Skip to main content

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 23))

  • 238 Accesses

Abstract

Centuries ago a philosopher in Greece discovered static electricity. Little did he know that in this advanced age, this concept would achieve a new identity! Evolving on the basic concept of static electricity, a purely textile material tuPOY, having properties of metals is established in this chapter giving rise to a new dimension in the world of electronics. A piece of cloth belonging to a nonmetallic domain, through an innovative process translates to a material exhibiting metallic properties. Camouflaged textiles, metallic polymers, carbon nanotubes, and graphene composing the current state of art are compared and contrasted in performance and properties with tuPOY. With its innovative properties of metal and its ability to form a semiconductor, tuPOY emerges as a material holding potential to revolutionalize the technological domain of the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parvatikar, N., Jain, S., Khasim, S., Revansiddappa, M., Bhoraskar, S., Ambika Prasad, M.N.: Electrical and humidity sensing properties of polyaniline/WO3 composites. Sens. Actuators B: Chem. 114(2), 599–603 (2006)

    Article  Google Scholar 

  2. Massey, P.J.: Mobile phone fabric antennas integrated within clothing. In: Eleventh International Conference on Antennas and Propagation (IEE Conf. Publ. No. 480), vol. 1, pp. 344–347 (2001)

    Google Scholar 

  3. Declercq, F., Rogier, H.: Active integrated wearable textile antenna with optimized noise characteristics. IEEE Trans. Antennas Propag. 58(9), 3050–3054 (2010)

    Article  Google Scholar 

  4. Winterhalter, C., Teverovsky, J., Wilson, P., Slade, J., Farell, B., Horowitz, W., Tierney, E.: Development of electronic textiles for U.S. military protective clothing systems. Stud. Health Technol. Inform. 108, 194–198 (2004)

    PubMed  Google Scholar 

  5. Farringdon, J., Moore, A., Tilbury, N., Church, J., Biemond, P.: Wearable sensor badge and sensor jacket for context awareness. In: The Third International Symposium on Wearable Computers: Digest of Papers, pp. 107–113 (1999)

    Google Scholar 

  6. Lorussi, F., Rocchia, W., Scilingo, E., Tognetti, A., De Rossi, D.: Wearable, redundant fabric based sensor arrays for reconstruction of body segment posture. IEEE Sens. J. 4(6), 807–818 (2004)

    Article  Google Scholar 

  7. Mazzoldi, A., Rossi, D.D., Lorussi, F., Scilingo, E.P., Paradiso, R.: Smart textiles for wearable motion capture systems. AUTEX Res. J. 2(4), 199–203 (2002)

    Google Scholar 

  8. Troster, G.: The agenda of wearable healthcare. IMIA Yearbook of Medical Informatics 2005: Ubiquitous Health Care Systems, pp. 125–138 (2005), cited By (since 1996) 22

    Google Scholar 

  9. Engin, M., Demirel, A., Engin, E.Z., Fedakar, M.: Recent developments and trends in biomedical sensors. Measurement 37(2), 173–188 (2005). http://www.sciencedirect.com/science/article/pii/S0263224104001113

    Google Scholar 

  10. Xue, P., Tao, X., Kwok, K.W., Leung, M., Yu, T.: Electromechanical behavior of fibers coated with an electrically conductive polymer. Text. Res. J. 74(10), 929–936 (2004). http://trj.sagepub.com/content/74/10/929

    Google Scholar 

  11. Dunne, L., Brady, S., Smyth, B., Diamond, D.: Initial development and testing of a novel foam-based pressure sensor for wearable sensing. J. NeuroEng. Rehabil. 2(1), 4 (2005). http://www.jneuroengrehab.com/content/2/1/4

  12. Klemm, M., Troester, G.: Textile UWB antennas for wireless body area networks. IEEE Trans. Antennas Propag. 54(11), 3192–3197 (2006)

    Article  Google Scholar 

  13. Hertleer, C., Tronquo, A., Rogier, H., Vallozzi, L., Van Langenhove, L.: Aperture-coupled patch antenna for integration into wearable textile systems. IEEE Antennas Wirel. Propag. Lett. 6, 392–395 (2007)

    Article  Google Scholar 

  14. Rahman Osman, M.A., Bin Rahim, M.K.: Wearable textile antenna: fabrics investigation. J. Commun. Comput. 7(7), 75–80 (2010)

    Google Scholar 

  15. Ouyang, Y., Chappell, W.: High frequency properties of electro-textiles for wearable antenna applications. IEEE Trans. Antennas Propag. 56(2), 381–389 (2008)

    Article  Google Scholar 

  16. Locher, I., Klemm, M., Kirstein, T., Troster, G.: Design and characterization of purely textile patch antennas. IEEE Trans. Adv. Packag. 29(4), 777–788 (2006)

    Article  Google Scholar 

  17. Salonen, P., Yang, F., Rahmat Samii, Y., Kivikoski, M.: WEBGA—wearable electromagnetic band-gap antenna. In: Antennas and Propagation Society International Symposium, vol. 1, pp. 451–454. IEEE (2004)

    Google Scholar 

  18. Tronquo, A., Rogier, H., Hertleer, C., Van Langenhove, L.: Robust planar textile antenna for wireless body lans operating in 2.45 GHz ISM band. Electron. Lett. 42(3), 142–143 (2006)

    Article  Google Scholar 

  19. Ouyang, Y., Karayianni, E., Chappell, W.: Effect of fabric patterns on electrotextile patch antennas. In: Antennas and Propagation Society International Symposium, vol. 2B. pp. 246–249. IEEE (2005)

    Google Scholar 

  20. Park, H., Choi, J.: Design of broad quad-band planar inverted-F antenna for cellular/PCS/UMTS/DMB applications. Microw. Opt. Technol. Lett. 47(5), 418–421 (2005). http://dx.doi.org/10.1002/mop.21188

    Google Scholar 

  21. Chen, C.C., Volakis, J.L.: Bandwidth broadening of patch antennas using nonuniform substrates. Microw. Opt. Technol. Lett. 47(5), 421–423 (2005). http://dx.doi.org/10.1002/mop.21189

    Google Scholar 

  22. Dai, L., Soundarrajan, P., Kim, T.: Sensors and sensor arrays based on conjugated polymers and carbon nanotubes. Pure Appl. Chem. 74(9), 1753–1772 (2002)

    Article  Google Scholar 

  23. Harun, M.H., Saion, E., Kassim, A., Yahya, N., Mahmud, E.: Conjugated conducting polymers : a brief overview. Sens. Peterb. NH 2, 63–68 (2007). http://sedaya.edu.my/jasa/2/papers/08I.pdf

  24. Bhakshi, A., Bhalla, B.: Electrically conducting polymers: materials of the twenty first century. J. Sci. Ind. Res. 63(9), 392–395 (2004)

    Google Scholar 

  25. McNeill, C.: Organic devices. New perspectives provided from soft X-ray characterization. In: APS Meeting Abstracts, p. 41001 (2011)

    Google Scholar 

  26. Dhawan, S., Kumar, D., Ram, M., Chandra, S., Trivedi, D.: Application of conducting polyaniline as sensor material for ammonia. Sens. Actuators B: Chem. 40(2–3), 99–103 (1997). http://www.sciencedirect.com/science/article/pii/S092540059780247X

    Google Scholar 

  27. Bartlett, P.N., Ling-Chung, S.K.: Conducting polymer gas sensors part III: results for four different polymers and five different vapours. Sens. Actuators 20(3), 287–292 (1989). http://www.sciencedirect.com/science/article/pii/0250687489801271

    Google Scholar 

  28. Agbor, N., Petty, M., Monkman, A.: Polyaniline thin films for gas sensing. Sens. Actuators B: Chem. 28(3), 173–179 (1995). http://www.sciencedirect.com/science/article/pii/0925400595017259

    Google Scholar 

  29. Barker, P., Chen, J., Agbor, N., Monkman, A., Mars, P., Petty, M.: Vapour recognition using organic films and artificial neural networks. Sens. Actuators B: Chem. 17(2), 143–147 (1994). http://www.sciencedirect.com/science/article/pii/092540059487042X

    Google Scholar 

  30. Gök, A., Sari, B., Talu, M.: Conducting polyaniline sensors for some organic and inorganic solvents. Int. J. Polym. Anal. Charact. 11(3), 227–238 (2006). http://www.tandfonline.com/doi/abs/10.1080/10236660600678953

    Google Scholar 

  31. Brady, S., Diamond, D., Lau, K.T.: Inherently conducting polymer modified polyurethane smart foam for pressure sensing. Sens. Actuators A: Phys. 119(2), 398–404 (2005). http://www.sciencedirect.com/science/article/pii/S092442470400771X

    Google Scholar 

  32. Mazzone, A., Zhang, R., Kunz, A.: Novel actuators for haptic displays based on electroactive polymers. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, ser. VRST’03. New York, USA: ACM, pp. 196–204 (2003). http://doi.acm.org/10.1145/1008653.1008688

  33. Xia, F., Farmer, D.B., Lin, Y.M., Avouris, P.: Graphene field effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10(2), 715–718 (2010) pMID: 20092332. http://pubs.acs.org/doi/abs/10.1021/nl9039636

    Google Scholar 

  34. Odom, T.W., Huang, J.L., Kim, P., Lieber, C.M.: Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662), 62–64 (1998). http://dx.doi.org/10.1038/34145

    Google Scholar 

  35. Xu, Z., Buehler, M.J.: Strain controlled thermomutability of single-walled carbon nanotubes. Nanotechnology 20(18), 185701 (2009). http://www.ncbi.nlm.nih.gov/pubmed/19420624

    Google Scholar 

  36. Dresselhaus, M.S., Dresselhaus, G., Avouris, P.: Carbon nanotubes: synthesis, structure, properties, and applications. Topics in Applied Physics, vol. 80, pp. 29–53. Springer, Berlin (2001)

    Google Scholar 

  37. Wernik, J.M., Meguid, S.A.: Recent developments in multifunctional nanocomposites using carbon nanotubes. Appl. Mech. Rev. 63(5), 050801 (2010). http://link.aip.org/link/?AMR/63/050801/1

    Google Scholar 

  38. Hassanien, A., Tokumoto, M., Kumazawa, Y., Kataura, H., Maniwa, Y., Suzuki, S., Achiba, Y.: Atomic structure and electronic properties of single-wall carbon nanotubes probed by scanning tunneling microscope at room temperature. Appl. Phys. Lett. 73(26), 3839–3841 (1998). http://link.aip.org/link/?APL/73/3839/1

    Google Scholar 

  39. Kim, T.H., Doe, C., Kline, S.R., Choi, S.M.: Organic solvent redispersible isolated single wall carbon nanotubes coated by in-situ polymerized surfactant monolayer. Macromolecules 41(9), 3261–3266 (2008). http://pubs.acs.org/doi/abs/10.1021/ma702684e

    Google Scholar 

  40. Zhao, X., Liu, R.: Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ. Int. 40(0), 244–255 (2012). http://www.sciencedirect.com/science/article/pii/S0160412011002832

    Google Scholar 

  41. Murray, A., Kisin, E., Leonard, S., Young, S., Kommineni, C., Kagan, V., Castranova, V., Shvedova, A.: Oxidative stress and inflammatory response in dermal toxicity of single walled carbon nanotubes. Toxicology 257(3), 161–171 (2009). http://www.sciencedirect.com/science/article/pii/S0300483X08006124

    Google Scholar 

  42. Poland, C., Duffin, R., Kinloch, I., Maynard, A., Wallace, W., Seaton, A., Stone, V., Brown, S., MacNee, W., Donaldson, K.: Carbon nanotubes introduced into the abdominal cavity of mice show asbestos like pathogenicity in a pilot study. Nat. Nanotechnol. 3(7), 423–428 (2008)

    Article  PubMed  Google Scholar 

  43. Ramanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Herrera Alonso, M., Piner, R.D., Adamson, D.H., Schniepp, H.C., Chen, X., Ruoff, R.S.: Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3(6), 327–331 (2008). http://dx.doi.org/10.1038/nnano.2008.96

    Google Scholar 

  44. Lui, C.H., Li, Z., Mak, K.F., Cappelluti, E., Heinz, T.F.: Observation of an electrically tunable band gap in trilayer graphene. Nat. Phys. 7, 944–947 (2011)

    Article  Google Scholar 

  45. Wu, B.R.: Field modulation of the electronic structure of trilayer graphene. Appl. Phys. Lett. 98(26), 263107 (2011). http://link.aip.org/link/?APL/98/263107/1

    Google Scholar 

  46. Zook, J.M., Rastogi, V., Maccuspie, R.I., Keene, A.M., Fagan, J.: Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation. ACS Nano. http://dx.doi.org/10.1021/nn202645b

  47. Li, D., Mueller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3(2), 101–105 (2008). http://www.nature.com/nnano/journal/v3/n2/full/nnano.2007.451.html

    Google Scholar 

  48. Dragoman, M., Muller, A.A., Dragoman, D., Coccetti, F., Plana, R.: Terahertz antenna based on graphene. J. Appl. Phys. 107(10), 104313 (2010). http://link.aip.org/link/?JAP/107/104313/1

    Google Scholar 

  49. Wang, Y., Wu, Q., Shi, W., He, X., Sun, X., Gui, T.: Radiation properties of carbon nanotubes antenna at terahertz/infrared range. Int. J. Infrared Millim. Waves 29, 35–42 (2008). http://dx.doi.org/10.1007/s10762-007-9306-9

    Google Scholar 

  50. Song, L., Ci, L., Gao, W., Ajayan, P.M.: Transfer printing of graphene using gold film. ACS Nano 3(6), 1353–1356 (2009) pMID: 19438194. http://pubs.acs.org/doi/abs/10.1021/nn9003082

    Google Scholar 

  51. Attiya, M.: Lower frequency limit of carbon nanotube antenna. Prog. Electromagn. Res. 94, 419–433 (2009). http://link.aip.org/link/?JAP/107/104313/1

    Google Scholar 

  52. Shi, W., Wang, Y., Wu, Q., Wang, X.: Terahertz properties of carbon nanotubes antenna arrays. In: Zhang, C., Zhang, X.-C. (eds.) SPIE, vol. 6840, no. 1, p. 684006 (2007). http://link.aip.org/link/?PSI/6840/684006/1

  53. Mehdipour, A., Rosca, I.D., Sebak, A.R., Trueman, C.W., Hoa, S.V.: Full composite fractal antenna using carbon nanotubes for multiband wireless applications. IEEE Antennas Wirel. Propag. Lett. 9, 891–894 (2010)

    Article  Google Scholar 

  54. Hench, L.: Biomaterials. Science 208(4446), 826–831 (1980). http://www.sciencemag.org/content/208/4446/826.short

    Google Scholar 

  55. Calvert, P.: Polymers that make light work. Nature 337, 408–409 (1989). http://dx.doi.org/10.1038/337408a0

    Google Scholar 

  56. Moore, W.R.: Adhesion and thermal degradation of high polymers. Nature 205, 1146–1147 (1965)

    Article  Google Scholar 

  57. Cheng, S.Z.D.: Materials science: polymer crystals downsized. Nature 448, 1006–1007 (2007). http://dx.doi.org/10.1038/4481006a

    Google Scholar 

  58. Lemstra, P.J.: Confined polymers crystallize. Science 323(5915), 725–726 (2009). http://www.sciencemag.org/content/323/5915/725.short

    Google Scholar 

  59. Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T.: The path forward for biofuels and biomaterials. Science 311(5760), 484–489 (2006). http://www.sciencemag.org/content/311/5760/484.abstract

    Google Scholar 

  60. Brown, A.E., Reinhart, K.A.: Polyester fiber: from its invention to its present position. Science 173(3994), 287–293 (1971). http://www.sciencemag.org/content/173/3994/287.abstract

    Google Scholar 

  61. Yan, H., Chen, Z., Zheng, Y., Newman, C., Quinn, J.R., Dötz, F., Kastler, M., Facchetti, A.: A high-mobility electron-transporting polymer for printed transistors. Nature 457(7230), 679–686 (2009). http://www.ncbi.nlm.nih.gov/pubmed/19158674

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Mustafa .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Mustafa, H.D., Karamchandani, S.H., Merchant, S.N., Desai, U.B. (2016). Introduction. In: tuPOY: Thermally Unstable Partially Oriented Yarns. Advanced Structured Materials, vol 23. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2632-1_1

Download citation

Publish with us

Policies and ethics