Skip to main content

Manufacturing Process of Thermally Unstable Partially Oriented Yarns

  • Chapter
  • First Online:
tuPOY: Thermally Unstable Partially Oriented Yarns

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 23))

  • 219 Accesses

Abstract

The metamorphosis of tuPOY from basic organic raw materials to an advanced conducting fiber having metallic properties is discussed in this chapter. A step by step process of embedding conduction and radiation properties in tuPOY, with an elaborated stagewise analysis is presented. The production process is justified with parametric evaluation and analysis. Production process flow from a commercial manufacturing viewpoint is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The ester used in our experiments is AR grade. Dimethyl terephthalate procured from MERCK chemicals

  2. 2.

    The alcohol used in our experiments is XR grade. Ethylene Glycol procured from GlaxoSmithKline

  3. 3.

    Pressure extrusion to obtain a 78.2 denier tuPOY, is performed on a lab scale E10 from Oerlikon Barmeg with a titer of 0.5–1.5 dpf. Further information can be obtained at http://www.barmag.oerlikontextile.com/desktopdefault.aspx/tabid-431/.

References

  1. Calvert, P.: Polymers that make light work. Nature, 337, 408–409 (1989). http://dx.doi.org/10.1038/337408a0

    Google Scholar 

  2. Moore, W.R.: Adhesion and thermal degradation of high polymers. Nature 205, 1146–1147 (1965)

    Article  Google Scholar 

  3. Cheng, S.Z.D.: Materials science: Polymer crystals downsized. Nature 448, 1006–1007 (2007). http://dx.doi.org/10.1038/4481006a

    Google Scholar 

  4. Lemstra, P.J.: Confined polymers crystallize. Science 323(5915), 725–726 (2009). http://www.sciencemag.org/content/323/5915/725.short

    Google Scholar 

  5. Özkan, G., Ürkmez, G., Özkan, G.: Application of Box-Wilson optimization technique to the partially oriented yarn properties. Polym. Plast. Technol. Eng. 42(3), 459–470 (2003). http://www.scopus.com/inward/record.url?eid=2-s2.0-0042155545&partnerID=40&md5=8d844cfbe181b6ebf201aaeda2803d42 (cited By (since 1996) 5)

  6. Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T.: The path forward for biofuels and biomaterials. Science 311(5760), 484–489 (2006). http://www.sciencemag.org/content/311/5760/484.abstract

    Google Scholar 

  7. Brown, A.E., Reinhart, K.A.: Polyester fiber: from its invention to its present position. Science 173(3994), 287–293 (1971). http://www.sciencemag.org/content/173/3994/287.abstract

    Google Scholar 

  8. Smirnov, P.V., Repina, L.P., Bunigina, N.S., Aizenshtein, M., Kvasha, N.M., Kiselev, V.V.: Transesterification of dimethyl terephthalate with ethylene glycol. Fibre Chem. 15, 332–336 (1984). doi:10.1007/BF00548126. http://dx.doi.org/10.1007/BF00548126

  9. Ahn, Y.C., Choi, S.M.: Analysis of the esterification process for poly(ethylene terephthalate). Macromol. Res. 11, 399–409 (2003). doi:10.1007/BF03218968. http://dx.doi.org/10.1007/BF03218968

    Google Scholar 

  10. Ravindranath, K., Mashelkar, R.: Polyethylene terephthalate-II. Engineering analysis. Chem. Eng. Sci. 41(12), 2969–2987 (1986). http://www.sciencedirect.com/science/article/pii/0009250986850345

    Google Scholar 

  11. Yan, H., Chen, Z., Zheng, Y., Newman, C., Quinn, J.R., Dötz, F., Kastler, M., Facchetti, A.: A high-mobility electron-transporting polymer for printed transistors. Nature 457(7230), 679–686 (2009). http://www.ncbi.nlm.nih.gov/pubmed/19158674

    Google Scholar 

  12. Kim, O.K., Little, R.C., Patterson, R.L., Ting, R.Y.: Polymer structures and turbulent shear stability of drag reducing solutions. Nature 250, 408–410 (1974). http://dx.doi.org/10.1038/250408a0

    Google Scholar 

  13. Park, S.I., Xiong, Y., Kim, R.H., Elvikis, P., Meitl, M., Kim, D.H., Wu, J., Yoon, J., Yu, C.J., Liu, Z., Huang, Y., Hwang, K.C., Ferreira, P., Li, X., Choquette, K., Rogers, J.A.: Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325(5943), 977–981 (2009). http://www.sciencemag.org/content/325/5943/977.abstract

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Mustafa .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Mustafa, H.D., Karamchandani, S.H., Merchant, S.N., Desai, U.B. (2016). Manufacturing Process of Thermally Unstable Partially Oriented Yarns. In: tuPOY: Thermally Unstable Partially Oriented Yarns. Advanced Structured Materials, vol 23. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2632-1_2

Download citation

Publish with us

Policies and ethics