  Google Scholar 

  • Lipton DS, Blanchar RW, Blevins DG (1987) Citrate, malate, and succinate concentration in exudates from P-sufficient and P stressed Medicago sativa L. seedlings. Plant Physiol 85:315–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ST, Lee LY, Tai CY et al (1992) Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. J Bacteriol 174:5814–5819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lodish H, Berk A, Zipursky SL et al (2000) Molecular cell biology, 4th edn. W.H. Freeman, New York

    Google Scholar 

  • Mahdi SS, Hassan GI, Hussain A et al (2011) Phosphorus availability issue – its fixation and role of phosphate solubilizing bacteria in phosphate solubilization. Res J Agric Sci 2:174–179

    Google Scholar 

  • Maliha R, Samina K, Najma A et al (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak J Biol Sci 7:187–196

    Article  Google Scholar 

  • Mandal S (2001) Allelopathic activity of root exudates from Leonurus sibiricus L. (Raktodrone). Weed Biol Manage 1:170–175

    Article  Google Scholar 

  • Marra LM, Soares CRFSS, de Oliveira SM et al (2012) Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant Soil 357:289–307

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Gulf Professional Publishing, London

    Google Scholar 

  • Medvedeva MV, Yakovlev AS (2011) Changes in the biochemical characteristics of soils in the impact zone of the Kostomuksha ore dressing enterprise. Eurasian Soil Sci 44:211–216

    Article  CAS  Google Scholar 

  • Mullen MD (2005) Phosphorus in soils: biological interactions. Encycl Soils Environ 3:210–215

    Article  Google Scholar 

  • Nambu K, Van Hees PAW, Essen SA et al (2005) Assessing centrifugation technique for obtaining soil solution with respect to leaching of low molecular mass organic acids from pine roots. Geoderma 127:263–269

    Article  CAS  Google Scholar 

  • Ohwaki Y, Hirata H (1992) Differences in carboxylic acid exudation among P-starved leguminous crops in relation to carboxylic acid contents in plant tissues and phospholipid level in roots. Soil Sci Plant Nutr 38:235–243

    Article  CAS  Google Scholar 

  • Parker DR, Pedler JF (1998) Probing the ‘malate hypothesis’ of differential aluminium tolerance in wheat by using other rhizotoxic ions as proxies for Al. Planta 205:389–396

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Rovira AD (1969) Plant root exudates. Bot Rev 35:35–57

    Article  CAS  Google Scholar 

  • Rovira AD, Harris JR (1961) Plant root excretions in relation to the rhizosphere effect. V. The exudation of B-group vitamins. Plant Soil 14:199–214

    Article  CAS  Google Scholar 

  • Rovira AD, McDougall BM (1967) Microbiological and biochemical aspects of the rhizosphere. In: McLaren AD, Peterson GH (eds) Soil biochemistry, vol 1. Marcel Dekker, New York, pp 417–463

    Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  CAS  PubMed  Google Scholar 

  • Sanchez PA, Uehara G (1980) Management considerations for acid soils with high phosphorus fixation capacity. In: Khasawneh FE, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture. American Society of Agronomy, Madison, pp 263–310

    Google Scholar 

  • Sandnes A, Toril DE, Wollebæk G (2005) Organic acids in root exudates and soil solution of Norway spruce and silver birch. Soil Biol Biochem 37:259–269

    Article  CAS  Google Scholar 

  • Scervino JM, Mesa MP, Mo’nica ID et al (2010) Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol Fertil Soil 46:755–763

    Article  CAS  Google Scholar 

  • Schachtman DP, Robert J, Reid ASM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27:1129–1135

    Article  CAS  Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Venugopalan P, Bisht JK, Bhatt JC, Gupta HS (2013) Rock phosphate solubilization by psychrotolerant Pseudomonads and their effect on lentil growth and nutrient uptake under polyhouse conditions. Ann Microbiol 63:1353–1362

    Article  CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH et al (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587–601

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharpley A, Jarvie HP, Buda A et al (2013) Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment. J Environ Qual 42:1308–1326

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Chen J, Wang Z et al (2006) Root plasma membrane H+-ATPase is involved in the adaptation of soybean to phosphorus starvation. J Exp Bot 57:1353–1362

    Article  CAS  PubMed  Google Scholar 

  • Smith WH (1969) Release of organic materials from the roots of tree seedlings. For Sci 15:138–143

    CAS  Google Scholar 

  • Smith WH (1976) Character and significance of forest tree root exudates. Ecology 57:325–331

    Google Scholar 

  • Sperber JI (1957) Solubilization of mineral phosphate by soil bacteria. Nature 180:994

    Article  CAS  PubMed  Google Scholar 

  • Stevenson FJ (1967) Organic acids in soil. In: McLaren AD, Peterson GH (eds) Soil biochemistry, vol 1. Marcel Dekker, New York, pp 119–146

    Google Scholar 

  • Stevenson FJ, Vance GF (1989) Naturally occurring aluminium – organic complexes. In: Sposito G (ed) The environmental chemistry of Aluminium. CRC Press, Boca Raton, pp 117–146

    Google Scholar 

  • Strobel BW (2001) Influence of vegetation on low-molecular weight carboxylic acids in soil solution – a review. Geoderma 99:169–198

    Article  CAS  Google Scholar 

  • Ström L (1997) Root exudation of organic acids: importance to nutrient availability and the calcifuge and calcicole behaviour of plants. Oikos 80:459–466

    Article  Google Scholar 

  • Ström L, Olsson T, Tyler G (1994) Differences between calcifuges and acidifuge plants in root exudation of low molecular organic acids. Plant Soil 167:239–245

    Article  Google Scholar 

  • Trivedi P, Sa T (2008) Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at lower temperatures. Curr Microbiol 56:140–144

    Article  CAS  PubMed  Google Scholar 

  • Turner BL, Papházy MJ, Haygarth PM et al (2002) Inositol phosphates in the environment. Philos Trans R Soc Lond B Biol Sci 357:449–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyler G, Ström L (1995) Differing organic-acid exudation pattern explains calcifuge and acidifuge behavior of plants. Ann Bot 75:75–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida R, Hue NV (2000) Soil acidity and liming. In: Silva JA, Uchida RS (eds) Plant nutrient management in Hawaii’s soils. College of Tropical Agriculture and Human Resources, University of Hawaii, Manoa, pp 101–112

    Google Scholar 

  • Van Hees PAW, Jones DL, Godbold DL (2002) Biodegradation of low molecular weight organic acids in coniferous forest podzolic soil. Soil Biol Biochem 34:1261–1272

    Article  Google Scholar 

  • Van Kauwenbergh SJ (2010) World phosphate rock reserves and resources. IFDC Technical Bulletin No. 75. Muscle Shoals, Alabama, USA, 58 pp

    Google Scholar 

  • Vancura V (1964) Root exudates of plants. I. Analysis of root exudates of barley and wheat in their initial phases of growth. Plant Soil 21:231–248

    Article  Google Scholar 

  • Vancura V, Hovadik A (1965) Root exudates of plants. II. Composition of root exudates of some vegetables. Plant Soil 22:21–32

    Article  CAS  Google Scholar 

  • Weil RR, Brady NC (2002) Elements of the nature and properties of soil. Prentice Hall, Upper Saddle River

    Google Scholar 

  • West PM (1939) Excretion of thiamine and biotin by the roots of higher plants. Nature 144:1050–1051

    Article  CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69:99–151

    Article  CAS  Google Scholar 

  • Wild A (1988) Soil acidity and alkalinity. In: Wild A (ed) Russell’s soil conditions and plant growth. Longman, Harlow, pp 844–889

    Google Scholar 

  • Yadav BK, Verma A (2012) Phosphate solubilization and mobilization in soil through microorganisms under arid ecosystems. INTECH Open Access Publisher, Crotaia, pp 93–108

    Google Scholar 

  • Yahya A, Azawi SKA (1998) Occurrence of phosphate solubilizing bacteria in some Iranian soils. Plant Soil 117:135–141

    Article  Google Scholar 

Download references

Acknowledgments

Chandandeep Kaur, was supported by a grant from the Department of Science and Technology, Ministry of Science and Technology, Government of India, under the WOS-A scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Selvakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Kaur, C., Selvakumar, G., Ganeshamurthy, A.N. (2016). Organic Acids in the Rhizosphere: Their Role in Phosphate Dissolution. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2644-4_11

Download citation

Publish with us

Policies and ethics