Development of C-Ion Radiotherapy Technologies in Japan

  • Koji Noda


The carbon-ion radiotherapy with HIMAC has been conducted since 1994, and the accumulated number of patients treated is around 10,000. During the first decade of the HIMAC study, NIRS had developed the respiratory-gating and layer-stacking irradiation methods, which have contributed to increase significantly the irradiation accuracy. On the basis of the HIMAC study, a compact carbon-ion RT facility was developed in order to boost the carbon-ion RT in Japan, and a pilot facility has been successfully conducted at the Gunma University, since 2010. Toward the further development of the HIMAC treatment, since 2006, NIRS has developed new treatment technologies such as a phase-controlled rescanning with a pencil beam and a compact-rotating gantry, which will boost the carbon-ion radiotherapy in the world.


Dose Distribution Pencil Beam Beam Delivery Residual Range Beam Delivery System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hirao Y, Ogawa H, Yamada S, Sato Y, Yamada T, Sato K, Itano A, Kanazawa M, Noda K, Kawachi K, Endo M, Kanai T, Kohno T, Sudou M, Minohara S, Kitagawa A, Soga F, Takada E, Watanabe S, Endo K, Kumada M, Matsumoto S. Heavy ion synchrotron for medical use. Nucl Phys. 1992;A538:541c–50.CrossRefGoogle Scholar
  2. 2.
    Noda K, Furukawa T, Fujisawa T, Iwata Y, Kanai T, Kanazawa M, Kitagawa A, Komori M, Minohara S, Murakami T, Muramatsu M, Satou S, Takei Y, Tashiro M, Torikoshi M, Yamada S, Yusa K. New accelerator facility for carbon-ion caner-therapy. J Radiat Res. 2007;48:A43–54.CrossRefPubMedGoogle Scholar
  3. 3.
    Noda K, Furukawa T, Fujimoto T, Inaniwa T, Iwata Y, Kanai T, Kanazawa M, Minohara S, Miyoshi T, Murakami T, Sano Y, Sato S, Takada E, Takei Y, Torikai K, Torikoshi M. New treatment facility for heavy-ion cancer therapy at HIMAC. Nucl Instrum Methods B. 2008;266:2182–5.CrossRefGoogle Scholar
  4. 4.
    Furukawa T, Inaniwa T, Sato S, Minohara S, Noda K, Kanai T. Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy. Med Phys. 2007;34(3):1085–97.CrossRefPubMedGoogle Scholar
  5. 5.
    Inaniwa T, Furukawa T, Kanematsu N, Mori S, Mizushima K, Sato S, Toshito T, Shirai T, Noda K. Evaluation of hybrid depth scanning for carbon-ion radiotherapy. Med Phys. 2012;39(5):2820–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Furukawa T, Inaniwa T, Sato S, Shirai T, Mori S, Takeshita E, Mizushima K, Himukai T, Noda K. Moving target irradiation with fast rescanning and gating in particle therapy. Med Phys. 2010;37(9):4874–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Furukawa T, Inaniwa T, Sato S, Shirai T, Takei Y, Takeshita E, Mizushima K, Iwata Y, Himukai T, Mori S, Fukuda S, Minohara S, Takada E, Murakami T, Noda K. Performance of the NIRS fast scanning system for heavy-ion radiotherapy. Med Phys. 2010;37(11):5672–82.CrossRefPubMedGoogle Scholar
  8. 8.
    Lomax AJ. Intensity modulation methods for proton radiotherapy. Phys Med Biol. 1999;44:185–205.CrossRefPubMedGoogle Scholar
  9. 9.
    Inaniwa T, Kanematsu N, Furukawa T, Hasegawa A. A robust algorithm of intensity modulated proton therapy for critical tissue sparing and target coverage. Phys Med Biol. 2011;56:4749–70.CrossRefPubMedGoogle Scholar
  10. 10.
    Torikoshi M, Monohara S, Kanematsu N, Komori M, Kanazawa M, Noda K, Miyahara N, Itoh H, Endo M, Kanai T. Irradiation system for HIMAC. J Radiat Res. 2007;48:A15–25.CrossRefPubMedGoogle Scholar
  11. 11.
    Kanai T, Furusawa Y, Fukutsu K, Itsukaichi H, Eguchi-Kasai K, Ohara H. Irradiation of mixed beam and designing of spread-out Bragg peak for heavy-ion radiotherapy. Radiat Res. 1997;147:78–85.CrossRefPubMedGoogle Scholar
  12. 12.
    Chu WT, Ludewigt BA, Renner TR. Instrumentation for treatment of cancer using proton and light-ion beams. Rev Sci Instrum. 1993;64(1993):2055–122.CrossRefGoogle Scholar
  13. 13.
    Minohara S, Kanai T, Endo M, Noda K, Kanazawa M. Respiration gated irradiation system for heavy-ion radiotherapy. Int J Radiol Oncol Biol Phys. 2000;47:1097–103.CrossRefGoogle Scholar
  14. 14.
    Noda K, Kanazawa M, Itano A, Takada E, Torikoshi M, Araki N, Yoshizawa J, Sato K, Yamada S, Ogawa H, Itoh H, Noda A, Tomizawa M, Yoshizawa M. Slow beam extraction by a transverse RF field with AM and FM. Nucl Inst Methods Phys Res A. 1996;374:269–77.CrossRefGoogle Scholar
  15. 15.
    Kanai T, Kanematsu N, Minohara S, Komori M, Torikoshi M, Asakura H, Ikeda N, Uno T, Takei T. Commissioning of a conformal irradiation system for heavy-ion radiotherapy using a layer-stacking method. Med Phys. 2006;33:2989.CrossRefPubMedGoogle Scholar
  16. 16.
    Yonai S, Kanematsu N, Komori M, Kanai T, Takei Y, Takahashi O, Isobe Y, Tashiro M, Koikegami H, Tomita H. Evaluation of beam wobbling methods for heavy-ion radiotherapy. Med Phys. 2008;35:927.CrossRefPubMedGoogle Scholar
  17. 17.
    Komori M, Furukawa T, Kanai T, Noda K. Optimization of spiral wobbler system for heavy-ion radiotherapy. Jpn J Appl Phys. 2004;43:6463–7.CrossRefGoogle Scholar
  18. 18.
    Kanai T, Kawachi K, Kumamoto Y, Ogawa H, Yamada T, Matsuzawa H, Inada T. Spot scanning system for proton radiotherapy. Med Phys. 1980;7:365–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Pedroni E, Bacher R, Blattmann H, Boehringer T, Coray A, Lomax A, Lin S, Munkel G, Scheib S, Schneider U, Tourovsky A. The 200-Mev proton therapy project at the Paul Scherrer Institute: conceptual design and practical realization. Med Phys. 1995;22:37–53.CrossRefPubMedGoogle Scholar
  20. 20.
    Haberer T, Becher W, Shardt D, Kraft G. Magnetic scanning system for heavy ion therapy. Nucl Instrum Methods A. 1993;330:296–305.CrossRefGoogle Scholar
  21. 21.
    Iwata Y, Noda K, Shirai T, Murakami T, Furukawa T, Mori S, Fujita T, Itano A, Shouda K, Mizushima K, Fujimoto T, Ogitsu T, Obana T, Amemiya N, Orikasa T, Takami S, Takayama S, Watanabe I. Design of a superconducting rotating gantry for heavy-ion therapy. Phys Rev ST Accel Beams. 2012;15:044701.Google Scholar
  22. 22.
    Sato S, Furukawa T, Noda K. Dynamic intensity control system with RF-knockout slow-extraction in the HIMAC synchrotron. Nucl Instr Methods A. 2007;574:226.Google Scholar
  23. 23.
    Inaniwa T, Furukawa T, Sato S, Tomitani T, Kobayashi M, Minohara S, Noda K, Kanai T. Development of treatment planning for scanning irradiation at HIMAC. Nucl Instrum Methods B. 2008;266:2194.Google Scholar
  24. 24.
    Iwata Y, Kadowaki T, Uchiyama H, Fujimoto T, Takada E, Shirai T, Furukawa T, Mizushima K, Takeshita E, Katagiri K, Sato S, Sano Y, Noda K. Multiple-energy operation with extended flattops at HIMAC. Nucl Intsrum Methods A. 2010;624:33.Google Scholar
  25. 25.
    Eickhoff H, Haberer Th, Schlitt B, Weinrich U. Hicat- the german hospital-based light ion cancer therapy project. Proc. EPAC04, 2004;290–4.Google Scholar
  26. 26.
    Furukawa T, Noda K. Compensation of the asymmetric phase–space distribution for a slowly extracted beam from a synchrotron. Nucl Intsrum Methods A. 2006;565:430.Google Scholar
  27. 27.
    Kanazawa M, et al. Saga-HIMAT project for carbon ion radiotherapy. Proceedings of 8th annual meeting of Particle Accelerator Society of Japan, Tsukuba, p.161–4.Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of Accelerator and Medical PhysicsNational Institute of Radiological SciencesChibaJapan

Personalised recommendations