Skip to main content

Life Cycle Assessment of Algal Biofuels

  • Chapter
  • First Online:

Part of the book series: Developments in Applied Phycology ((DAPH,volume 7))

Abstract

First- and second-generation biofuels are widely recognized as unsustainable in the long run due to associated challenges and are incapable to completely displace petroleum-based transportation fuels. Biofuel from algae (third generation of biofuels) is an emerging area of research and offers several potential benefits over first and second generation of biofuels. To achieve the goals of sustainable development needed today requires moving beyond the general compliance to specified norms for environmental protection and a cradle-to-grave-approach-based analysis of products and processes. Life cycle assessment (LCA) is an analytical tool to assess the environmental, social, and economic performance of alternative products and processes throughout its life cycle. Since fossil fuels have created environmental concerns, any alterative should perform better on environmental concerns than fossil fuels before it is promoted. Therefore, LCA of algal biofuels is imperative in order to assess its suitability over fossil fuels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baliga R, Powers SE (2010) Sustainable algae biodiesel production in cold climates. Int J Chem Eng 2010:1–13

    Article  Google Scholar 

  • Batan L, Quinn J, Willson B, Bradley T (2010) Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environ Sci Technol 44(20):7975–7980

    Article  CAS  PubMed  Google Scholar 

  • Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. US Department of Energy, Pittsburgh Energy Technology Centre, Washington, DC

    Book  Google Scholar 

  • Brennan L, Owenda P (2010) Biofuels from microalgae- a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Brentner LB, Eckelman MJ, Zimmerman JB (2011) Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environ Sci Technol 45(16):7060–7067

    Article  CAS  PubMed  Google Scholar 

  • Bruton T, Lyons H, Lerat Y, Stanley M, Rasmussen (2009) A review of the potential of marine algae as a source of biofuel in Ireland. Sustainable Energy Ireland, Dublin

    Google Scholar 

  • Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102(1):50–56

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22(6):1490–1506

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol Lett 18(5):603–608

    Article  CAS  Google Scholar 

  • Chiaramonti D, Oasmaa A, Solantausta Y (2007) Power generation using fast pyrolysis liquids from biomass. Renew Sust Energ Rev 11(6):1056–1086

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131

    Article  CAS  PubMed  Google Scholar 

  • Chojnacka K, Noworyta A (2004) Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzym Microb Technol 34(5):461–465

    Article  CAS  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29(6):686–702

    Article  CAS  PubMed  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  CAS  PubMed  Google Scholar 

  • Clark J, Deswarte F (2008) Introduction to chemicals from biomass (Stevens CV, ed). Wiley series in renewable resources. John Wiley & Sons, Ltd, Chichester

    Google Scholar 

  • Collet P, Helias A, Lardon L, Ras M, Goy R, Steyer J (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102:207–214

    Article  CAS  PubMed  Google Scholar 

  • Collet P, Spinelli D, Lardon L, Hélias A, Steyer JP, Bernard O (2013) Life-cycle assessment of microalgal-based biofuels. Biofuels Algae 287–312

    Google Scholar 

  • Das D, Veziroglu T (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 33(21):6046–6057

    Article  CAS  Google Scholar 

  • Davis J, Haglund C (1999) Life cycle inventory (LCI) of fertiliser production. Fertiliser products used in Sweden and Western Europe. SIK-Report No. 654. Masters thesis, Chalmers University of Technology

    Google Scholar 

  • Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42(11):1357–1378

    Article  CAS  Google Scholar 

  • Demirbas A (2006) Oily products from mosses and algae via pyrolysis. Energy Sources Part A: Recov Utilization Environ Effects 28(10):933–940

    Article  CAS  Google Scholar 

  • Doucha J, Straka F, Lıvansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17(5):403–412

    Article  Google Scholar 

  • Frank E, Han J, Palou R, Elgowainy A, Wang MQ (2012) Methane and nitrous oxide emissions affect the life-cycle analysis of algal biofuels. Environ Res Lett 7:014030

    Article  Google Scholar 

  • Gasafi E, Meyer L, Schebek L (2003) Using life-cycle assessment in process design. J Ind Ecol 7(3–4):75–91

    Article  CAS  Google Scholar 

  • Ghasemi Y, Amini S, Naseri A, Najafabady N, Mobasher M, Dabbagh F (2012) Microalgae biofuel potentials (Review). Applied Biochemistry and Microbiology 48(2):126–144

    Article  CAS  Google Scholar 

  • Gong Y, Jiang M (2011) Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnol Lett 33(7):1269–1284

    Article  CAS  PubMed  Google Scholar 

  • Gordillo F, Goutx M, Figueroa F, Niell F (1998) Effects of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis. J Appl Phycol 10(2):135–144

    Article  CAS  Google Scholar 

  • Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sust Energ Rev 12(2):504–517

    Article  CAS  Google Scholar 

  • Graverholt O, Eriksen N (2007) Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol 77(1):69–75

    Article  CAS  PubMed  Google Scholar 

  • Grima E, Belarbi E, Fernandez F, Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process option and economics. Biotechnol Adv 20(7–8):491–515

    Article  Google Scholar 

  • Grobbelaar J (2004) In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing, Oxford, pp 97–115

    Google Scholar 

  • Gudin C, Therpenier C (1986) Bioconversion of solar energy into organic chemicals by microalgae. Adv Biotechnol Process 6:73–110

    CAS  Google Scholar 

  • Handler R, Canter C, Kalnes T, Lupton F, Kholiqov O, Shonnard D, Blowers P (2012) Evaluation of environmental impacts from microalgae cultivation in open-air raceway ponds: analysis of the prior literature and investigation of wide variance in predicted impacts. Algal Res 1(1):83–92

    Article  CAS  Google Scholar 

  • Hirano A, Hon-Nami K, Kunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45(1–4):399–404

    Article  CAS  Google Scholar 

  • Hou J, Zhang P, Yuan X, Zheng Y (2011) Life cycle assessment of biodiesel from soybean, jatropha and microalgae in China conditions. Renew Sustain Energ Rev 15(9):5081–5091

    Article  CAS  Google Scholar 

  • Jensen E, Nielsen H (2003) How can increased use of biological N2 fixation in agriculture benefit the environment. Plant Soil 252(1):177–186

    Article  CAS  Google Scholar 

  • Johnson M, Rivera I, Frank E (2013) Energy consumption during the manufacture of nutrients for algae cultivation. Algal Res 2(4):426–436

    Article  Google Scholar 

  • Kadam KL (2002) Environmental implications of power generation via coal-microalgae cofiring. Energy 27(10):905–922

    Article  CAS  Google Scholar 

  • Khoo HH, Sharratt PN, Das P, Balasubramanian RK, Naraharisetti PK, Shaik S (2011) Life cycle energy and CO2 analysis of microalgae-to-biodiesel: preliminary results and comparisons. Bioresour Technol 102(10):5800–5807

    Article  CAS  PubMed  Google Scholar 

  • Kongshaug G (1998) Energy consumption and green house gas emission in fertilizer production. IFA- technical conference, Marrakech

    Google Scholar 

  • Lardon L, Helias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci technol 43(17):6475–6481

    Article  CAS  PubMed  Google Scholar 

  • Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13(4):307–315

    Article  Google Scholar 

  • Melis A (2002) Green alga hydrogen production: progress, challenges and prospects. Int J Hydrog Energy 27(11–12):1217–1228

    Article  CAS  Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production: green algae as a source of energy. Plant Physiol 127(3):740–748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miao X, Wu Q (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110(1):85–93

    Article  CAS  PubMed  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97(6):841–846

    Article  CAS  PubMed  Google Scholar 

  • Minowa T, Yokoyama SY, Kishimoto M, Okakura T (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74(12):1735–1738

    Article  CAS  Google Scholar 

  • Mohn FH (1988) Harvesting of microalgal biomass. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, New York, pp 395–414

    Google Scholar 

  • Molina E, Belarbi E, Acién Fernandez F, Robles A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515

    Article  Google Scholar 

  • O’Neil G, Culler A, Williams J, Burlow N, Gilbert G, Carmichael C, Nelson R, SwarthoutR RC (2015) Production of jet fuel range hydrocarbons as a coproduct of algal biodiesel by butenolysis of long-chain alkenones. Energy Fuel 29:922–930

    Google Scholar 

  • Orlando J, Asher K, Emerson A, Marcelo E, Maria L (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413

    Article  Google Scholar 

  • Pal D, Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90(4):1429–1441

    Article  CAS  PubMed  Google Scholar 

  • Rahmes TF, Kinder JD, Henry TM, Crenfeldt G, LeDuc GF, Zombanakis GP, et al (2009). Sustainable bio-derived synthetic paraffinic kerosene (Bio-SPK) jet fuel flights and engine tests program results. Report No. AIAA, 7002

    Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G (2008) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  Google Scholar 

  • Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15(7):704–714

    Article  CAS  Google Scholar 

  • Sills D, Paramita V, Franke M, Johnson M, Akabas T, Greene C, Tester J (2012) Quantitative uncertainty analysis of life cycle assessment for algal biofuel production. Environ Sci Technol 47(2):687–694

    Article  PubMed  Google Scholar 

  • Singh A, Nigam P, Murphy J (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresource Technol 102(1):10–16

    Article  CAS  Google Scholar 

  • Spolaore P, Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 102(2):87–96

    Article  Google Scholar 

  • Stephenson A, Kazamia E, Dennis J, Howes C, Scott S, Smith A (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuel 24:4062–4077

    Article  CAS  Google Scholar 

  • Subhadra B (2010) Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach. Energy Policy 38(10):5892–5901

    Article  Google Scholar 

  • Ugwu C, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99(10):4021–4028

    Article  CAS  PubMed  Google Scholar 

  • UNEP (2009) Guidelines for social life cycle assessment of products. UNEP, Paris

    Google Scholar 

  • Vazhappilly R, Chen F (1998) Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. J Am Oil Chem Soc 75(3):393–397

    Article  CAS  Google Scholar 

  • Wang B, Li Y, Wu N, Lan C (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718

    Article  CAS  PubMed  Google Scholar 

  • Woertz I, Benemann J, Du N, Unnasch S, Mendola D, Mitchell G, Lundquist T (2014) Life cycle GHG emissions from microalgal biodiesel – a CA-GREET model. Environ Sci Technol 48:6060–6068

    Article  CAS  PubMed  Google Scholar 

  • Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2010) Life cycle analysis on biodiesel production from microalgae: water foot print and nutrients balance. Bioresour Technol 102(1):159–165

    Article  PubMed  Google Scholar 

  • Yen H-W, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98(1):130–134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

One of the authors (Dipesh Kumar) is thankful to UGC for providing Junior Research Fellowship (JRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Korstad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Kumar, D., Korstad, J., Singh, B. (2015). Life Cycle Assessment of Algal Biofuels. In: Singh, B., Bauddh, K., Bux, F. (eds) Algae and Environmental Sustainability. Developments in Applied Phycology, vol 7. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2641-3_14

Download citation

Publish with us

Policies and ethics