Phycoremediation of Emerging Contaminants

  • Sanjay Kumar Gupta
  • Amritanshu Shriwastav
  • Sheena Kumari
  • Faiz Ahmad Ansari
  • Anushree Malik
  • Faizal Bux
Part of the Developments in Applied Phycology book series (DAPH, volume 7)


A special group of contaminants which poses serious threat to the human health as well as the environment, but has not been fully discovered and understood, are termed as emerging contaminants (ECs). Most of such contaminants possess diverse chemical properties and are of anthropogenic origin. The ubiquitous occurrence of ECs in the environment poses serious threat to the human health as well as deleterious effects to the flora and fauna even at minute concentrations, as most of the conventional wastewater treatment plants are not designed for the effective treatment and removal of such contaminants. Therefore, other than accidental release, ECs are majorly attributed to the environment through inadequately treated wastewater, sewage, and industrial effluents. Previous studies have shown that bioremediation could be an effective tool for the treatment; however, phycoremediation of emerging contaminants have been least studied. In this chapter we have explored the possibilities of phycoremediation of ECs and have reviewed and summarized findings of most of the recent studies. This chapter exclusively covers the phycoremediation potential of various algal species for the removal of pharmaceuticals, personal care products, pesticides, endocrine disruptors, and various other organics which are considered as potential contaminants of emerging concern.


Linear Alkyl Benzene Sulfonate Environmental Matrice Personal Care Product Polyaromatic Hydrocarbon Phthalate Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abargues MR, Ferrer J, Bouzas A, Seco A (2013) Removal and fate of endocrine disruptors chemicals under lab-scale postreatment stage. Removal assessment using light, oxygen and microalgae. Bioresour Technol 149:142–148. doi: 10.1016/j.biortech.2013.09.051 PubMedCrossRefGoogle Scholar
  2. Adler P, Steger-Hartmann T, Kalbfus W (2001) Distribution of natural and synthetic estrogenic steroid hormones in water samples from Southern and Middle Germany. Acta Hydrochim Hydrobiol 29:227–241CrossRefGoogle Scholar
  3. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals – concepts and applications. Chemosphere 91:869–881. doi: 10.1016/j.chemosphere.2013.01.075 PubMedCrossRefGoogle Scholar
  4. Babu B, Wu JT (2010) Biodegradation of phthalate esters by cyanobacteria. J Phycol 46:1106–1113CrossRefGoogle Scholar
  5. Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736CrossRefGoogle Scholar
  6. Battaglin W, Fairchild J (2002) Potential toxicity of pesticides measured in midwestern streams to aquatic organisms. Water Sci Technol 45:95–103PubMedGoogle Scholar
  7. Boethling RS, Alexander M (1979) Effect of concentration of organic chemicals on their biodegradation by natural microbial communities. Appl Environ Microbiol 37:1211–1216PubMedPubMedCentralGoogle Scholar
  8. Bouwer EJ, Rittmann BE, McCarty PL (1981) Anaerobic degradation of halogenated 1- and 2-carbon organic compounds. Environ Sci Technol 15:596–599. doi: 10.1021/es00087a012 PubMedCrossRefGoogle Scholar
  9. Brusseau ML (1998) The impact of physical, chemical and biological factor on biodegradation: implication for in situ bioremediation. Biotechnology for soil remediation. Scientific bases and practical applications. CIPA Srl, MilanGoogle Scholar
  10. Buser H-R, Poiger T, Müller MD (1999) Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environ Sci Technol 33:2529–2535. doi: 10.1021/es981014w CrossRefGoogle Scholar
  11. Cáceres T, Megharaj M, Naidu R (2008) Toxicity and transformation of fenamiphos and its metabolites by two micro algae Pseudokirchneriella subcapitata and Chlorococcum sp. Sci Total Environ 398:53–59PubMedCrossRefGoogle Scholar
  12. Cai X, Ye J, Sheng G, Liu W (2009) Time-dependent degradation and toxicity of diclofop-methyl in algal suspensions. Environ Sci Pollut Res 16:459–465. doi: 10.1007/s11356-008-0077-1 CrossRefGoogle Scholar
  13. Campbell R (1977) Microbial ecology. In: Wilkinson JF (ed) Basic microbiology, vol 5. Wiley, New YorkGoogle Scholar
  14. CAS (Chemical abstracts service registry) (2012) American Chemical Society. Available from Accessed 14 May 2012.
  15. Cerniglia CE, Gibson DT, Van Baalen C (1979) Algal oxidation of aromatic hydrocarbons: formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum, strain PR-6. Biochem Biophys Res Commun 88(1):50–58PubMedCrossRefGoogle Scholar
  16. Cerniglia CE, Gibson DT, Vanbaalen C (1980) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500Google Scholar
  17. Chekroun KB, Sánchez E, Baghour M (2014) The role of algae in bioremediation of organic pollutants. Int Res J Public Environ Health 1:19–32Google Scholar
  18. Chojnacka K, Chojnacki A, Górecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59:75–84Google Scholar
  19. Chun CL, Payne RB, Sowers KR, May HD (2013) Electrical stimulation of microbial PCB degradation in sediment. Water Res 47:141–152PubMedCrossRefGoogle Scholar
  20. Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194PubMedCrossRefGoogle Scholar
  21. Cleuvers M (2004) Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol Environ Saf 59:309–315. doi: 10.1016/s0147-6513(03)00141-6 PubMedCrossRefGoogle Scholar
  22. Colwell R, Sayler G (1978) Microbial degradation of industrial chemicals. Water Pollut Microbiol 2:111–134Google Scholar
  23. Cook A (1998) Sulfonated surfactants and related compounds: facets of their desulfonation by aerobic and anaerobic bacteria. Tenside Surfactants Deterg 35:52–56Google Scholar
  24. Cooney CM (2010) Personal care products: triclosan comes under scrutiny. Environ Health Perspect 118:A242PubMedPubMedCentralCrossRefGoogle Scholar
  25. Corner TR (1981) Synergism in the inhibition of Bacillus subtilis by combinations of lipophilic weak acids and fatty alcohols. Antimicrob Agents Chemother 19:1082PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dai S et al (2002) Identification and analysis of a bottleneck in PCB biodegradation. Nat Struct Mol Biol 9:934–939CrossRefGoogle Scholar
  27. Dann AB, Hontela A (2011) Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol 31:285PubMedCrossRefGoogle Scholar
  28. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938PubMedPubMedCentralCrossRefGoogle Scholar
  29. de Godos I, Munoz R, Guieysse B (2012) Tetracycline removal during wastewater treatment in high-rate algal ponds. J Hazard Mater 229–230:446–449. doi: 10.1016/j.jhazmat.2012.05.106 PubMedCrossRefGoogle Scholar
  30. de Wolf W, Feijtel T (1998) Terrestrial risk assessment for linear alkyl benzene sulfonate (LAS) in sludge-amended soils. Chemosphere 36:1319–1343PubMedCrossRefGoogle Scholar
  31. de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627. doi:
  32. Delépée R, Pouliquen H, Le Bris H (2004) The bryophyte Fontinalis antipyretica Hedw. bioaccumulates oxytetracycline, flumequine and oxolinic acid in the freshwater environment. Sci Total Environ 322:243–253PubMedCrossRefGoogle Scholar
  33. DeLorenzo M, Keller J, Arthur C, Finnegan M, Harper H, Winder V, Zdankiewicz D (2008) Toxicity of the antimicrobial compound triclosan and formation of the metabolite methyl‐triclosan in estuarine systems. Environ Toxicol 23:224–232PubMedCrossRefGoogle Scholar
  34. Eljarrat E, Barceló D (2003) Priority lists for persistent organic pollutants and emerging contaminants based on their relative toxic potency in environmental samples TrAC. Trends Anal Chem 22:655–665CrossRefGoogle Scholar
  35. Ellis B (1977) Degradation of phenolic compounds by fresh-water algae. Plant Sci Lett 8:213–216CrossRefGoogle Scholar
  36. Ellis JB (2006) Pharmaceutical and personal care products (PPCPs) in urban receiving waters. Environ Pollut 144:184–189. doi:10.1016/j.envpol.2005.12.018PubMedCrossRefGoogle Scholar
  37. Esaac E, Matsumura F (1980) Metabolism of insecticides by reductive systems. Pharmacol Ther 9:1–26PubMedCrossRefGoogle Scholar
  38. Fair PA et al (2009) Occurrence of triclosan in plasma of wild Atlantic bottlenose dolphins (Tursiops truncatus) and in their environment. Environ Pollut 157:2248–2254PubMedCrossRefGoogle Scholar
  39. Farré ML, Pérez S, Kantiani L, Barceló D (2008) Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends Anal Chem 27:991–1007CrossRefGoogle Scholar
  40. Fernandes M, Shareef A, Kookana R, Gaylard S, Hoare S, Kildea T (2011) The distribution of triclosan and methyl-triclosan in marine sediments of Barker Inlet, South Australia. J Environ Monitor 13:801–806CrossRefGoogle Scholar
  41. Field JA, Barber LB, Thurman EM, Moore BL, Lawrence DL, Peake DA (1992) Fate of alkylbenzenesulfonates and dialkyltetralinsulfonates in sewage-contaminated groundwater. Environ Sci Technol 26:1140–1148CrossRefGoogle Scholar
  42. Fitzgerald SA, Steuer JJ (2006) Association of polychlorinated biphenyls (PCBs) with live algae and total lipids in rivers-a field-based approach. Sci Total Environ 354:60–74. doi: 10.1016/j.scitotenv.2004.11.025 PubMedCrossRefGoogle Scholar
  43. Gibson DT (1978) Microbial transformation of aromatic pollutants. In: Hutzinger O, Van Lelyveld LH, Zoeteman BCJ (eds) Aquatic pollutants. Pergamon Press, New YorkGoogle Scholar
  44. Gledhill WE (1974) Linear alkylbenzene sulfonate: biodegradation and aquatic interactions. Adv Appl Microbiol 17:265–293PubMedCrossRefGoogle Scholar
  45. Gómez MJ, Gómez-Ramos MM, Malato O, Mezcua M, Férnandez-Alba AR (2010) Rapid automated screening, identification and quantification of organic micro-contaminants and their main transformation products in wastewater and river waters using liquid chromatography-quadrupole-time-of-flight mass spectrometry with an accurate-mass database. J Chromatogr A 1217:7038–7054PubMedCrossRefGoogle Scholar
  46. Guerin TF (1999) The anaerobic degradation of endosulfan by indigenous microorganisms from low-oxygen soils and sediments. Environ Pollut 106:13–21PubMedCrossRefGoogle Scholar
  47. Guiliano M, Boukir A, Doumenq P, Mille G, Crampon C, Badens E, Charbit G (2000) Supercritical fluid extraction of bal 150 crude oil asphaltenes. Energy Fuel 14:89–94CrossRefGoogle Scholar
  48. Harding LW Jr, Phillips JH Jr (1978) Polychlorinated biphenyl (PCB) uptake by marine phytoplankton. Mar Biol 49:103–111CrossRefGoogle Scholar
  49. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15. doi: 10.1016/j.jhazmat.2009.03.137 PubMedCrossRefGoogle Scholar
  50. Herbes SE, Schwall LR (1978) Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments. Appl Environ Microbiol 35:306–316PubMedPubMedCentralGoogle Scholar
  51. Hirooka T et al (2005) Biodegradation of bisphenol A and disappearance of its estrogenic activity by the green alga Chlorella fusca var. vacuolata. Environ Toxicol Chem 24:1896–1901PubMedCrossRefGoogle Scholar
  52. Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109–118PubMedCrossRefGoogle Scholar
  53. Horvath RS (1972) Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev 36:146PubMedPubMedCentralGoogle Scholar
  54. Huerta-Fontela M, Galceran MT, Ventura F (2010) Fast liquid chromatography-quadrupole-linear ion trap mass spectrometry for the analysis of pharmaceuticals and hormones in water resources. J Chromatogr A 1217:4212–4222. doi: 10.1016/j.chroma.2009.11.007 PubMedCrossRefGoogle Scholar
  55. Hyland KC, Dickenson ER, Drewes JE, Higgins CP (2012) Sorption of ionized and neutral emerging trace organic compounds onto activated sludge from different wastewater treatment configurations. Water Res 46:1958–1968. doi: 10.1016/j.watres.2012.01.012 PubMedCrossRefGoogle Scholar
  56. IARC (1983) Polynuclear aromatic compounds, Part 1, chemical, environmental and experimental data. IARC Monogr Eval Carcinog Risk Chem Hum 32:1–453.Google Scholar
  57. Ishihara K, Nakajima N (2003) Improvement of marine environmental pollution using eco-system: decomposition and recovery of endocrine disrupting chemicals by marine phyto-and zooplanktons. J Mol Catal B Enzym 23:419–424CrossRefGoogle Scholar
  58. Jacob-Lopes E, Revah S, Hernández S, Shirai K, Franco TT (2009) Development of operational strategies to remove carbon dioxide in photobioreactors. Chem Eng J 153:120–126CrossRefGoogle Scholar
  59. Jacobs MN, Nolan GT, Hood SR (2005) Lignans, bacteriocides and organochlorine compounds activate the human pregnane X receptor (PXR). Toxicol Appl Pharmacol 209:123–133PubMedCrossRefGoogle Scholar
  60. Jacobson SN, Alexander M (1981) Enhancement of the microbial dehalogenation of a model chlorinated compound. Appl Environ Microbiol 42:1062–1066PubMedPubMedCentralGoogle Scholar
  61. Kaplan S (2013) Review: pharmacological pollution in water. Crit Rev Environ Sci Technol 43:1074–1116. doi: 10.1080/10934529.2011.627036 CrossRefGoogle Scholar
  62. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res 42:3498–3518. doi: 10.1016/j.watres.2008.04.026 PubMedCrossRefGoogle Scholar
  63. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2009) The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res 43:363–380. doi: 10.1016/j.watres.2008.10.047 PubMedCrossRefGoogle Scholar
  64. Katz DR, Cantwell MG, Sullivan JC, Perron MM, Burgess RM, Ho KT, Charpentier MA (2013) Factors regulating the accumulation and spatial distribution of the emerging contaminant triclosan in the sediments of an urbanized estuary: Greenwich Bay, Rhode Island, USA. Sci Total Environ 443:123–133PubMedCrossRefGoogle Scholar
  65. Kobayashi H, Rittmann BE (1982) Microbial removal of hazardous organic compounds. Environ Sci Technol 16:170A–183ACrossRefGoogle Scholar
  66. Kölbener P, Baumann U, Leisinger T, Cook AM (1995) Nondegraded metabolites arising from the biodegradation of commercial linear alkylbenzenesulfonate (LAS) surfactants in a laboratory trickling filter. Environ Toxicol Chem 14:561–569CrossRefGoogle Scholar
  67. Koziol AS, Pudykiewicz JA (2001) Global-scale environmental transport of persistent organic pollutants. Chemosphere 45:1181–1200PubMedCrossRefGoogle Scholar
  68. Kuch HM, Ballschmiter K (2000) Determination of endogenous and exogenous estrogens in effluents from sewage treatment plants at the ng/L-level. Fresenius J Anal Chem 366:392–395PubMedCrossRefGoogle Scholar
  69. Kullman SW, Matsumura F (1996) Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol 62:593–600PubMedPubMedCentralGoogle Scholar
  70. Kumar A, Xagoraraki I (2010) Pharmaceuticals, personal care products and endocrine-disrupting chemicals in U.S. surface and finished drinking waters: a proposed ranking system. Sci Total Environ 408:5972–5989. doi: 10.1016/j.scitotenv.2010.08.048 PubMedCrossRefGoogle Scholar
  71. Kumar KS, Priya SM, Peck AM, Sajwan KS (2010) Mass loadings of triclosan and triclocarbon from four wastewater treatment plants to three rivers and landfill in Savannah, Georgia, USA. Arch Environ Contam Toxicol 58:275–285PubMedCrossRefGoogle Scholar
  72. Lara R, Wiencke C, Ernst W (1989) Association between exudates of brown algae and polychlorinated biphenyls. J Appl Phycol 1:267–270CrossRefGoogle Scholar
  73. Laville N, Aıt-Aıssa S, Gomez E, Casellas C, Porcher J (2004) Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes. Toxicology 196:41–55PubMedCrossRefGoogle Scholar
  74. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315PubMedPubMedCentralGoogle Scholar
  75. Lei AP, Hu ZL, Wong YS, Tam NF (2007) Removal of fluoranthene and pyrene by different microalgal species. Bioresour Technol 98(2):273–280PubMedCrossRefGoogle Scholar
  76. Li X, Zheng W, Kelly WR (2013) Occurrence and removal of pharmaceutical and hormone contaminants in rural wastewater treatment lagoons. Sci Total Environ 445–446:22–28. doi: 10.1016/j.scitotenv.2012.12.035 PubMedCrossRefGoogle Scholar
  77. Lin AY-C, Reinhard M (2005) Photodegradation of common environmental pharmaceuticals and estrogens in river water. Environ Toxicol Chem 24:1303–1309PubMedCrossRefGoogle Scholar
  78. Liu Y, Dai X, Wei J (2013) Toxicity of the xenoestrogen nonylphenol and its biodegradation by the alga Cyclotella caspia. J Environ Sci 25:1662–1671CrossRefGoogle Scholar
  79. Luther M (1990) Degradation of different substituted aromatic compounds as nutrient sources by the green alga Scenedesmus obliquus. In: Dechema biotechnol conference, 1990, pp 613–615Google Scholar
  80. Luther M, Soeder C (1987) Some naphthalenesulfonic acids as sulfur sources for the green microalga, Scenedesmusobliquus. Chemosphere 16:1565–1578CrossRefGoogle Scholar
  81. Lynn SG, Price DJ, Birge WJ, Kilham SS (2007) Effect of nutrient availability on the uptake of PCB congener 2, 2′, 6, 6′-tetrachlorobiphenyl by a diatom (Stephanodiscus minutulus) and transfer to a zooplankton (Daphnia pulicaria). Aquat Toxicol 83:24–32PubMedCrossRefGoogle Scholar
  82. Maguire RJ (1999) Review of the persistence of nonylphenol and nonylphenol ethoxylates in aquatic environments. Water Qual Res J Can 34:37–78Google Scholar
  83. Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278. doi:
  84. Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663PubMedCrossRefGoogle Scholar
  85. Matamoros V, Gutierrez R, Ferrer I, Garcia J, Bayona JM (2015) Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. J Hazard Mater 288:34–42. doi: 10.1016/j.jhazmat.2015.02.002 PubMedCrossRefGoogle Scholar
  86. Matsumura F, Benezet HJ (1978) Microbial degradation of insecticides. In: Hill IR, Wright SJL (eds) Pesticide microbiology. Academic, New YorkGoogle Scholar
  87. Matsumura F, Esaac EG (1979) Degradation of pesticides by algae and microorganisms. In: Khan NAO, Lech JJ, Menn JJ (eds) Pesticides and xenobiotic metabolism in aquatic organisms. American Chemical Society, Washington, pp 371–387CrossRefGoogle Scholar
  88. Megharaj M, Venkateswarlu K, Rao AS (1987) Metabolism of monocrotophos and quinalphos by algae isolated from soil. Bull Environ Contam Toxicol 39:251–256PubMedCrossRefGoogle Scholar
  89. Megharaj M, Madhavi D, Sreenivasulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53:292–297PubMedCrossRefGoogle Scholar
  90. Megharaj M, Kantachote D, Singleton I, Naidu R (2000) Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environ Pollut 109:35–42PubMedCrossRefGoogle Scholar
  91. Meulenberg R, Rijnaarts HH, Doddema HJ, Field JA (1997) Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiol Lett 152:45–49PubMedCrossRefGoogle Scholar
  92. Miskus RP, Blair DP, Casida JE (1965) Conversion of DDT to DDD by bovine rumen fluid, lake water, and reduced porphyrins. J Agric Food Chem 13:481–483CrossRefGoogle Scholar
  93. Munoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815PubMedCrossRefGoogle Scholar
  94. Muñoz R, Alvarez MT, Muñoz A, Terrazas E, Guieysse B, Mattiasson B (2006) Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium. Chemosphere 63:903–911PubMedCrossRefGoogle Scholar
  95. Neudorf S, Khan MAQ (1975) Pick-up and metabolism of DDT, dieldrin and photodieldrin by a fresh water alga (Ankistrodesmus amalloides) and a microcrustacean (Daphnia pulex). Bull Environ Contam Toxicol 13:443–450PubMedCrossRefGoogle Scholar
  96. Neuwoehner J, Escher BI (2011) The pH-dependent toxicity of basic pharmaceuticals in the green algae Scenedesmus vacuolatus can be explained with a toxicokinetic ion-trapping model. Aquat Toxicol 101:266–275. doi: 10.1016/j.aquatox.2010.10.008 PubMedCrossRefGoogle Scholar
  97. Nomura Y, Ikebukuro K, Yokoyama K, Takeuchi T, Arikawa Y, Ohno S, Karube I (1998) Application of a linear alkylbenzene sulfonate biosensor to river water monitoring. Biosens Bioelectron 13:1047–1053PubMedCrossRefGoogle Scholar
  98. Ojo OA, Oso BA (2009) Biodegradation of synthetic detergents in wastewater. Afr J Biotechnol 8:1090–1109Google Scholar
  99. Ojo-Omoniyi OA (2013) Biodegradation of synthetic detergents. In Chamy R, Rosenkranz R (eds) Biodegradation – life of science. InTech. doi: 10.5772/52777. Assessed 10 Apr 2015
  100. Olguín EJ (2012) Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery. Biotechnol Adv 30:1031–1046PubMedCrossRefGoogle Scholar
  101. Orvos DR, Versteeg DJ, Inauen J, Capdevielle M, Rothenstein A, Cunningham V (2002) Aquatic toxicity of triclosan. Environ Toxicol Chem 21:1338–1349PubMedCrossRefGoogle Scholar
  102. Oulton RL, Kohn T, Cwiertny DM (2010a) Pharmaceuticals and personal care products in effluent matrices: a survey of transformation and removal during wastewater treatment and implications for wastewater management. J Environ Monit: JEM 12:1956–1978. doi: 10.1039/c0em00068j PubMedCrossRefGoogle Scholar
  103. Oulton RL, Kohn T, Cwiertny DM (2010b) Pharmaceuticals and personal care products in effluent matrices: a survey of transformation and removal during wastewater treatment and implications for wastewater management. J Environ Monit 12:1956–1978PubMedCrossRefGoogle Scholar
  104. Pavlostathis SG, Prytula MT, Yeh DH (2003) Potential and limitations of microbial reductive dechlorination for bioremediation applications. Water Air Soil Pollut: Focus 3:117–129CrossRefGoogle Scholar
  105. Peakall D (1992) The role of biomarkers in environmental assessment. In: Animal biomarkers as pollution indicators. Springer, Dordrecht, pp 201–226CrossRefGoogle Scholar
  106. Perales-Vela HV, Peña-Castro JM, Canizares-Villanueva RO (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64:1–10PubMedCrossRefGoogle Scholar
  107. Perelo LW (2010) Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81–89. doi: 10.1016/j.jhazmat.2009.12.090 PubMedCrossRefGoogle Scholar
  108. Perron MM, Ho KT, Cantwell MG, Burgess RM, Pelletier MC (2012) Effects of triclosan on marine benthic and epibenthic organisms. Environ Toxicol Chem 31:1861–1866PubMedCrossRefGoogle Scholar
  109. Petrie B, Barden R, Kasprzyk-Hordern B (2014a) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res. doi: 10.1016/j.watres.2014.08.053
  110. Petrie B, Barden R, Kasprzyk-Hordern B (2014b) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res (in press). doi: 10.1016/j.watres.2014.1008.1053
  111. Petrović M, Gonzalez S, Barceló D (2003) Analysis and removal of emerging contaminants in wastewater and drinking water TrAC. Trends Anal Chem 22:685–696CrossRefGoogle Scholar
  112. Pfaender FK, Bartholomew GW (1982) Measurement of aquatic biodegradation rates by determining heterotrophic uptake of radiolabeled pollutants. Appl Environ Microbiol 44:159–164PubMedPubMedCentralGoogle Scholar
  113. Pinto G, Pollio A, Previtera L, Temussi F (2002) Biodegradation of phenols by microalgae. Biotechnol Lett 24:2047–2051CrossRefGoogle Scholar
  114. Prajapati SK, Kaushik P, Malik A, Vijay VK (2013a) Phycoremediation and biogas potential of native algal isolates from soil and wastewater. Bioresour Technol 135:232–238. doi:
  115. Prajapati SK, Kaushik P, Malik A, Vijay VK (2013b) Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnol Adv 31:1408–1425. doi:
  116. Rao D, Burns R (1990) The effect of surface growth of blue-green algae and bryophytes on some microbiological, biochemical, and physical soil properties. Biol Fertil Soils 9:239–244CrossRefGoogle Scholar
  117. Richardson SD, Ternes TA (2005) Water analysis: emerging contaminants and current issues. Anal Chem 77:3807–3838PubMedCrossRefGoogle Scholar
  118. Rosenzweig WD, Stotzky G (1980) Influence of environmental factors on antagonism of fungi by bacteria in soil: nutrient levels. Appl Environ Microbiol 39:354–360PubMedPubMedCentralGoogle Scholar
  119. Ryan CC, Tan DT, Arnold WA (2011) Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent. Water Res 45:1280–1286PubMedCrossRefGoogle Scholar
  120. Saeger VW, Thompson QE (1980) Biodegradability of halogen-substituted diphenylmethanes. Environ Sci Technol 14:705–709PubMedCrossRefGoogle Scholar
  121. Savage C (1971) NEW bacteriostat for skin care products. Drug Cosmet Ind 109:36–39Google Scholar
  122. Schoeny R, Cody T, Warshawsky D, Radike M (1988) Metabolism of mutagenic polycyclic aromatic hydrocarbons by photosynthetic algal species. Mutat Res 197:289–302PubMedCrossRefGoogle Scholar
  123. Sedlak DL, Gray JL, Pinkston KE (2000) Peer reviewed: understanding microcontaminants in recycled water. Environ Sci Technol 34:508A–515APubMedCrossRefGoogle Scholar
  124. Semple KT, Cain RB (1996) Biodegradation of phenols by the alga Ochromonas danica. Appl Environ Microbiol 62:1265–1273PubMedPubMedCentralGoogle Scholar
  125. Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170:291–300CrossRefGoogle Scholar
  126. Semple KT, Cain RB, Schmidt S (2009) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170:291–300CrossRefGoogle Scholar
  127. Sethunathan N, Megharaj M, Chen ZL, Williams BD, Lewis G, Naidu R (2004) Algal degradation of a known endocrine disrupting insecticide, α-endosulfan, and its metabolite, endosulfan sulfate, in liquid medium and soil. J Agric Food Chem 52:3030–3035PubMedCrossRefGoogle Scholar
  128. Shivaramaiah H (2000) Organochlorine pesticides in agroecosystems: monitoring residues with suitable strategies for their management and remediation. Department of Agricultural Chemistry & Soil Science, Faculty of Agriculture, University of SydneyGoogle Scholar
  129. Shriwastav A, Gupta SK, Ansari FA, Rawat I, Bux F (2014) Adaptability of growth and nutrient uptake potential of Chlorella sorokiniana with variable nutrient loading. Bioresour Technol 174:60–66PubMedCrossRefGoogle Scholar
  130. Sibila M, Garrido M, Perales J, Quiroga J (2008) Ecotoxicity and biodegradability of an alkyl ethoxysulphate surfactant in coastal waters. Sci Total Environ 394:265–274PubMedCrossRefGoogle Scholar
  131. Soto C, Hellebust JA, Hutchinson TC (1975) Effect of naphthalene and aqueous crude oil extracts on the green flagellate Chlamydomonas angulosa. II. Photosynthesis and the uptake and release of naphthalene. Can J Bot 53:118–126CrossRefGoogle Scholar
  132. Steen WC, Paris DF, Baughman GL (1980) Effects of sediment sorption on microbial degradation of toxic substances. Contam Sediment 1:477–482Google Scholar
  133. Stresser DM, Blanchard AP, Turner SD, Erve JC, Dandeneau AA, Miller VP, Crespi CL (2000) Substrate-dependent modulation of CYP3A4 catalytic activity: analysis of 27 test compounds with four fluorometric substrates. Drug Metab Dispos 28:1440–1448PubMedGoogle Scholar
  134. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv 29:896–907PubMedCrossRefGoogle Scholar
  135. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int 51:59–72. doi: 10.1016/j.envint.2012.10.007 PubMedCrossRefGoogle Scholar
  136. Subhadra BG (2010) Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach. Energy Pol 38:5892–5901CrossRefGoogle Scholar
  137. Sutherland TD, Horne I, Lacey MJ, Harcourt RL, Russell RJ, Oakeshott JG (2000) Enrichment of an endosulfan-degrading mixed bacterial culture. Appl Environ Microbiol 66:2822–2828PubMedPubMedCentralCrossRefGoogle Scholar
  138. Tang X, He LY, Tao XQ, Dang Z, Guo CL, Lu GN, Yi XY (2010) Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. J Hazard Mater 181:1158–1162. doi: 10.1016/j.jhazmat.2010.05.033 PubMedCrossRefGoogle Scholar
  139. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260. doi: 10.1016/S0043-1354(98)00099-2 CrossRefGoogle Scholar
  140. Thomas PE, Ryan D, Levin W (1976) An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem 75:168–176PubMedCrossRefGoogle Scholar
  141. Thomas D, Macdonald R, Cornford A (1986) Geochemical mass-balance calculations for the coastal Beaufort sea, NWT Canada Rapports et procès-verbaux des réunions-Conseil international pour l’exploration de la mer 186:165–184Google Scholar
  142. Tikoo V, Scragg AH, Shales SW (1997) Degradation of pentachlorophenol by microalgae. J Chem Technol Biotechnol 68:425–431CrossRefGoogle Scholar
  143. Tiwari M, Guha S (2013a) Simultaneous analysis of endosulfan, chlorpyrifos, and their metabolites in natural soil and water samples using gas chromatography-tandem mass spectrometry. Environ Monit Assess 185:8451–8463PubMedCrossRefGoogle Scholar
  144. Tiwari MK, Guha S (2013b) Kinetics of the biodegradation pathway of endosulfan in the aerobic and anaerobic environments. Chemosphere 93:567–573PubMedCrossRefGoogle Scholar
  145. Tyler C, Jobling S, Sumpter J (1998) Endocrine disruption in wildlife: a critical review of the evidence CRC. Crit Rev Toxicol 28:319–361PubMedCrossRefGoogle Scholar
  146. Ueno R, Wada S, Urano N (2008) Repeated batch cultivation of the hydrocarbon degrading, micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam. Can J Microbiol 54:66–70PubMedCrossRefGoogle Scholar
  147. US EPA (2009) The US Environmental Protection Agency’s strategic plan for evaluating the toxicity of chemicals. U.S. Environmental Protection Agency, Washington, DC, EPA100/K-09/001Google Scholar
  148. US EPA (2011) Exposure factors handbook 2011 edition (Final). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/052FGoogle Scholar
  149. Vernouillet G, Eullaffroy P, Lajeunesse A, Blaise C, Gagne F, Juneau P (2010) Toxic effects and bioaccumulation of carbamazepine evaluated by biomarkers measured in organisms of different trophic levels. Chemosphere 80:1062–1068. doi: 10.1016/j.Chemosphere.2010.05.010 PubMedCrossRefGoogle Scholar
  150. Voutsas E, Magoulas K, Tassios D (2002) Prediction of the bioaccumulation of persistent organic pollutants in aquatic food webs. Chemosphere 48:645–651PubMedCrossRefGoogle Scholar
  151. Walker J, Colwell R, Petrakis L (1975) Degradation of petroleum by an alga, Prototheca zopfii. Appl Microbiol 30:79–81PubMedPubMedCentralGoogle Scholar
  152. Warshawsky D, Cody T, Radike M, Reilman R, Schumann B, LaDow K, Schneider J (1995) Biotransformation of benzo [a] pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light. Chem Biol Interact 97:131–148PubMedCrossRefGoogle Scholar
  153. Webb S (2001) A data based perspective on the environmental risk assessment of human pharmaceuticals II—Aquatic risk characterisation. In: Pharmaceuticals in the Environment. Springer, Berlin, pp 203–219CrossRefGoogle Scholar
  154. Williams, A. (1996). Opportunities for chiral agrochemicals. Pesticide Science, 46(1):3–9Google Scholar
  155. Wilson BA, Smith VH, deNoyelles F, Larive CK (2003) Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages. Environ Science Technol 37:1713–1719CrossRefGoogle Scholar
  156. Wodzinski RS, Coyle JE (1974) Physical state of phenanthrene for utilization by bacteria. Appl Microbiol 27:1081–1084PubMedPubMedCentralGoogle Scholar
  157. Wolfaardt G, Lawrence J, Robarts R, Caldwell D (1994) The role of interactions, sessile growth, and nutrient amendments on the degradative efficiency of a microbial consortium. Can J Microbiol 40:331–340PubMedCrossRefGoogle Scholar
  158. Wong J, Lai K, Wan C, Ma K, Fang M (2002) Isolation and optimization of PAH-degradative bacteria from contaminated soil for PAHs bioremediation. Water Air Soil Pollut 139:1–13CrossRefGoogle Scholar
  159. Wong-Wah-Chung P, Rafqah S, Voyard G, Sarakha M (2007) Photochemical behaviour of triclosan in aqueous solutions: kinetic and analytical studies. J Photochem Photobiol A Chem 191:201–208CrossRefGoogle Scholar
  160. Yamamoto T, Goto I, Kawaguchi O, Minagawa K, Ariyoshi E, Matsuda O (2008) Phytoremediation of shallow organically enriched marine sediments using benthic microalgae. Mar Pollut Bull 57:108–115PubMedCrossRefGoogle Scholar
  161. Yang X et al (2013) Occurrence and fate of PPCPs and correlations with water quality parameters in urban riverine waters of the Pearl River Delta, South China. Environ Sci Pollut Res Int 20:5864–5875. doi: 10.1007/s11356-013-1641-x PubMedCrossRefGoogle Scholar
  162. Ying G-G, Yu X-Y, Kookana RS (2007) Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Environ Pollut 150:300–305PubMedCrossRefGoogle Scholar
  163. Yu R-Q, Wang W-X (2004) Biokinetics of cadmium, selenium, and zinc in freshwater alga Scenedesmus obliquus under different phosphorus and nitrogen conditions and metal transfer to Daphnia magna. Environ Pollut 129:443–456PubMedCrossRefGoogle Scholar
  164. Yuste L, Corbella ME, Turiégano MJ, Karlson U, Puyet A, Rojo F (2000) Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiol Ecol 32:69–75PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Sanjay Kumar Gupta
    • 1
  • Amritanshu Shriwastav
    • 2
  • Sheena Kumari
    • 2
  • Faiz Ahmad Ansari
    • 2
  • Anushree Malik
    • 3
  • Faizal Bux
    • 2
  1. 1.Environmental Engineering, Department of Civil EngineeringIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.Institute for Water and Wastewater TechnologyDurban University of TechnologyDurbanSouth Africa
  3. 3.Rural Development TechnologyIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations