Advertisement

Fast 3D Salient Region Detection in Medical Images Using GPUs

  • Rahul Thota
  • Sharan Vaswani
  • Amit Kale
  • Nagavijayalakshmi Vydyanathan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 390)

Abstract

Automated detection of visually salient regions is an activearea of research in computer vision. Salient regions can serve as inputs for object detectors as well as inputs for region-based registration algorithms. In this paper, we consider the problem of speeding up computationally intensive bottom-up salient region detection in 3D medical volumes. The method uses the Kadir–Brady formulation of saliency. We show that in the vicinity of a salient region, entropy is a monotonically increasing function of the degree of overlap of a candidate window with the salient region. This allows us to initialize a sparse seed point grid as the set of tentative salient region centers and iteratively converge to the local entropy maxima, thereby reducing the computation complexity compared to the Kadir–Brady approach of performing this computation at every point in the image. We propose two different approaches for achieving this. The first approach involves evaluating entropy in the four quadrants around the seed point and iteratively moving in the direction that increases entropy. The second approach we propose makes use of mean shift tracking framework to affect entropy maximizing moves. Specifically, we propose the use of uniform pmf as the target distribution to seek high entropy regions. We demonstrate the use of our algorithm on medical volumes for left ventricle detection in PET images and tumor localization in brain MR sequences.

Keywords

Seed Point Salient Region Target Distribution Thread Block Single Instruction Multiple Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Frintrop, S., Rome, E., Christensen, H.I.: Computational visual attention systems and their cognitive foundations: a survey. ACM Trans. Appl. Percept. (TAP) 7, 6 (2010)Google Scholar
  2. 2.
    Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2, 194–203 (2001)CrossRefGoogle Scholar
  3. 3.
    Itti, L., Koch, C.: Feature combination strategies for saliency-based visual attention systems. J. Electron. Imaging 10, 161–169 (2001)CrossRefGoogle Scholar
  4. 4.
    Frintrop, S.: The High Repeatability of Salient Regions. http://hal.inria.fr/inria-00325799
  5. 5.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, vol. 2, pp. 1150–1157. IEEE (1999)Google Scholar
  6. 6.
    Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995). doi: 10.1146/annurev.ne.18.030195.001205, http://dx.doi.org/10.1146/annurev.ne.18.030195.001205
  7. 7.
    Oliva, A., Torralba, A., Castelhano, M.S., Henderson, J.M.: Top-down control of visual attention in object detection. In: Proceedings of the ICIP (2003)Google Scholar
  8. 8.
    Corbetta, M., Shulman, G.L.: Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002). doi: 10.1038/nrn755, http://dx.doi.org/10.1038/nrn755
  9. 9.
    Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2106–2113. IEEE (2009)Google Scholar
  10. 10.
    Gao, D., Mahadevan, V., Vasconcelos, N.: The discriminant center-surround hypothesis for bottom-up saliency. In: NIPS, pp. 497–504 (2008)Google Scholar
  11. 11.
    Le Ngo, A.C., Qiu, G., Underwood, G., Ang, L.M., Seng, K.P.: Visual saliency based on fast nonparametric multidimensional entropy estimation. In: ICASSP, pp. 1305–1308. IEEE (2012)Google Scholar
  12. 12.
    Kadir, T., Brady, M.: Saliency, scale and image description. Int. J. Comput. Vis. 45, 83–105 (2001). doi: 10.1023/A:1012460413855, http://dx.doi.org/10.1023/A:1012460413855
  13. 13.
    Chen, X., Huang, H., Zheng, H., Li, C.: Adaptive bandwidth mean shift object detection.In: RAM, pp. 210–215 (2008)Google Scholar
  14. 14.
    Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: IEEE Conference on Computer Vision and Pattern Recognition. Proceedings, vol. 2, pp. 142–149. IEEE (2000)Google Scholar
  15. 15.
    Chen, X., Zhou, Y., Huang, X., Li, C.: Adaptive bandwidth mean shift object tracking. In: 2008 IEEE Conference on Robotics, Automation and Mechatronics, pp. 1011–1017 (2008). doi: 10.1109/RAMECH.2008.4681484
  16. 16.
    Vaswani, S., Thota, R., Vydyanathan, N., Kale, A.: Fast 3D structure localization in medical volumes using cuda-enabled gpus. In: 2012 2nd IEEE International Conference on Parallel Distributed and Grid Computing (PDGC), pp. 614–620 (2012)Google Scholar
  17. 17.
  18. 18.
    Hong, W., Georgescu, B., Zhou, X.S., Krishnan, S., Ma, Y., Comaniciu, D.: Database-guided simultaneous multi-slice 3D segmentation for volumetric data. In: Computer Vision-ECCV 2006, pp. 397–409. Springer (2006)Google Scholar
  19. 19.
    Ming-Kuei, Hu: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8, 179–187 (1962)MATHCrossRefGoogle Scholar
  20. 20.
    Chan, C., Kim, J., Feng, D., Cai, W.: Interactive fusion and contrast enhancement for whole body pet/ct data using multi-image pixel composting. In: Nuclear Science Symposium Conference Record, 2005 IEEE, vol. 5, pp. 2618–2621. IEEE (2005)Google Scholar
  21. 21.
    Maalej, N.: Image quality in different modalities of medical imaging with focus on mammography. Physics Department (2004)Google Scholar
  22. 22.
    Jackson, S., Thomas, R.: Introduction to CT PhysicsGoogle Scholar
  23. 23.
    Menze, B., Jakab, A., Bauer, S., Reyes, M., Prastawa, M., Van Leemput, K.: Multimodal brain tumor segmentation. MICCAI Challenge. http://www.imm.dtu.dk/projects/BRATS2012

Copyright information

© Springer India 2016

Authors and Affiliations

  • Rahul Thota
    • 1
  • Sharan Vaswani
    • 2
  • Amit Kale
    • 3
  • Nagavijayalakshmi Vydyanathan
    • 3
  1. 1.TargetBangaloreIndia
  2. 2.Department of Computer ScienceUniversity of British ColumbiaVancouverCanada
  3. 3.Imaging and Computer Vision GroupSiemens Corporate Research and TechnologyBangaloreIndia

Personalised recommendations