Skip to main content
  • 1129 Accesses

Abstract

In this paper, a temperature sensor is designed and simulated using an interferometric configuration formed by inserting a photonic crystal fiber (PCF) between two single-mode fibers (SMFs). In this device, phase delay at the output is achieved by the index difference between core mode and cladding mode of PCF. In this type of interferometer, greater index difference is possible because of air-hole structure of PCF. It indicates that a small length of PCF can introduce large delay, i.e., large phase shift while keeping optical loss of the cladding mode at a relatively low level. With increase in temperature, effective refractive index difference between core and cladding of PCF decreases which results in decrease in peak output power of the interferometer. Variation of output power with temperature is observed to be linear; it is thus applicable as a temperature sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knight, J.C., Birks, T.A., Russell, P.S.J., Atkin, D.M.: All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21(19), 1547–1549 (1996)

    Article  Google Scholar 

  2. Russell, P.: Photonic-crystal fibers. J. Lightwave Technol. 24(12), 4729–4749 (2006)

    Article  Google Scholar 

  3. Frazao, O., Baptista, J.M., Santos, J.L.: Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror. IEEE Sens. J. 7(10), 1453–1455 (2007)

    Article  Google Scholar 

  4. Li, Y., Chen, L., Harris, E., Bao, X.Y.: Double-pass in-line fiber taper Mach-Zehnder interferometer sensor. IEEE Photon. Technol. Lett. 22(23), 1750–1752 (2010)

    Article  Google Scholar 

  5. Fu, H.Y., Tam, H.Y., Shao, L.-Y., Dong, X.Y., Wai, P.K.A., Lu, C., Khijwania, S.K.: Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Appl. Opt. 47(15), 2835–2839 (2008)

    Article  Google Scholar 

  6. Qian, W.W., Zhao, C.L., He, S.L., Dong, X.Y., Zhang, S.Q., Zhang, Z.X., Jin, S.Z., Guo, J.T., Wei, H.F.: High- sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror. Opt. Lett. 36(9), 1548–1550 (2011)

    Article  Google Scholar 

  7. Zhao, C.L., Yang, X., Lu, C., Jin, W., Demokan, M.S.: Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror. IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004)

    Article  Google Scholar 

  8. Lim, J.H., Jang, H.S., Lee, K.S., Kim, J.C., Lee, B.H.: Mach–Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings. Opt. Lett. 29(4), 346–348 (2004)

    Article  Google Scholar 

  9. Monzón-Hernández, D., Minkovich, V.P., Villatoro, J., Kreuzer, M.P., Badenes, G.: Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules. Appl. Phys. Lett. 93(8), 081106 (2008)

    Article  Google Scholar 

  10. Villatoro, J., Minkovich, V.P., Pruneri, V., Badenes, G.: Simple all-microstructured optical-fiber interferometer built via fusion splicing. Opt. Express 15(4), 1491–1496 (2007)

    Article  Google Scholar 

  11. Choi, H.Y., Kim, M.J., Lee, B.H.: All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Opt. Express 15(9), 5711–5720 (2007)

    Article  MathSciNet  Google Scholar 

  12. Jha, R., Villatoro, J., Badenes, G.: Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing. Appl. Phys. Lett. 93(19), 191106 (2008)

    Article  Google Scholar 

  13. Jasim, A.A., Harun, S.W., Arof, H., Ahmad, H.: Inline Microfiber Mach–Zehnder interferometer for high temperature sensing. IEEE Sens. J. 13(2) (2013)

    Google Scholar 

  14. Verma, J.K., Dash, S.P., Tripathy, S.K.: Design of a concentration sensor based on photonic crystal fibre placed between two single mode fibres. Soft Nanosci. Lett. 3, 36–38 (2013)

    Google Scholar 

  15. http://www.google.co.in/imgres?imgurl=http://www.radiantzemax.com/content_images/glass/thermal/Fig1_IndexDataSi.jpg&imgrefurl=http://kben.radiantzemax.com/Knowledgebase/How-to-Fit-Temperature Dependent-Index-Data-to-the-Zemax-Thermal Model &h = 203&w = 500&tbnid = 4RWNqx_t7bFtM:&zoom = 1&docid = KyEOh4AFISkkM&ei = rOF4U5CJNM28uASqtoLoDg&tbm = isch

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rekha Mehra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this paper

Cite this paper

Rekha Mehra, Heena Shahani (2016). Temperature Sensor Using a SMF-PCF-SMF Heterostructure. In: Afzalpulkar, N., Srivastava, V., Singh, G., Bhatnagar, D. (eds) Proceedings of the International Conference on Recent Cognizance in Wireless Communication & Image Processing. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2638-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2638-3_21

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2636-9

  • Online ISBN: 978-81-322-2638-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics