Radiation Dosimetry of Proton Beams

  • Narayan Sahoo
  • Gabriel O. Sawakuchi
  • Michael T. Gillin
  • Xiaorong R. Zhu


This chapter aims to review the currently practiced radiation dosimetry principles and procedures for passively scattered and magnetically scanned proton pencil beam spots (PPBS). Usefulness and limitations of various dose measuring devices, like ion chambers, films, solid-state detectors, gel, and plastic and liquid scintillators that are used in proton dosimetry are reviewed. Absolute or reference dosimetry procedures using calorimeter, ion chambers and Faraday cup are described. Relative dosimetry techniques for beam data collection are presented. Monitor unit calculation procedure for patient treatment fields for passively scattered fields using simple dosimetry factors is discussed. The detector size effects in the measurement of PPBS profiles and integral depth-dose are described. The importance of the contribution of low-dose envelopes present in PPBS profiles to 3-D dose distribution is discussed, and possible ways to measure and account for them in the modeling of PPBS in the treatment planning system are outlined. The feasibility of 3-D dosimetry using gel and liquid scintillators is discussed. Our experience at the Proton Therapy Center in Houston with the dosimetry of passively scattered and discrete spot-scanned proton beams including dose verification of patient treatment fields with intensity-modulated proton therapy is presented.


Dose Distribution Proton Beam Treatment Planning System Proton Therapy Monitor Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Krager CP, Jakel O, Palmans H, Kanai T. Dosimetry for ion beam radiotherapy. Phys Med Biol. 2010;55:R193–234.CrossRefGoogle Scholar
  2. 2.
    McEween M (2009) In “Clinical dosimetry measurements in radiotherapy (2009 AAPM Summer School)”. Medical physics monograph No. 34. Edited by Rodgers DWO and Cygler JE. Medical Physics Publishing, Madison, Wisconsin. APPM 2009 Summer School Proceedings.Google Scholar
  3. 3.
    IAEA. Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. Technical report series, vol. 398. Vienna: International Atomic Energy Agency; 2000.Google Scholar
  4. 4.
    ICRU 78. Prescribing, recording, and reporting proton-beam therapy (ICRU report 78) (Bethesda, MD: International Commission on Radiation Units and Measurements).Google Scholar
  5. 5.
    ICRU 59. Clinical proton dosimetry–Part I: Beam production, beam delivery and measurement of absorbed dose ICRU report no. 59 (Bethesda.MD: International Commission on Radiation Units and Measurements).Google Scholar
  6. 6.
    Pedroni E, Scheib S, Böhringer T, Coray A, Grossmann M, Lin S, Lomax A. Experimental characterization and physical modeling of the dose distribution of scanned proton pencil beams. Phys Med Biol. 2005;50:541–61.CrossRefPubMedGoogle Scholar
  7. 7.
    Tilly N, Grusell E, Kimstrand P, Lorin S, Gajewski K, Pettersson M, Bäcklund A, Glimelius B. Development and verification of the pulsed scanned proton beam at The Svedberg Laboratory in Uppsala. Phys Med Biol. 2007;52:2741–54.CrossRefPubMedGoogle Scholar
  8. 8.
    Grusell E, Isacsson U, Montelius A, Medin J. Faraday cup dosimetry in a proton therapy beam without collimation. Phys Med Biol. 1995;40:1831–40.CrossRefPubMedGoogle Scholar
  9. 9.
    Sahoo N, Zhu XR, Arjomandy B, Ciangaru G, Lii M, Amos R, Wu R, Gillin MT. A procedure for calculation of monitor units for passively scattered proton radiotherapy beams. Med Phys. 2008;35:5088–97.CrossRefPubMedGoogle Scholar
  10. 10.
    Carlsson AK, Andreo P, Brahme A. Monte Carlo and analytical calculation of proton pencil beams for computerized treatment plan optimization. Phys Med Biol. 1997;42:1033–53.CrossRefPubMedGoogle Scholar
  11. 11.
    Paganetti H. Monte Carlo simulations will change the way we treat patients with proton beams today. Br J Radiol. 2014;87(1040):20140293.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hong L, Goitein M, Bucciolini M, Comiskey R, Gottschalk B, Rosenthal S, Serago C, Urie M. A pencil beam algorithm for proton dose calculations. Phys Med Biol. 1996;41(8):1305–30.CrossRefPubMedGoogle Scholar
  13. 13.
    Schaffner B, Pedroni E, Lomax A. Dose calculation models for proton treatment planning using a dynamic beam delivery system: an attempt to include density heterogeneity effects in the analytical dose calculation. Phys Med Biol. 1999;44:27–41.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhao L, Das IJ. Gafchromic EBT film dosimetry in proton beams. Phys Med Biol. 2010;55:N291–301.CrossRefPubMedGoogle Scholar
  15. 15.
    Arjomandy B, Tailor R, Zhao L, Devic S. EBT2 film as a depth-dose measurement tool for radiotherapy beams over a wide range of energies and modalities. Med Phys. 2012;39:912–21.CrossRefPubMedGoogle Scholar
  16. 16.
    Nohtomi A, Terunuma T, Kohno R, Takada Y, Hayakawa Y, Maruhashi A, Sakae T. Response characteristics of an imaging plate to clinical proton beams. Nucl Inst Methods Phys Res A. 1999;424:569–74.CrossRefGoogle Scholar
  17. 17.
    Dhanesar S, Sahoo N, Kerr M, Taylor MB, Summers P, Zhu XR, Poenisch F, Gillin M. Quality assurance of proton beams using a multilayer ionization chamber system. Med Phys. 2013;40:092102.CrossRefPubMedGoogle Scholar
  18. 18.
    Gillin MT, Sahoo N, Bues M, Ciangaru G, Sawakuchi G, Poenisch F, Arjomandy B, Martin C, Titt U, Suzuki K, Smith AR, Zhu XR. Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas M.D. Anderson Cancer Center, Proton Therapy Center, Houston. Med Phys. 2010;37:154–63.CrossRefPubMedGoogle Scholar
  19. 19.
    Sawakuchi GO, Zhu XR, Poenisch F, Suzuki K, Ciangaru G, Titt U, Anand A, Mohan R, Gillin MT, Sahoo N. Experimental characterization of the low-dose envelope of spot scanning proton beams. Phys Med Biol. 2010;55:3467–78.Google Scholar
  20. 20.
    Yukihara EG, Gasparian PBR, Sawakuchi GO, Ruan C, Ahmad S, Kalavagunta C, Clouse WJ, Sahoo N, Titt U. Medical applications of optically stimulated luminescence dosimeters (OSLDs). Radiation Measurements 2010; 45:658–662.Google Scholar
  21. 21.
    Sahoo N, Ciangaru G, Sawakuchi GO, Anand A, Poenisch F, Suzuki K, Mohan R, Gillin M, Zhu X. Study of the magnitude of detector size effect in the measured lateral profiles of proton pencil beam spots. Med Phy (abstract). 2010;37:3293.CrossRefGoogle Scholar
  22. 22.
    Schwaab J, Brons S, Fieres J, Parodi K. Experimental characterization of lateral profiles of scanned proton and carbon ion pencil beams for improved beam models in ion therapy treatment planning. Phys Med Biol. 2011;56(24):7813–27.CrossRefPubMedGoogle Scholar
  23. 23.
    Anand A, Sahoo N, Zhu XR, Sawakuchi GO, Poenisch F, Amos RA, Ciangaru G, Titt U, Suzuki K, Mohan R, Gillin MT. A procedure to determine the planar integral spot dose values of proton pencil beam spots. Med Phys. 2012;39:891–900.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Moyers MF. “Proton Therapy”. In: Van Dyk J, editor. Modern Technology of Radiation Oncology. Wisconsin: Medical Physics Publishing; 1999. p. 863–4.Google Scholar
  25. 25.
    Kooy HM, Schaefer M, Rosenthal S, Bortfeld T. Monitor unit calculations for range-modulated spread-out Bragg peak field. Phys Med Biol. 2003;48:2797–808.CrossRefPubMedGoogle Scholar
  26. 26.
    Kooy HM, Rosenthal SJ, Engelsman M, Mazal A, Slopsema RL, Paganetti H, Flanz JB. The prediction of output factors for spread-out proton Bragg peak fields in clinical practice. Phys Med Biol. 2005;50:5847–56.CrossRefPubMedGoogle Scholar
  27. 27.
    Lin L, Shen J, Ainsley CG, Solberg TD, McDonough JE. Implementation of an improved dose-per-MU model for double-scattered proton beams to address interbeamline modulation width variability. J Appl Clin Med Phys. 2014;15(3):297–304.Google Scholar
  28. 28.
    Zheng Y, Ramirez E, Mascia A, Ding X, Okoth B, Zeidan O, Hsi W, Harris B, Schreuder AN, Keole S. Commissioning of output factors for uniform scanning proton beams. Med Phys. 2011;38:2299–306.CrossRefPubMedGoogle Scholar
  29. 29.
    Zhao Q, Wu H, Cheng CW, Das IJ. Dose monitoring and output correction for the effects of scanning field changes with uniform scanning proton beam. Med Phys. 2011;38:4655–61.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhao Q, Wu H, Wolanski M, Pack D, Johnstone PA, Das IJ. A sector-integration method for dose/MU calculation in a uniform scanning proton beam. Phys Med Biol. 2010;55:N87–95.CrossRefPubMedGoogle Scholar
  31. 31.
    Paganetti H. Monte Carlo calculations for absolute dosimetry to determine machine outputs for proton therapy fields. Phys Med Biol. 2006;51:2801–12.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhu XR, Poenisch F, Song X, Johnson JL, Ciangaru G, Taylor MB, Lii M, Martin C, Arjomandy B, Lee AK, Choi S, Nguyen QN, Gillin MT, Sahoo N. Patient-specific quality assurance for prostate cancer patients receiving spot scanning proton therapy using single-field uniform dose. Int J Radiat Oncol Biol Phys. 2011;81:552–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Zeidan OA, Sriprisan SI, Lopatiuk-Tirpak O, Kupelian PA, Meeks SL, Hsi WC, Li Z, Palta JR, Maryanski MJ. Dosimetric evaluation of a novel polymer gel dosimeter for proton therapy. Med Phys. 2010;37:2145–52.CrossRefPubMedGoogle Scholar
  34. 34.
    Deene YD, Vandecasteele J. On the reliability of 3D gel dosimetry. Journal of Physics: conference series 2013;444: 012015.Google Scholar
  35. 35.
    Beddar S, Archambault L, Sahoo N, Poenisch F, Chen GT, Gillin MT, Mohan R. Exploration of the potential of liquid scintillators for real-time 3D dosimetry of intensity modulated proton beams. Med Phys. 2009;36:1736–43.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Archambault L, Poenisch F, Sahoo N, Robertson D, Lee A, Gillin MT, Mohan R, Beddar S. Verification of proton range, position, and intensity in IMPT with a 3D liquid scintillator detector system. Med Phys. 2012;39:1239–46.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Narayan Sahoo
    • 1
  • Gabriel O. Sawakuchi
    • 1
  • Michael T. Gillin
    • 1
  • Xiaorong R. Zhu
    • 1
  1. 1.Department of Radiation PhysicsUT MD Anderson Cancer CenterHoustonUSA

Personalised recommendations