Skip to main content

Abstract

This article reviews Mach–Zehnder interferometer waveguiding structure-based optical switches in terms of their working principle, design, fabrication, and related performance issues. The effect of the material chosen and the use of tapered interferometric arms on the performance of such switching structures are also explained in brief. In the later part, discussion on the popular applications of the structure is given in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh, G., Yadav, R.P., Janyani, V.: High performance Machzehnder optical switch. Optica Applicata XLII(3), (2012). ISSN: 1899-7015, doi:10.5277/oa1203

  2. Singh, G., Yadav, R.P., Janyani, V., Ray, A.: Design of 2 × 2 optoelectronic switch based on MZI and study of the effect of electrode switching voltages. In: Proceedings of World Academy of Science, Engineering and Technology, Bangkok, vol. 29, pp. 401–407, May 2008. ISSN: 1307-6884

    Google Scholar 

  3. Maat, D.H.P.: InP-based integrated MZI switches for optical communication. A Ph.D. thesis, Department of Applied Physics, Delft University of Technology, The Netherlands, 9 Apr 2001

    Google Scholar 

  4. Zheng, C.T., Ma, C.S., Yan, X., Zhang, D.M.: Design of a spectrum-expanded polymer MZI electro-optic switch using two-phase generating couplers. Appl. Phys. B, Laser Opt. 1–10, (2010)

    Google Scholar 

  5. Cao, S.C., Noad, J., Sun, L., et al.: Small AC driving voltage for MZI-based GaAs-GaAlAs electrooptic modulators/switches with coplanar electrodes. IEEE Photon. Technol. Lett. 21(9), 584–586 (2009)

    Google Scholar 

  6. Singh, G., Sirohi, A., Varma, S.: Performance enhancement of a 2 × 2 multimode interference photonic switch using size modulated index regions. IETE J. Res. 59(5), 1–6 (2013)

    Google Scholar 

  7. Potasek, M.J., Yang, Y.: Multi terabit-per-second all-optical switching in a nonlinear directional coupler. IEEE J. Sel. Top. Quantum Elect. 8(3), 714–21 (2002)

    Google Scholar 

  8. Papadimitriou, G.I., Papazoglou, C., Pomportsis, A.S.: Optical switching. In: Wiley series in Microwave & Optical Engineering. Wiley Inter science (2007). ISBN: 0-471-68596-8

    Google Scholar 

  9. Singh, G., Yadav, R.P., Janyani, V.: Ti: LiNbO3 based Machzehnder interferometric all optical switches: a review. In: A chapter with New Advanced Technologies, pp. 311–322. INTECH Publication, Austria (2010). ISBN: 978-953-307-067-4

    Google Scholar 

  10. Wong, H.Y., Sorel, M., Bryce, A.C., Marsh, J.H., Arnold, J.M.: Monolithically integrated InGaAs–AlGaInAs MZI optical switch using quantum-well intermixing. IEEE Photon. Technol. Lett. 17(4), 783–785 (2005)

    Article  Google Scholar 

  11. Suzuki, K., Yamada, T., Moriwaki, O., et al.: Polarization-insensitive operation of Lithium Niobate with silica based PLC-based polarization diversity circuit. IEEE Photon. Technol. Lett. 20(10), 773–775 (2008)

    Google Scholar 

  12. Ducournau, G., Latry, O., Kétata, M.: Fiber based MZI structures: principles and required characteristics for efficient modulation format conversion. In: Passive Components and Fiber-based Devices II, Proceedings of SPIE, vol. 6019, 60190A (2005)

    Google Scholar 

  13. Li, H.P., Liao, J.K., Tank, X.G., et al.: 2 × 2 Polymeric electro-optic MZI-switch using MMI-couplers. In: SPIE Proceedings, vol. 7509, Nov 24 2009

    Google Scholar 

  14. Jun, X.X., Wu, C.S. et al., High-speed 2 × 2 Silicon-based EO-switch with nanosecond switch time. Chinese Physics B 18(9), (2009). IOP Science

    Google Scholar 

  15. Yahya, E.H.M.: Mach–Zehnder interferometer, An M. Tech thesis, Faculty of Electrical Engineering, University of Technology Malaysia, Apr 2007

    Google Scholar 

  16. Rahman, M.S.A., Shaktur, K.M., Mohammad, R.: Analytical and simulation of new electro-optic 3 × 3 switch using a Ti: LiNbO3 waveguide medium. In: International Conference on Photonics, IEEEXplorer, pp. 1–5, Oct 14, 2010. ISBN: 978-1-4244-7186-7

    Google Scholar 

  17. Kenya, S., Yamada, T., Moriwaki, O., Takahashi, H., Okuno, M.: Polarization—insensitive MZI switch composed of an in phase shifter array and silica-based plc—integrated polarization beam splitter. OFC/NFOEC, IEEEXplorer (2008)

    Google Scholar 

  18. Hwang, W.Y., Oh, M.C., Lee, H.M., Park, H., Kim, J.J.: Polymeric 2 × 2 EO-switch consisting of asymmetric Y junctions and MZI. IEEE Photonics Tech. Lett. 9(6), 761–763 (1997)

    Article  Google Scholar 

  19. Cao, S., Sun, L., Savoie, M.: 2 × 2 MMI–MZI GaAs–GaAlAs Carrier-Injection Optical Switch, pp. 207–208. IEEEXplorer (2010). 978-1-4244-3731-3/10

    Google Scholar 

  20. Agrawal, N, Weinert, C.M., Ehrke, H.4, Mekonnen, G.G., Franke, D., Bornholdt, C., Langenhorst, R.: Fast 2 × 2 Mach–Zehnder optical space switches using InGaAsP–InP multiquantum—well structures. IEEE Photon. Technol. Lett. 7(6), 644–645, June 1995

    Google Scholar 

  21. Yong, H.T., Lee, H.S., Lee, El.H.: Design of Compact Silicon Optical Modulator Using Photonic Crystal MZI Structure, pp. 308−310. IEEEXplorer, 978-1-4244-1768-1/2008

    Google Scholar 

  22. Bentinia, G.G., Bianconia, M., Ceruttia, A., et al.: Integrated Mach–Zehnder micro-interferometer on LiNbO3. Opt. Lasers Eng. 45, 368–372 (2007)

    Article  Google Scholar 

  23. Jiang, W., Gu, L., Chen, X., Chen, R.T.: Photonic crystal waveguide modulators for silicon photonics: device physics and some recent progress. Solid-State Electronics 51(10), 1278–1286 (2007)

    Article  Google Scholar 

  24. Tekin, T.: Monolithically integrated gain shifted Mach−Zehnder Interferometer for all—optical demultiplexing. A Ph.D. thesis, Faculty of Electrical Engineering and Computer Science, Technical University of Berlin, Germany, 20 July2004

    Google Scholar 

  25. Beaumont, A.R., Atkins, C.G., Booth, R.C.: Optically induced drift effects in Lithium Niobate electro-optic waveguide devices operating at a wavelength of 1.51 µm. Electron. Lett. 22(23), 1260–1261 (1986)

    Google Scholar 

  26. Barnes, Charles E., Greenwell, Roger A.: Radiation effects in photonic modulator structures. Proc. SPIE 2482(48), 1–51 (1995)

    Google Scholar 

  27. Analui, B., Guckenberger, D., Kucharski, D., Narasimha, A.: A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13 µm CMOS–SOI technology. IEEE J. Solid-State Circuits 41(12), 2945–2955 (2006)

    Google Scholar 

  28. Singh, G., Yadav, R.P., Janyani, V.: Design of symmetric & asymmetric 2 × 2 all optical Ti: LiNbO3 MZI switches. Int. J. Comput. Appl. 33(1), 36–40 (2011). ISSN: 1925-7074, doi:10.2316/Journal.202.2011.1.202-2977

  29. Unger, H.G.: Planar Optical Waveguides and Fibres. Clarendon Press, Oxford (1977)

    Google Scholar 

  30. Snyder, A.W., Love , J.D.: Optical Waveguide Theory. Chapman and Hall, London (1983)

    Google Scholar 

  31. Ganguly, P., Biswas, J.C., Lahiri, S.K.: Modelling of Ti—indiffused Lithium Niobate channel waveguide bends: a matrix approach. Opt. Commun. 155, 125–134 (1998)

    Google Scholar 

  32. Minford, W.J., Korotky, S.K., Alferness, R.C.: Low–loss Ti: LiNbO3 waveguide ends at λ = 1.3 µm. IEEE J. Quant. Electron. QE–18(10), 1802–1806 (1982)

    Google Scholar 

  33. OptiBPM: Technical background and tutorials. Waveguide optics modeling software system, Version 8.0, 2nd edn. Optiwave Inc. (2006)

    Google Scholar 

  34. Singh, G., Yadav, R.P., Janyani,V.: Modeling of a 2 × 2 electro-optic Machzehnder interferometer optical switch with s-bend arms. Photonic Lett. Poland 3(3), 119–121 (2011). ISSN: 094

    Google Scholar 

  35. Singh, G., Bothra, S., Gupta, S., Yadav, R.P., Janyani, V.: Process optimization to design Ti-indiffused Lithium Niobate channel waveguide for MZI switching element. In: Micro-Technology, Proceedings of SPIE 8069, 80690 W, Prague, C.R (2011)

    Google Scholar 

  36. Singh, G., Bhatttacharjee, T.P., Mundra, R., Yadav, R.P., Janyani, V.: Design and analysis of the performance of MZI based all-optical switch exploiting the band gap shifting character of SOA’s. J. Opt. 38(1), 29–37, (2009). ISSN: 0972-8821

    Google Scholar 

  37. Wang, J.P., Robinson, B.S., et al.: Efficient performance optimization of SOA–MZI devices. Opt. Soc. Am. 1–5 (2007)

    Google Scholar 

  38. Jamro, M.Y., Senior, J.M., Leeson, M.S., Murtaza, G.: Chirp in a wavelength converter based on a symmetrical-MZI employing SOAs. Opt. Commun. 209(4–6), 321–328 (2002)

    Google Scholar 

  39. Singh, S., Kaler, R.S.: All optical wavelength converters based on cross phase modulation in SOA–MZI configuration. optik—Int. J. Light Electron Opt. 118(8), 390–394 (2007)

    Google Scholar 

  40. Singh, G., Yadav, R.P., Janyani, V., Sharma, R.: Performance analysis for all optical switch based on MZI switching element with SOA’s. In: Optical Metro Networks and Short-Haul Systems, Proceedings of SPIE, vol. 7235, 723509, San Jose, CA, USA, Jan 26 2009

    Google Scholar 

  41. Houbavlis, T., Zoiros, K.E., Kanellos, G., Tsekrekos, C.: Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based MZI. Opt. Commun. 232(1–6), 179–199, March 1 2004

    Google Scholar 

  42. Ye, X., Ye, P., Zhang, M.: All-optical NAND gate using integrated SOA-based Mach–Zehnder interferometer. Opt. Fiber Technol. 12(4), 312–316 (2006)

    Google Scholar 

  43. Raffaelli, C., Vlachos, K., Andriolli, N., et al.: Photonics in switching: architectures, systems and enabling technologies. Comput. Netw. 52(10), 1873–1890, July 16 2008

    Google Scholar 

  44. Connelly, M.: Semiconductor optical amplifiers and their applications. OPTOEL (2003)

    Google Scholar 

Download references

Acknowledgment

The author (A.I. Stanley) gratefully acknowledges the excellent design and simulation facilities available at the Department of Electronics and Communication Engineering for optics research at MNIT Jaipur and the tertiary education trust fund (TETFUND) awarded by Ebonyi State University, Abakaliki (Nigeria) to visit and work at MNIT Jaipur (India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Stanley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this paper

Cite this paper

Stanley, A.I., Ghanshyam Singh, James Eke, Hiroyuki Tsuda (2016). Mach–Zehnder Interferometer: A Review of a Perfect All-Optical Switching Structure. In: Afzalpulkar, N., Srivastava, V., Singh, G., Bhatnagar, D. (eds) Proceedings of the International Conference on Recent Cognizance in Wireless Communication & Image Processing. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2638-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2638-3_48

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2636-9

  • Online ISBN: 978-81-322-2638-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics