Advertisement

The Role of Anaerobic Digestion in Algal Biorefineries: Clean Energy Production, Organic Waste Treatment, and Nutrient Loop Closure

  • J. L. Ramos-Suárez
  • N. Carreras Arroyo
  • C. González-Fernández
Chapter
Part of the Developments in Applied Phycology book series (DAPH, volume 7)

Abstract

This book chapter deals with the production of biogas coupled with the use of waste effluents for microalgae biomass growth. Biogas production through anaerobic digestion of microalgae uses the whole organic content of microalgae to produce energy. Furthermore, biogas generation seems to be the least complex of the different energy conversion routes since anaerobic digestion avoids energy-intensive steps such as biomass drying and extraction. Biogas can be produced as the main product from microalgae (direct anaerobic digestion of the whole biomass) or can be a coproduct of an industry culturing microalgae for different purposes. The integration of different technologies in a biorefinery aims at maximizing benefits while reducing the environmental impact. The future of algae biorefineries would include the extraction of several components from microalgae. Waste biomass can be treated by anaerobic digestion, reducing the pollutant load while producing energy. Additionally, there is a synergy between anaerobic digestion and microalgae growth. Biogas contains a high percentage of CO2, and if it is combusted in CHP units, CH4 is converted to CO2. The digestate produced after anaerobic digestion is a liquid medium where most of the nutrients of the organic substrate are mineralized. Therefore, the two main products of anaerobic digestion could serve as sources of nutrients for microalgae growth. If the nutrient loop is closed, profitable processes can be achieved. Consequently, biofuels and high-value products would be obtained at the same time from microalgal biomass, reducing environmental impact and increasing profits.

Keywords

Anaerobic Digestion Switch Grass Organic Matter Solubilization Hydraulic Retention Time Methane Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Acién FFG, González López CV, Fernández Sevilla JM, Molina Grima E (2012a) Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? Appl Microbiol Biotechnol 96:577–586CrossRefGoogle Scholar
  2. Acién FG, Fernández JM, Magán JJ, Molina E (2012b) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353PubMedCrossRefGoogle Scholar
  3. Acién FFG, Fernández Sevilla JM, Molina Grima E (2013) Photobioreactors for the production of microalgae. Rev Environ Sci Biotechnol 12:131–151CrossRefGoogle Scholar
  4. Acién FG, Fernández JM, Molina-Grima E (2014) Economics of microalgae biomass production. In: Pandey A, Lee D-J, Chisti Y, Socool CR (eds) Biofuels from algae. Elsevier, Burlington, pp 313–325CrossRefGoogle Scholar
  5. AEBIOM-European Biomass Association (2009) A biogas road map for Europe. European Biomass Association, BrusselsGoogle Scholar
  6. Alzate ME, Muñoz R, Rogalla F, Fdz-Polanco F, Perez-Elvira SI (2012) Biochemical methane potential of microalgae: influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresour Technol 123:488–494PubMedCrossRefGoogle Scholar
  7. Alzate ME, Muñoz R, Rogalla F, Fdz-Polanco F, Perez-Elvira SI (2014) Biochemical methane potential of microalgae biomass after lipid extraction. Chem Eng J 243:405–410CrossRefGoogle Scholar
  8. Anderson K, Sallis P, Uyanik S (2003) Anaerobic treatment processes. In: Mara D, Horan N (eds) The handbook of water and wastewater microbiology. Academic Press, London, pp 391–426CrossRefGoogle Scholar
  9. Bazara X, Galimany F, Torres R (2003) Digestión anaerobia en el tratamiento de efluentes y lodos residuales. Tecnología del Agua 233:34–46Google Scholar
  10. Blumreisinger M, Meindl D, Loos E (1983) Cell wall composition of chlorococcal algae. Phytochemistry 22:1903–1904CrossRefGoogle Scholar
  11. Bougrier C, Carrere H, Delgenes JP (2005) Solubilisation of waste activated sludge by ultrasonic treatment. Chem Eng J 106:163–169CrossRefGoogle Scholar
  12. Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing and extractions of biofuels and co-products. Renew Sust Energy Rev 14:557–577CrossRefGoogle Scholar
  13. Bruton P, Lyons H, Lerat Y, Stanley M, Rasmusse MB (2009) A review of the potential of marine algae as a source of biofuel in Ireland. Sustainable Energy Ireland, DublinGoogle Scholar
  14. Burczyk J, Dworzanski J (1988) Comparison of sporopollenin-like algal resistant polymer from cell wall of Botryococcus, Scenedesmus and Lycopodium clavatum by GC-pyrolysis. Phytochemistry 27:2151–2153CrossRefGoogle Scholar
  15. Burczyk J, Smietana B, Terminska-Pabis K, Zych M, Kowalowski P (1999) Comparison of nitrogen content amino acid composition and glucosamine content of cell walls of various chlorococcal algae. Phytochemistry 51:491–497CrossRefGoogle Scholar
  16. Caporgno MP, Trobajo R, Caiola N, Ibáñez C, Fabregat A, Bengoa C (2015) Biogas production from sewage sludge and microalgae co-digestion under mesophilic and thermophilic conditions. Renew Energy 75:374–380CrossRefGoogle Scholar
  17. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064PubMedCrossRefGoogle Scholar
  18. Cheng YS, Labavitch JM, Vander Gheynst JS (2015) Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella. Lett Appl Microbiol 60:1–7PubMedCrossRefGoogle Scholar
  19. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306PubMedCrossRefGoogle Scholar
  20. Chisti Y (2012) Raceways-based production of algal crude oil. In: Posten C, Walter C (eds) Microalgal biotechnology: potential and production. De Gruyter, Berlin, pp 113–146Google Scholar
  21. Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838PubMedCrossRefGoogle Scholar
  22. Cho S, Lee N, Park S, Yu J, Luong TT, Ohc Y-K, Lee T (2013a) Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresour Technol 131:515–520PubMedCrossRefGoogle Scholar
  23. Cho S, Park S, Seon J, Yu J, Lee T (2013b) Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production. Bioresour Technol 143:330–336PubMedCrossRefGoogle Scholar
  24. Ciudad G, Rubilar O, Azócar L, Toro C, Cea M, Torres A (2014) Performance of an enzymatic extract in Botrycoccus braunii cell wall disruption. J Biosci Bioeng 117:75–80PubMedCrossRefGoogle Scholar
  25. Collos Y, Harrison P (2014) Acclimation and toxicity of high ammonium concentrations to unicellular algae. Mar Pollut Bull 80:8–23PubMedCrossRefGoogle Scholar
  26. Converti A, Oliveira RPS, Torres BR, Lodi A, Zilli M (2009) Biogas production and valorization by means of a two step biological process. Bioresour Technol 100:5771–5776PubMedCrossRefGoogle Scholar
  27. Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources. An introduction. Wiley-VCH Verlag GMBH & Co., WeinheimCrossRefGoogle Scholar
  28. Douškova I, Kaštanek F, Maleterova Y, Kaštanek P, Doucha J, Zachleder V (2010) Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: biogas-cogeneration-microalgae-products. Energy Convers Manag 51:606–611CrossRefGoogle Scholar
  29. Ehimen EA, Connaughton S, Sun Z, Carrington GC (2009) Energy recovery from lipid extracted, transesterified and glycerol codigested microalgae biomass. Glob Change Biol Bioenergy 1:371–381CrossRefGoogle Scholar
  30. Ehimen EA, Sun ZF, Carrington CG, Birch EJ, Eaton-Rye JJ (2011) Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl Energy 88:3454–3463CrossRefGoogle Scholar
  31. El-Mashad HM (2013) Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae. Bioresour Technol 132:305–312PubMedCrossRefGoogle Scholar
  32. Espinosa-Chávez B, Cervantes FJ, Celis-García LB, Razo-Flores E (2007) Sulfate reducing activity in methanogenic granular sludge of different size. In: Proceedings 11th world congress on anaerobic digestion, Brisbane, Australia, pp 23–27Google Scholar
  33. EurObserv’ER (2014) Biogas barometer. Available at: http://www.energies-renouvelables.org/observ-er/stat_baro/observ/baro224_Biogas_en.pdf. Accessed 26 Jan 2015
  34. Fernández Sevilla JM (2014) Integral use of biomass: an overview. Development of multipurpose extraction process. In: EMBS 2014 – Euromediterranean Microalgal Biotechnology Seminar & Workshop. Summaries and presentations. University of Almería, Spain, 20–24 October, 2014Google Scholar
  35. Ficara E, Uslenghi A, Basilico D, Mezzanotte V (2014) Growth of microalgal biomass on supernatant from biosolid dewatering. Water Sci Technol 69:896–902PubMedCrossRefGoogle Scholar
  36. Fouilland E, Vasseur C, Leboulanger C, Le Floc’h E, Carré C, Marty B, Steyer JP, Sialve B (2014) Coupling algal biomass production and anaerobic digestion: production assessment of some native temperate and tropical microalgae. Biomass Bioenergy 70:564–569CrossRefGoogle Scholar
  37. Franchino M, Comino E, Bona F, Riggio VA (2012) Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere 92:738–744CrossRefGoogle Scholar
  38. Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57:191–202CrossRefGoogle Scholar
  39. Gerken HG, Donohoe B, Knoshaug EP (2013) Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237:239–253PubMedCrossRefGoogle Scholar
  40. Golueke CG, Oswald WJ (1959) Biological conversion of light energy to the chemical energy of methane. Appl Microbiol 7:219–227PubMedPubMedCentralGoogle Scholar
  41. Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5:47–55PubMedPubMedCentralGoogle Scholar
  42. González-Fernández C, Molinuevo-Salces B, García-González MC (2010) Open and enclosed photobioreactors comparison in terms of organic matter utilization, biomass chemical profile and photosynthetic efficiency. Ecol Eng 36:1497–1501CrossRefGoogle Scholar
  43. González-Fernández C, Molinuevo-Salces B, García-González MC (2011) Evaluation of anaerobic codigestion of microalgal biomass and swine manure via response surface methodology. Appl Energy 88:3448–3453CrossRefGoogle Scholar
  44. González-Fernández C, Sialve B, Bernet N, Steyer JP (2012a) Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass Bioenergy 40:105–111CrossRefGoogle Scholar
  45. González-Fernández C, Sialve B, Bernet N, Steyer JP (2012b) Impact of microalgae characteristics on their conversion to biofuel. Part II: focus on biomethane production. Biofuel Bioprod Bioref 6:205–218CrossRefGoogle Scholar
  46. González-Fernández C, Sialve B, Bernet N, Steyer JP (2012c) Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresour Technol 110:610–616PubMedCrossRefGoogle Scholar
  47. González-Fernández C, Timmers RA, Ruiz B, Molinuevo-Salces B (2014) Biofuels and biorefineries. In: Fang Z, Smith RL Jr, Qi X (eds) Production of biofuels and chemicals with ultrasound. Springer, Heidelberg, pp 209–242Google Scholar
  48. Grobelaar JU (2004) Part II. Mass cultivation of microalgae: algal nutrition. Mineral nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, OxfordGoogle Scholar
  49. Gujer W, Zehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci Technol 15:127–167Google Scholar
  50. Gunnison D, Alexander M (1975a) Basis for the resistance of several algae to microbial decomposition. Appl Microbiol 29:729–738PubMedPubMedCentralGoogle Scholar
  51. Gunnison D, Alexander M (1975b) Resistance and susceptibility of algae to decomposition by natural microbial communities. Limnol Oceanogr 20:64–70CrossRefGoogle Scholar
  52. Hansen KH, Angelidaki I, Ahring BK (1998) Anaerobic digestion of swine manure: inhibition by ammonia. Water Res 32:5–12CrossRefGoogle Scholar
  53. Hernández D, Riaño B, Coca M, García-González MC (2013) Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass. Bioresour Technol 135:598–603PubMedCrossRefGoogle Scholar
  54. Hidalgo MD, García PA (2001) Influencia del sulfato en la degradación anaerobia de materia orgánica. Ing Quim 383:183–191Google Scholar
  55. Hsu TA (1996) Pretreatment of biomass. In: Wyman CE (ed) Handbook on bioethanol, production and utilization: pretreatment of biomass. Taylor & Francis, Washington, DC, pp 179–212Google Scholar
  56. Kao CY, Chiu SY, Huang TT, Dai L, Hsu LK, Lin CS (2012a) Ability of a mutant strain of the microalga Chlorella sp. to capture carbon dioxide for biogas upgrading. Appl Energy 93(2012a):176–183CrossRefGoogle Scholar
  57. Kao CY, Chiu SY, Huang TT, Dai L, Wang GH, Tseng CP, Chen CH, Lin CS (2012b) A mutant strain of microalga Chlorella sp. for the carbon dioxide capture from biogas. Biomass Bioenergy 36:132–140CrossRefGoogle Scholar
  58. Keymer P, Ruffell I, Pratt S, Lant P (2013) High pressure thermal hydrolysis as pre-treatment to increase the methane yield during anaerobic digestion of microalgae. Bioresour Technol 131:128–133PubMedCrossRefGoogle Scholar
  59. Kim KH, Choi IS, Kim HM, Wic SG, Bae H (2014) Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresour Technol 153:47–54PubMedCrossRefGoogle Scholar
  60. Kinnunen V, Craggs R, Rintala J (2014) Influence of temperature and pretreatments on the anaerobic digestion of wastewater grown microalgae in a laboratory-scale accumulating-volume reactor. Water Res 57:247–257PubMedCrossRefGoogle Scholar
  61. Lema JM, Méndez RJ (1997) Tratamientos biológicos anaerobios. In: Bueno J, Sastre L, Lavín A (eds) Contaminación e ingeniería ambiental, vol 3. Contaminación de las aguas. F.I.C.Y.T, OviedoGoogle Scholar
  62. Loos D, Meindl D (1984) Cell wall-lytic activity in Chlorella fusca. Planta 160:357–362PubMedCrossRefGoogle Scholar
  63. Lukehurst CT, Frost P, Al Seadi T (2010) Utilisation of digestates from biogas plants as biofertilizer. IEA bioenergy task 37. Available at: http://www.iea-biogas.net/files/daten-redaktion/download/publi-task37/Digestate_Brochure_Revised_12-2010.pdf. Accessed 26 Jan 2014
  64. Mahdy A, Mendez L, Ballesteros M, González-Fernández C (2014a) Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition. Energy Convers Manag 85:551–557CrossRefGoogle Scholar
  65. Mahdy A, Mendez L, Ballesteros M, González-Fernández C (2014b) Autohydrolysis and alkaline pretreatment effect on Chlorella vulgaris and Scenedesmus sp. methane production. Energy 78:45–52CrossRefGoogle Scholar
  66. Mahdy A, Méndez L, Blanco S, Ballesteros M, González-Fernández C (2014c) Protease cell wall degradation of Chlorella vulgaris: effect on methane production. Bioresour Technol 171:421–427PubMedCrossRefGoogle Scholar
  67. Mahdy A, Mendez L, Ballesteros M, González-Fernández C (2014d) Algaculture integration in conventional wastewater treatment plants: anaerobic digestion comparison of primary and secondary sludge with microalgae biomass. Bioresour Technol (Article in press)Google Scholar
  68. Mahdy A, Mendez L, Ballesteros M, González-Fernández C (2015) Enzyme-assisted methane production using Chlorella vulgaris and Scenedesmus sp. as substrates (Submitted)Google Scholar
  69. Mann G, Schlegel M, Schumann R, Sakalauskas A (2009) Biogas-conditioning with microalgae. Agron Res 7:33–38Google Scholar
  70. Marcilhac C, Sialve B, Pourcher AM, Ziebal C, Bernet N, Béline F (2014) Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem. Water Res 64:278–287PubMedCrossRefGoogle Scholar
  71. Marsolek MD, Kendall E, Thompson PLS, Teodora R (2014) Thermal pretreatment of algae for anaerobic digestion. Bioresour Technol 151:373–377PubMedCrossRefGoogle Scholar
  72. McKinsey Zicari S (2003) Removal of hydrogen sulfide from biogas using cow manure compost. Dissertation, Cornell UniversityGoogle Scholar
  73. Mendez L, Mahdy A, Timmers RA, Ballesteros M, González-Fernández C (2013) Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments. Bioresour Technol 149:136–141PubMedCrossRefGoogle Scholar
  74. Mendez L, Mahdy A, Demuez M, Ballesteros M, González-Fernández C (2014a) Effect of high pressure thermal pretreatment on Chlorella vulgaris biomass: organic matter solubilisation and biochemical methane potential. Fuel 117A:674–679CrossRefGoogle Scholar
  75. Mendez L, Mahdy A, Ballesteros M, González-Fernández C (2014b) Methane production of thermally pretreated Chlorella vulgaris and Scenedesmus sp. biomass at increasing biomass loads. Appl Energy 129:238–242CrossRefGoogle Scholar
  76. Miao H, Lu M, Zhao M, Huang Z, Ren H, Yan Q (2013) Enhancement of Taihu blue algae anaerobic digestion efficiency by natural storage. Bioresour Technol 149:359–366PubMedCrossRefGoogle Scholar
  77. Miron Y, Zeeman G, Van Lier JB, Lettinga G (2000) The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Res 34:1705–1713CrossRefGoogle Scholar
  78. Monlau F, Barakat A, Steyer JP, Carrere H (2012) Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour Technol 120:241–247PubMedCrossRefGoogle Scholar
  79. Monlau F, Sambusiti C, Barakat A, Quéméneur M, Trably E, Steyer JP, Carrère H (2014) Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv 32:934–951PubMedCrossRefGoogle Scholar
  80. Mottet A, Francois E, Latrille E, Steyer JP, Déléris S, Vedrenne F, Carrère H (2010) Estimating anaerobic biodegradability indicators for waste activated sludge. Chem Eng J 160:488–496CrossRefGoogle Scholar
  81. Mottet A, Habouzit F, Steyer JP (2014) Anaerobic digestion of marine microalgae in different salinity levels. Bioresour Technol 158:300–306PubMedCrossRefGoogle Scholar
  82. Muñoz C, Hidalgo C, Zapata M, Jeison D, Riquelme C, Rivas M (2014) Use of cellulolytic marine bacteria for enzymatic pretreatment in microalgal biogas production. Appl Environ Microbiol 80:4199–4206PubMedPubMedCentralCrossRefGoogle Scholar
  83. Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56PubMedCrossRefGoogle Scholar
  84. Noike T, Goo IS, Matsumoto H, Miyahara T (2004) Development of a new type of anaerobic digestion equipped with the function of nitrogen removal. Water Sci Technol 49:173–179PubMedGoogle Scholar
  85. Norsker N-H, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production—a close look at the economics. Biotechnol Adv 29:24–27PubMedCrossRefGoogle Scholar
  86. Ometto F, Quiroga G, Pšeničkac P, Whitton R, Jefferson B, Villa R (2014) Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Res 65:350–361PubMedCrossRefGoogle Scholar
  87. Pagés Díaz J, Pereda Reyes I, Lundin M, Horváth IS (2011) Co-digestion of different waste mixtures from agro-industrial activities: kinetic evaluation and synergetic effects. Bioresour Technol 102:10834–10840PubMedCrossRefGoogle Scholar
  88. Park S, Li Y (2012) Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresour Technol 111:42–48PubMedCrossRefGoogle Scholar
  89. Park W-J, Ahn J-H, Hwang S, Lee C-K (2010) Effect of output power, target temperature, and solid concentration on the solubilization of waste activated sludge using microwave irradiation. Bioresour Technol 101:S13–S16PubMedCrossRefGoogle Scholar
  90. Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42PubMedCrossRefGoogle Scholar
  91. Park K, Kweon J, Chantrasakdakul P, Lee K, Cha HY (2013) Anaerobic digestion of microalgal biomass with ultrasonic disintegration. Int Biodeter Biodegr 85:598–602CrossRefGoogle Scholar
  92. Parkin GF, Owen WF (1986) Fundamentals of anaerobic digestion of wastewater sludges. J Environ Eng 112:867–920CrossRefGoogle Scholar
  93. Passos F, Ferrer I (2014) Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production. Water Res 68:364–373CrossRefGoogle Scholar
  94. Passos F, García J, Ferrer I (2013) Impact of low temperature pretreatment on the anaerobic digestion of microalgal biomass. Bioresour Technol 138:79–86PubMedCrossRefGoogle Scholar
  95. Passos F, Hernández-Mariné M, García J, Ferrer I (2014a) Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Res 49:351–359PubMedCrossRefGoogle Scholar
  96. Passos F, Astals S, Ferrer I (2014b) Anaerobic digestion of microalgal biomass after ultrasound pretreatment. Waste Manage 34:2098–2103CrossRefGoogle Scholar
  97. Prajapati SK, Malik A, Vijay VK (2014a) Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion. Appl Energy 114:790–797CrossRefGoogle Scholar
  98. Prajapati SK, Kumar P, Malik A, Vijay VK (2014b) Bioconversion of algae to methane and subsequent utilization of digestate for algae cultivation: a closed loop bioenergy generation process. Bioresour Technol 158:174–180PubMedCrossRefGoogle Scholar
  99. Ramos-Suárez JL, Carreras N (2014) Use of microalgae residues for biogas production. Chem Eng J 242:86–95CrossRefGoogle Scholar
  100. Ramos-Suárez JL, Martínez A, Carreras N (2014a) Optimization of the digestion process of Scenedesmus sp. and Opuntia maxima for biogas production. Energy Convers Manag 88:1263–1270CrossRefGoogle Scholar
  101. Ramos-Suárez JL, García Cuadra F, Acién FG, Carreras N (2014b) Benefits of combining anaerobic digestion and amino acid extraction from microalgae. Chem Eng J 258:1–9CrossRefGoogle Scholar
  102. Ras M, Lardon L, Sialve B, Bernet N, Steyer JP (2011) Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour Technol 102:200–206PubMedCrossRefGoogle Scholar
  103. Rasi S (2009) Biogas composition and upgrading to biomethane. Dissertation. Jyväskylä UniversityGoogle Scholar
  104. Rebolloso Fuentes MM, Acién Fernández FG, Sánchez Pérez JA, Gil Guerrero JL (2000) Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem 70:345–353CrossRefGoogle Scholar
  105. Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw Hill, New YorkGoogle Scholar
  106. Romero García JM, Acién Fernández FG, Fernández Sevilla JM (2012) Development of a process for the production of L-aminoacids concentrates from microalgae by enzymatic hydrolysis. Bioresour Technol 112:164–170PubMedCrossRefGoogle Scholar
  107. Rowse LE (2011) Design of small scale anaerobic digesters for application in rural developing countries. Master’s thesis. University of South FloridaGoogle Scholar
  108. Salehian P, Karimi K, Zilouei H, Jeihanipour A (2013) Improvement of biogas production from pine wood by alkali pretreatment. Fuel 106:484–489CrossRefGoogle Scholar
  109. Samson R, LeDuy A (1983) Improved performance of anaerobic digestion of Spirulina maxima algal biomass by addition of carbon-rich wastes. Biotechnol Lett 5:677–682CrossRefGoogle Scholar
  110. Samson R, LeDuy A (1986) Detailed study of anaerobic digestion of Spirulina maxima algal biomass. Biotechnol Bioeng 28:1014–1023PubMedCrossRefGoogle Scholar
  111. Santos NO, Oliveira SM, Alves LC, Cammarota MC (2014) Methane production from marine microalgae Isochrysis galbana. Bioresour Technol 157:60–67PubMedCrossRefGoogle Scholar
  112. Schwede S, Rehman Z-U, Gerber M, Theiss C, Span R (2013a) Effects of thermal pretreatment on anaerobic digestion of Nannochloropsis salina biomass. Bioresour Technol 143:505–511PubMedCrossRefGoogle Scholar
  113. Schwede S, Kowalczyk A, Gerber M, Span R (2013b) Anaerobic co-digestion of the marine microalga Nannochloropsis salina with energy crops. Bioresour Technol 148:428–435PubMedCrossRefGoogle Scholar
  114. Sheets JP, Ge X, Park SY, Li Y (2014) Effect of outdoor conditions on Nannochloropsis salina cultivation in artificial seawater using nutrients from anaerobic digestion effluent. Bioresour Technol 152:154–161PubMedCrossRefGoogle Scholar
  115. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416PubMedCrossRefGoogle Scholar
  116. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96PubMedCrossRefGoogle Scholar
  117. Sumardiono BS, Syaizhurrozi I, Sasongko SB (2014) Utilization of biogas as CO2 provider for Spirulina platensis culture. Curr Res J Biol Sci 6:53–59Google Scholar
  118. Suslick KS (1990) Sonochemistry. Science 247:1439–1445PubMedCrossRefGoogle Scholar
  119. Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering: treatment and reuse. McGraw Hill, New YorkGoogle Scholar
  120. Tran KC, Mendoza Martin JL, Heaven S, Banks CJ, Acien Fernandez FG, Molina Grima E (2014) Cultivation and anaerobic digestion of Scenedesmus spp. grown in a pilot-scale open raceway. Algal Res 5:95–102CrossRefGoogle Scholar
  121. Travieso L, Sánchez EP, Benttez F, Conde JL (1993) Arthrospira sp. intensive culture for food and biogas purification. Biotechnol Lett 15:1091–1094CrossRefGoogle Scholar
  122. Uggetti E, Sialve B, Latrille E, Steyer JP (2014) Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity. Bioresour Technol 152:437–444PubMedCrossRefGoogle Scholar
  123. Varel VH, Chen TH, Hashimoto AG (1988) Thermophilic and mesophilic methane production from anaerobic degradation of the cyanobacterium Spirulina maxima. Resour Conserv Recycl 1:19–26CrossRefGoogle Scholar
  124. Vesilind PA (1998) Wastewater treatment plant design, 4th edn. IWA Publishing and the Water Environment Federation, LondonGoogle Scholar
  125. Voigt J, Stolarczyk A, Zych M, Malec P, Burczyk J (2014) The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii. Plant Sci 215–216:39–47PubMedCrossRefGoogle Scholar
  126. Wang M, Sahu AK, Rusten B, Park C (2013) Anaerobic co-digestion of microalgae Chlorella sp. and waste activated sludge. Bioresour Technol 142:585–590PubMedCrossRefGoogle Scholar
  127. Werner U, Stoehr U, Hees N (1989) Biogas plants in animal husbandry. Deutsche Gesellschaft fuer Technische Zusammenarbeit (GTZ) GmbH, EschbornGoogle Scholar
  128. Yan C, Zheng Z (2013) Performance of photoperiod and light intensity on biogas upgrade and biogas effluent nutrient reduction by Chlorella. Bioresour Technol 139:292–299PubMedCrossRefGoogle Scholar
  129. Yan C, Zhang L, Luo X, Cheng Z (2014) Influence of influent methane concentration on biogas upgrading and biogas slurry purification using Chlorella. Energy 69:419–426CrossRefGoogle Scholar
  130. Yen HW, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98:130–134PubMedCrossRefGoogle Scholar
  131. Zhao MX, Ruan WQ (2013) Biogas performance from co-digestion of Taihu algae and kitchen wastes. Energy Convers Manag 75:21–24CrossRefGoogle Scholar
  132. Zhong W, Zhang Z, Luo Y, Qiao W, Xiao M, Zhang M (2012) Biogas productivity by co-digesting Taihu blue algae with corn straw as an external carbon source. Bioresour Technol 114:281–286PubMedCrossRefGoogle Scholar
  133. Zhong W, Chi L, Luo Y, Zhang Z, Zhang Z, Wu W-M (2013) Enhanced methane production from Taihu Lake blue algae by anaerobic co-digestion with corn straw in continuous feed digesters. Bioresour Technol 134:264–270PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • J. L. Ramos-Suárez
    • 1
  • N. Carreras Arroyo
    • 2
  • C. González-Fernández
    • 3
  1. 1.Procycla SLManresaSpain
  2. 2.Environment DepartmentCiematMadridSpain
  3. 3.Biotechnological Processes for Energy Production Unit – IMDEA EnergyMóstolesSpain

Personalised recommendations