Skip to main content

Soil Microbes: The Invisible Managers of Soil Fertility

  • Chapter
  • First Online:
Book cover Microbial Inoculants in Sustainable Agricultural Productivity

Abstract

Soil health is represented by its continuous capacity to function as a vital living system. Since soil health is the major driving factor for sustainable agriculture, it has to be preserved. Microorganisms are an essential and integral part of living soil influencing various biogeochemical cycles on major nutrients such as carbon, nitrogen, sulphur, phosphorous and other minerals and play superior role in maintaining soil health than other biological component of soil. They also have the capacity to suppress soil borne pathogens and indirectly help in agricultural productivity. Besides contribution of specific microbes to soil health by participating on nutrient cycles, certain other microbes directly/indirectly promote plant growth through the production of phytohormones, enzymes and by suppressing phytopathogens and insects. The vast functional and genetic diversity of microbial groups including bacteria, fungi and actinomycetes supports in all the above ways for soil health. This book chapter gives an outline of such microbes and their contribution in promoting soil health and its role as soil health indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abawi GS, Widmer TL (2000) Impact of soil health management practices on soil borne pathogens, nematodes and root diseases of vegetable crops. Appl Soil Ecol 15(1):37–47

    Article  Google Scholar 

  • Abd-Alla MH (1994) Solubilization of rock phosphates by Rhizobium and Bradyrhizobium. Folia Microbiol 39:53–56

    Article  CAS  Google Scholar 

  • Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54(5–6):309–320

    Article  CAS  Google Scholar 

  • Arias ME, González-Pérez JA, González-Vila FJ, Ball AS (2005) Soil health – a new challenge for microbiologists and chemists. Int Microbiol 8:13–21

    CAS  PubMed  Google Scholar 

  • Arinze AE, Yubedee AG (2000) Effect of fungicides on Fusarium grain rot and enzyme production in maize (Zea mays L.). Glob J Appl Sci 6:629–634

    Google Scholar 

  • Atlas RM, Pramer D, Bartha R (1978) Assessment of pesticide effects on non-target soil microorganisms. Soil Biol Biochem 10:231–239

    Article  CAS  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Baldrian P (2006) Fungal laccases e occurrence and properties. FEMS Microbol Rev 30:215–242

    Article  CAS  Google Scholar 

  • Baldrian P, Merhautová V, Cajthaml T, Petránková M, Šnajdr J (2010) Small-scale distribution of extracellular enzymes, fungal, and bacterial biomass in Quercus petraea forest topsoil. Biol Fertil Soils 46:717–726

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE, (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth – a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Belnap J (2003) Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer-Verlag, Berlin, pp 241–261

    Chapter  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bloem J, de Ruiter P, Bouwman LA (1997) Soil food webs and nutrient cycling in agro-ecosystems. In: van Elsas JD, Trevors JT, Wellington HME (eds) Modern soil microbiology. Marcel Dekker, New York, pp 245–278

    Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Bohlool BB, Ladha JK, Garrity DP, George T (1992) Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 141:1–11

    Article  CAS  Google Scholar 

  • Burns RG, Dick RP (2002) Enzymes in the environment. Marcel Dekker, New York

    Book  Google Scholar 

  • Buscot F, Varma A (2005) Microorganisms in soils: roles in genesis and functions. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330:192–196

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Zhang Z, Ling N, Yuan Y, Zheng Z, Shen B, Shen Q (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils 47:495–506

    Article  CAS  Google Scholar 

  • Chistoserdova L, Vorholt JA, Lidstrom ME (2005) A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol 6:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Das SK, Varma A (2011) Role of enzymes in maintaining soil health. In: Shukla G, Varma A (eds) Soil enzymology, Soil biology 22. Springer, Berlin, Heidelberg, pp 25–42

    Google Scholar 

  • Doran JW, Safley M (1997) Defining and assessing soil health and sustainable productivity. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, pp 1–28

    Google Scholar 

  • Durán J, Morse JL, Groffman PM, Campbell JL, Christenson LM, Driscoll CT, Fahey TJ, Fisk MC, Mitchell MJ, Templer PH (2014) Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests. Glob Change Biol 20(11):3568–3577

    Article  Google Scholar 

  • El-Tarabily KA, Soliman MH, Nassar AH, Al-Hassani HA, Sivasithamparam K, McKenna F, Hardy GESJ (2000) Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol 49:573–583

    Article  Google Scholar 

  • Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73(21):7059–7066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Gianinazzi S, Schüepp H (1994) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel

    Book  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica Article ID 963401. doi:http://dx.doi.org/10.6064/2012/963401

    Google Scholar 

  • Gopalakrishnan S, Humayun P, Kiran BK, Kannan IGK, Vidhya MS, Deepthi K, Rupela O (2011a) Evaluation of bacteria isolated from rice rhizosphere for biological control of sorghum caused by M. phaseolina. World J Microbiol Biotechnol 27(6):1313–1321

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Pande S, Sharma M, Humayun P, Kiran BK, Sandeep D, Vidya MS, Deepthi K, Rupela O (2011b) Evaluation of actinomycete isolates obtained from herbal vermicompost for biological control of Fusarium wilt of chickpea. Crop Prot 30:1070–1078

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Apparla S, Bandikinda P, Vijayabharathi R, Bhimineni RK, Rupela O (2013) Evaluation of Streptomyces spp. for their plant-growth-promotion traits in rice. Can J Microbiol 59:534–539

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L (2014a) Plant growth promoting rhizobia: Challenges and opportunities. 3 Biotech DOI: 10.1007/s13205-014-0241-x.

    Google Scholar 

  • Gopalakrishnan S, Srinivas V, Sathya A, Vijayabharathi R, Alekhya G, Vidya MS, Rajyalakshmi K (2014b) Agriculturally Important Microbial Germplasm Database. Information Bulletin no:95, Patancheru, Telangana, India: International Crops Research Institute for the Semi-Arid Tropics. pp 80

    Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Bandikinda P, Sathya A, Vijayabharathi R, Om R, Kudapa H, Katta K, Varshney RK (2014c) Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiol Res 169:40–48

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Prakash B, Sathya A, Vijayabharathi R (2014d) Plant growth-promoting traits of Pseudomonas geniculata isolated from chickpea nodules. 3 Biotech DOI: 10.1007/s13205-014-0263-4

    Google Scholar 

  • Gopalakrishnan S, Upadhyaya HD, Vadlamudi S, Humayun P, Vidya MS, Alekhya G, Singh A, Vijayabharathi R, Bhimineni RK, Seema M, Rathore A, Rupela O (2012) Plant growth-promoting traits of biocontrol potential bacteria isolated from rice rhizosphere. SpringerPlus 1:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • GRDC (2013) Harvesting the benefits of inoculating legumes. Grain Research and Development Corporation – Fact sheet UMU00032

    Google Scholar 

  • Gügi B, Orange N, Hellio F, Burini JF, Guillou C, Leriche F, Guespin-Michel JF (1991) Effect of growth temperature on several exported enzyme activities in the psychrotropic bacterium Pseudomonas fluorescens. J Bacteriol 173:3814–3820

    PubMed  PubMed Central  Google Scholar 

  • Gupta V, Smemo KA, Yavitt JB, Fowle D, Branfireun B, Basiliko N (2013) Stable isotopes reveal widespread anaerobic methane oxidation across latitude and peatland type. Environ Sci Technol 47:8273–8279

    CAS  PubMed  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3(4):307–319

    Article  CAS  PubMed  Google Scholar 

  • Halder AK, Chakrabarty PK (1993) Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38:325–330

    Article  CAS  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharya P, Chakrabarthy PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:1–92

    Article  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, New York

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Lorito IM (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev 2:43–56

    CAS  Google Scholar 

  • Haugwitz MS, Bergmark L, Priemé A, Christensen S, Beier C, Michelsen A (2014) Soil microorganisms respond to five years of climate change manipulations and elevated atmospheric CO2 in a temperate heath ecosystem. Plant Soil 374(1–2):211–222

    Article  CAS  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Hoegger PJ, Kilaru S, James TY, Thacker JR, Kues U (2006) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273:2308–2326

    Article  CAS  PubMed  Google Scholar 

  • Hoorman JJ, Islam R (2010) Understanding soil microbes and nutrient recycling, Fact sheet SAG-16-10. The Ohio State University, Columbus, USA

    Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  Google Scholar 

  • Huber S, Syed B, Freudenschuss A, Ernstsen V, Loveland P (2001) Proposal for a European soil monitoring and assessment framework, Technical report no. 61. European Environment Agency, Copenhagen, Denmark

    Google Scholar 

  • Jiménez DJ, Montaña JS, Martínez MM (2011) Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils. Braz J Microbiol 42:846–858

    PubMed  PubMed Central  Google Scholar 

  • Junaid MJ, Dar NA, Bhat TA, Bhat AH, Bhat MA (2013) Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. Int J Mod Plant Anim Sci 1(2):39–57

    Google Scholar 

  • Kandeler E, Stemmer M, Gerzabek MH (2005) Role of microorganisms in carbon cycling in soils. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer-Verlag, Berlin, Heidelberg, pp 139–157

    Chapter  Google Scholar 

  • Kertesz MA (1999) Riding the sulphur cycle-metabolism of sulphonates and sulphate esters in Gram-negative bacteria. FEMS Microbiol Rev 24:135–175

    Google Scholar 

  • Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume–rhizobium mutualism. Nature 425:78–81

    Article  CAS  PubMed  Google Scholar 

  • Kilic-Ekici O, Yuen GY (2003) Induced resistance as a mechanism of biological control by Lysobacter enzymogenes Strain C3. Phytopathology 93(9):1103

    Article  PubMed  Google Scholar 

  • Klotz MG, Bryant DA, Hanson TE (2011) The microbial sulfur cycle. Front Microbiol. doi:10.3389/fmicb.2011.00241

    Google Scholar 

  • Köberl M, Ramadan EM, Adam M, Cardinale M, Hallmann J, Heuer H, Smalla K, Berg G (2013) Bacillus and Streptomyces were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS Microbiol Lett 342(2):168–178

    Article  PubMed  CAS  Google Scholar 

  • Kujur M, Gartia SK, Patel AK (2012) Quantifying the contribution of different soil properties on enzyme activities in dry tropical ecosystems. ARPN J Agric Biol Sci 7(9):763–772

    CAS  Google Scholar 

  • Kumar S, Chaudhuri S, Maiti SK (2013) Soil dehydrogenase enzyme activity in natural and mine soil – a review. Middle-East J Sci Res 13(7):898–906

    CAS  Google Scholar 

  • Laranjo M, Alexandre A, Oliveira S (2014) Legume growth promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169:2–17

    Article  PubMed  Google Scholar 

  • Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Lu Y, Conrad R (2005) In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science 309:1088–1090

    Article  CAS  PubMed  Google Scholar 

  • Lucas RE, Davis JF (1961) Relationships between pH values of organic soils and availabilities of 12 plant nutrients. Soil Sci 92(3):177–182

    Article  CAS  Google Scholar 

  • Masson-Boivinemail C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17(10):458–466

    Article  CAS  Google Scholar 

  • McGrath JW, Hammerschmidt F, Quinn JP (1998) Biodegradation of phosphonomycin by Rhizobium huakuii PMY1. Appl Environ Microbiol 64:356–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehboob I, Naveed M, Zahir ZA, Ashraf M (2012) Potential of rhizobia for sustainable production of non-legumes. In: Ashraf M, Öztürk M, Ahmad M, Aksoy A (eds) Crop production for agricultural improvement. Springer, Netherlands, pp 659–704

    Chapter  Google Scholar 

  • Meliani A, Bensoltane A, Mederbel K (2012) Microbial diversity and abundance in soil: related to plant and soil type. Am J Plant Nutr Fertil Technol 2:10–18

    Article  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition. Kluwer, Dordrecht

    Book  Google Scholar 

  • Mittal V, Singh O, Nayyar H, Kaur J, Tewari R (2008) Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biol Biochem 40:718–727

    Article  CAS  Google Scholar 

  • Mohammadi K, Sohrabi Y, Heidari G, Khalesro S, Majidi M (2012) Effective factors on biological nitrogen fixation. Afr J Agric Res 7(12):1782–1788

    Google Scholar 

  • NERI (2002) Microorganisms as indicators of soil health, National environmental research institute technical report no. 388. National Environmental Research Institute (NERI), Denmark, p 80

    Google Scholar 

  • Ohtake H, Wu H, Imazu K, Ambe Y, Kato J, Kuroda A (1996) Bacterial phosphonate degradation, phosphite oxidation and polyphosphate accumulation. Resour Conserv Recycl 18:125–134

    Article  Google Scholar 

  • Øvreås L (2000) Population and community level approaches for analysing microbial diversity in natural environments. Ecol Lett 3:236–251

    Article  Google Scholar 

  • Peoples MB, Brockwell J, Hunt JR, Swan AD, Watson L, Hayes RC, Li GD, Hackney B, Nuttall JG, Davies SL, Fillery IRP (2012) Factors affecting the potential contributions of N2 fixation by legumes in Australian pasture systems. Crop Pasture Sci 63:759–786

    Article  CAS  Google Scholar 

  • Peoples MB, Herridge DF, Ladha JK (1995) Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant Soil 174(1–2):3–28

    Article  CAS  Google Scholar 

  • Pérez-Montano F, Alias-Villegas C, Bellogin RA, del Cerro P, Espuny MR, Jiménez-Guerrero I, López-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169(5–6):325–336

    Article  PubMed  Google Scholar 

  • Pliego C, Ramos C, de Vicente A, Cazorla FM (2011) Screening for candidate bacterial biocontrol agents against soil borne fungal plant pathogens. Plant Soil 340(1–2):505–520

    Article  CAS  Google Scholar 

  • Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johson CA (eds) Climate change: the scientific bases. Cambridge University Press, Cambridge, UK, pp 183–237

    Google Scholar 

  • Rahmansyah M, Sudiana IM (2010) Soil microbial enzymatic activity relate to role of methanotrophic bacteria in tropical forest soil, Gunug Salak National Park. Agric Biol Sci 5:2

    Google Scholar 

  • Reis VM, Teixeira KRS, Pedraza RO (2011) What is expected from the genus Azospirillum as a plant growth-promoting bacteria? In: Maheshwari D (ed) Bacteria in agrobiology: plant growth response. Springer-Verlag, Berlin Heidelberg, pp 123–138

    Chapter  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res LSMR-21:1–30

    Google Scholar 

  • Sayer SA, Raggett SL, Gadd GM (1995) Solubilization of insoluble metal compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance. Mycol Res 99(8):987–993

    Article  CAS  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Press, Academic

    Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  CAS  PubMed  Google Scholar 

  • Schnug E, Haneklaus S (1998) Diagnosis of sulphur nutrition. In: Schnug E (ed) Sulphur in agroecosystems. Kluwer, Dordrecht, pp 1–38

    Chapter  Google Scholar 

  • Sharma P, Padh H, Shrivastava N (2013) Hairy root cultures: a suitable biological system for studying secondary metabolic pathways in plants. Eng Life Sci 13:62–75

    Article  CAS  Google Scholar 

  • Simon J (2002) Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiol Rev 26:285–309

    Article  CAS  PubMed  Google Scholar 

  • Sindhu SS, Dadarwal KR (2001) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiol Res 156(4):353–358

    Article  CAS  PubMed  Google Scholar 

  • Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404

    Article  CAS  Google Scholar 

  • Skrary FA, Cameron DC (1998) Purification and characterization of a Bacillus licheniformis phosphatase specific for D-alphaglycerphosphate. Arch Biochem Biophys 349:27–35

    Article  Google Scholar 

  • Strauss SL, Reardon CL, Mazzola M (2014) The response of ammonia-oxidizer activity and community structure to fertilizer amendment of orchard soils. Soil Biol Biochem 68:410–418

    Article  CAS  Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle JS, Bottomley PS (eds) Methods of soil analysis, Part 2. Microbiological and biochemical properties, SSSA book series no. 5. SSSA, Madison, Wisconsin, USA, pp 775–833

    Google Scholar 

  • Tallapragada P, Seshachala U (2012) Phosphate-solubilizing microbes and their occurrence in the rhizospheres of Piper betel in Karnataka, India. Turk J Biol 36:25–35

    CAS  Google Scholar 

  • Tang K, Baskaran V, Nemati M (2009) Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 44(1):73–94

    Article  CAS  Google Scholar 

  • Thamdrup B (2012) New pathways and processes in the global nitrogen cycle. Annu Rev Ecol Evol Syst 43:407–428

    Article  Google Scholar 

  • Thuita M, Pypers P, Herrmann L, Okalebo RJ, Othieno C, Muema E, Lesueur D (2012) Commercial rhizobial inoculants significantly enhance growth and nitrogen fixation of a promiscuous soybean variety in Kenyan soils. Biol Fertil Soils 48(1):87–96

    Article  Google Scholar 

  • Torsvik V, Daae FL, Sandaa R-A, Øvreås L (1998) Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotech 64:53–62

    Article  CAS  Google Scholar 

  • Trumbore S (2006) Carbon respired by terrestrial ecosystems – recent progress and challenges. Glob Chang Biol 12:141–153

    Article  Google Scholar 

  • Tyree MC, Seiler JR, Aust WM, Sampson DA, Fox TR (2006) Long-term effects of site preparation and fertilization on total soil CO2 efflux and heterotrophic respiration in a 33-year-old Pinus taeda L. plantation on the wet flats of the Virginia lower coastal plain. For Ecol Manag 234(1–3):363–369

    Article  Google Scholar 

  • Tyree MC, Seiler JR, Maier CA (2009) Short-term impacts of nutrient manipulations on leaf gas exchange and biomass partitioning in contrasting 2-year-old Pinus taeda clones during seedling establishment. For Ecol Manag 257(8):1847–1858

    Article  Google Scholar 

  • Vaccari DA, Strom PF, Alleman JE (2006) Environmental biology for engineers and scientists. John Wiley & Sons, Inc., New York, p 931

    Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant Nutrition in a world of declining renewable resources. Plant Physiol 127(2):390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vessey KJ (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vincent PG, Sisler HD (1968) Mechanisms of antifungal action of 2,4,5,6-tetrachloroisopathalonitrile. Physiol Plant 21:1249–1264

    Article  CAS  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field KB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57(58):1–45

    Article  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Willems A (2006) The taxonomy of rhizobia: an overview. Plant Soil 287:3–14

    Article  CAS  Google Scholar 

  • Wolińska A, Stępniewska Z (2012) Dehydrogenase activity in the soil environment. In: Canuto RA (ed) Dehydrogenases. InTech, Rijeka, pp 183–209

    Google Scholar 

  • Zhou K, Binkley D, Doxtader KG (1992) A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant Soil 147:243–250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramaniam Gopalakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Sathya, A., Vijayabharathi, R., Gopalakrishnan, S. (2016). Soil Microbes: The Invisible Managers of Soil Fertility. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2644-4_1

Download citation

Publish with us

Policies and ethics