Skip to main content

Development of Cyclotrons for Proton and Particle Therapy

  • Chapter
Book cover Particle Radiotherapy

Abstract

All particle therapy systems are modular systems built with smaller subsystems. The various modules are (1) the beam production system, (2) the beam transport system, and (3) the beam delivery system as shown in Fig. 2.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Livingston MS, Lawrence EO. The production of high speed light ions without the use of high voltages. Phys Rev. 1932;40:19–35.

    Article  Google Scholar 

  2. Veksler V. Concerning some new methods of acceleration of relativistic particles. Phys Rev. 1945;9:153.

    CAS  Google Scholar 

  3. McMillan EM. The synchrotron – a proposed high energy particle accelerator. Phys Rev. 1945;68:143.

    Article  CAS  Google Scholar 

  4. Umezawa M. Indianapolis. HITACHI proton beam therapy system. 2013. Particle Beam Therapy Symposium, 55th AAPM Annual Meeting, Indianapolis, Indiana.

    Google Scholar 

  5. Thomas LH. The paths of ions in the cyclotron. Phys Rev. 1938;54:580.

    Article  Google Scholar 

  6. Heyn FA, Tat KK. Operation of a radial sector fixed frequency proton cyclotron. Rev Sci Instrum. 1958;29:662.

    Article  CAS  Google Scholar 

  7. Christofilos N. 2736799 USA, 10 Mar 1950.

    Google Scholar 

  8. Courant ED, Livingston MS, Snyder HS. The strong-focusing synchrotron – a new high energy accelerator. Phys Rev. 1952;88:1190–6.

    Article  CAS  Google Scholar 

  9. Kerst DW, Terwilliger KM, Jones LW, Symon KR. A fixed field – alternating gradient accelerator with spirally ridged poles MURA-DWK/KMT/LWJ/KRS-3. Midwest Universities Research Assoc. s.l.: Unpublished. 1954.

    Google Scholar 

  10. Dunn PD, Mullett LB, Pickavance TG, Walkinshaw W, Wilkins JJ, editors. Accelerator Studies at A.E.R.E. Harwell, Symposium on high-energy accelerators and pion physics, vol. 1. Geneva: Edouard Regenstreiff; 1956. p. 11–23.

    Google Scholar 

  11. Hiramoto K, Coutrakon G. Synchrotron technology for particle therapy system. 2010. PTCOG 49 Educational Workshop, Chiba, Japan.

    Google Scholar 

  12. Bohm D, Foldy LL. Theory of the synchrocyclotron. Phys Rev. 1947;72:649–61.

    Article  CAS  Google Scholar 

  13. Bohm D, Foldy LL. Theory of synchrotron. Phys Rev. 1946;70:249.

    Article  CAS  Google Scholar 

  14. Wilson RR. Radiological use of fast protons. Radiology. 1946;47(5):487–91.

    Article  CAS  PubMed  Google Scholar 

  15. Lawrence Radiation Laboratory. LRL Accelerators. Berkeley, California 2010.

    Google Scholar 

  16. McMillan EM. Synchrocyclotron. s.l.: patent US 2615129A. 1947.

    Google Scholar 

  17. The Svedberg Laboratory Historical Notes. [Online] http://www.tsl.uu.se/About_TSL/Historical_notes/.

  18. Published work from Harvard Cyclotron Laboratory. [Online] http://users.physics.harvard.edu/~wilson/cyclotron/cyclotron_publications.html.

  19. Wilson RR. A brief history of the Harvard University Cyclotrons. [Online] 2003. http://users.physics.harvard.edu/~wilson/cyclotron/history.html.

  20. Optivus Proton Therapy Inc. History of Proton Therapy, California 2008.

    Google Scholar 

  21. Mills F, et al. Technical assessment of the Loma Linda University Proton Therapy Accelerator. Batavia: Fermi National Accelerator Laboratory; 1989.

    Google Scholar 

  22. Jongen Y, Laisne A, Lannoye G. France N. Preliminary design of a reduced cost proton therapy facility using a compact, high field isochronous cyclotron. European Particle Accelerator Conference. Nice, France 1990.

    Google Scholar 

  23. Jongen Y. Review on cyclotrons for cancer therapy. Lanzhou: International Conference on Cyclotrons and their Applications. 2010.

    Google Scholar 

  24. Schillo M, et al. Compact superconducting 250 MeV proton cyclotron for the PSI PROSCAN proton therapy project. In: Cyclotrons and their applications. East Lansing: S.n.; 2001.

    Google Scholar 

  25. Antaya T. High-field superconducting synchrocyclotron. PCT/US2007/001628. 19 Jan 2007.

    Google Scholar 

  26. World’s First MEVION S250 Proton Therapy Treatment Delivered at Barnes-Jewish Hospital. [Online] Mevion Medical Systems Inc., 19 Dec 2013. [Cited: 06 27, 2014.] http://www.mevion.com/archived-news/105--worlds-first-mevion-s250-proton-therapy-treatment-delivered-at-barnes-jewish-hospital.

  27. Kleeven W. The IBA superconducting synchrocyclotron project S2C2. Vancouver: Cyclotrons. 2013.

    Google Scholar 

  28. Ion Beam Applications. [Online] http://www.iba-protontherapy.com/proteusone-0.

  29. Kumata Y. Particle Therapy Technologies. 55th AAPM annual meeting, Indianapolis, Indiana 2013. p. 1.

    Google Scholar 

  30. Rocken H. Commissioning and Testing of Varian’s 250 MeV Superconducting ProBeam® Cyclotrons for Proton Therapy. Villigen: European Cyclotron Progress Meeting. 2012.

    Google Scholar 

  31. Tsutsui H, Hashimoto A, Mikami Y, Mitsubori H, Mitsumoto T, Touchi Y, Ueda T, Uno K, Watazawa K, Yajima S, Yoshida J, Yumoto K, Sumitomo Heavy Industries. Design Study of a Superconducting AVF Cyclotron for Proton Therapy. Ltd. Vancouver: Cyclotrons. 2013.

    Google Scholar 

  32. Radovinsky A, Minervini JV, Miller CE, Bromberg L, Michael P, Maggiore M. Superconducting magnets for ultra light and magnetically shielded, compact cyclotrons for medical, scientific, and security applications. IEEE Tran Appl Supercond. 2014;24:3.

    Article  Google Scholar 

  33. Radovinsky AL, Minervini JV, Michael PC, Bromberg L. Variable energy acceleration in a single iron-free. http://www.psfc.mit.edu/library1/catalog/reports/2010/13rr/13rr009/13rr009_full.pdf. [Online] September 2013.

  34. Mevion Medical Systems. [Online] www.mevion.com.

  35. Ueda H. Conceptual design of next generation HTS cyclotron. Osaka: IEEE Trans Appl Supercond. 2013;23:13.

    Google Scholar 

  36. Jongen Y. Cyclotrons from protons to Carbon for Hadron Therapy. Pasadena: PAC; 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Pearson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Pearson, E. et al. (2016). Development of Cyclotrons for Proton and Particle Therapy. In: Rath, A., Sahoo, N. (eds) Particle Radiotherapy. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2622-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2622-2_3

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2621-5

  • Online ISBN: 978-81-322-2622-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics