SFUD, IMPT, and Plan Robustness


Pencil beam scanning (PBS) [28, 60] is rapidly becoming the modality of choice for proton therapy. With this technique, the Bragg peaks of individually weighted proton pencil beams are scanned, or “painted,” over the target volume, through a combination of energy variations and two-dimensional magnetic deflections of the individual beams. In comparison to the more traditional passive scattering approach [34, 35], PBS can be fully automated in its delivery and is workflow efficient and, above all, extremely flexible. For this reason, most new proton facilities have at least one treatment room dedicated to PBS, with more and more new facilities opting for PBS only.


Dose Distribution Bragg Peak Relative Biological Effectiveness Proton Therapy Pencil Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Albertini F, Bolsi A, Ares C, Broggi S, Cattaneo G M and Lomax T. Advantage of using a MVCT for proton planning. Proceeding of the 44th PTCOG conference. Zurich: PSI; 2006.Google Scholar
  2. 2.
    Albertini F, Bolsi A, Lomax AJ, Rutz HP, Timmerman B, Goitein G. Sensitivity of intensity modulated proton therapy plans to changes in patient weight. Radiother Oncol. 2008;86:187–94.CrossRefPubMedGoogle Scholar
  3. 3.
    Albertini F, Gaignat S, Bosshardt M, Lomax AJ. Planning and optimizing treatment plans for actively scanned proton therapy. In: Censor Y, Jiang M, Wang G, editors. Biomedical mathematics: promising directions in imaging, therapy planning and inverse problems. Madison: Medical Physics Publishing; 2010. p. 1–18.Google Scholar
  4. 4.
    Albertini F, Hug EB, Lomax AJ. The influence of the optimization starting conditions on the robustness of intensity-modulated proton therapy plans. Phys Med Biol. 2010;55:2863–78.CrossRefPubMedGoogle Scholar
  5. 5.
    Albertini F, Hug EB, Lomax AJ. Is it necessary to plan with safety margins for actively scanned proton therapy? Phys Med Biol. 2011;56:4399–413.CrossRefPubMedGoogle Scholar
  6. 6.
    Ares C, Hug EB, Lomax AJ, Bolsi A, Timmermann B, Rutz HP, Schuller JC, Pedroni E, Goitein G. Effectiveness and safety of spot scanning proton radiation therapy for chordomas and chondrosarcomas of the skull base: first long-term report. Int J Radiat Oncol Biol Phys. 2009;75:1111–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Avery S. Simulation study of proton beam characterization through acoustic measurements. PTCOG 44 Shanghai; 2014.Google Scholar
  8. 8.
    Bernatowicz K, Lomax AJ, Knopf A. Comparative study of layered and volumetric rescanning for different scanning speeds of proton beam therapy in liver patients. Phys Med Biol. 2013;58:7905–20.CrossRefPubMedGoogle Scholar
  9. 9.
    Bert C, et al. Target motion tracking with a scanned particle beam. Med Phys. 2007;34:4768–71.CrossRefPubMedGoogle Scholar
  10. 10.
    Bert C, et al. Dosimetric precision of an ion beam tracking system. Radiat Oncol. 2010;5:61.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bert C, Durante M. Motion in radiotherapy: particle therapy. Phys Med Biol. 2011;56:R113–44.CrossRefPubMedGoogle Scholar
  12. 12.
    Bokrantz R. Multicriteria optimization for volumetric-modulated arc therapy by decomposition into a fluence-based relaxation and a segment weight-based restriction. Med Phys. 2012;39:6712–25.CrossRefPubMedGoogle Scholar
  13. 13.
    Boye D, Lomax AJ, Knopf A. Mapping motion from 4D-MRI to 3D-CT for use in 4D dose calculations: a technical feasibility study. Med Phys. 2013;40:0617021:11.CrossRefGoogle Scholar
  14. 14.
    Carabe A, Moteabbed M, Depauw N, Schuemann J, Paganetti H. Range uncertainty in proton therapy due to variable biological effectiveness. Phys Med Biol. 2012;57:1159–72.CrossRefPubMedGoogle Scholar
  15. 15.
    Chen W, Unkelbach J, Trofimov A, Madden T, Kooy H, Bortfeld T, Craft DL. Including robustness in multi-criteria optimization for intensity-modulated proton therapy. Phys Med Biol. 2012;57:591–608.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chen H, Craft DL, Gierga DP. Multicriteria optimization informed VMAT planning. Med Dosim. 2014;39:64–73.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Craft DL, Hong TS, Shih HA, Bortfeld TR. Improved planning time and plan quality through multicriteria optimization for intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82:83–90.CrossRefGoogle Scholar
  18. 18.
    Dietlicher I, Casiraghi M, Ares C, Bolsi A, Weber DC, Lomax AJ, Albertini F. The effect of surgical titanium rods on proton therapy delivered for cervical bone tumors: experimental validation using an anthropomorphic phantom. Phys Med Biol. 2014;59(23):7181–94.CrossRefPubMedGoogle Scholar
  19. 19.
    Evans PM. Anatomical imaging for radiotherapy. Phys Med Biol. 2008;53:R151–91.CrossRefPubMedGoogle Scholar
  20. 20.
    Furukawa T, et al. Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy. Med Phys. 2007;34:1085–97.CrossRefPubMedGoogle Scholar
  21. 21.
    Groezinger SO, et al. Simulations to design an online motion compensation system for scanned particle beams. Phys Med Biol. 2006;51:3517–31.CrossRefGoogle Scholar
  22. 22.
    Goitein M. Calculation of uncertainty in the dose delivered in radiation therapy. Med Phys. 1985;12:608–12.CrossRefPubMedGoogle Scholar
  23. 23.
    Hanley J, et al. Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation. Int J Radiat Oncol. 1999;45:603–11.CrossRefGoogle Scholar
  24. 24.
    Hashimoto T, et al. Repeated proton beam therapy for hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2006;65:196–202.CrossRefPubMedGoogle Scholar
  25. 25.
    Hof H, et al. Stereotactic single-dose radiotherapy of stage I non-small-cell lung cancer (NSCLC). Int J Radiat Oncol. 2003;56:335–41.CrossRefGoogle Scholar
  26. 26.
    ICRU Report 62. Prescribing, recording, and reporting photon beam therapy (Supplement to ICRU Report 50). Bethesda: ICRU; 1999.Google Scholar
  27. 27.
    Jermann M. Particle Therapy Worldwide-2013 Survey by PTCOG. PTCOG 53, Shanghai; 2014.Google Scholar
  28. 28.
    Kanai T, Kanai K, Kumamoto Y, Ogawa H, Yamada T, Matsuzawa H. Spot scanning system for radiotherapy. Med Phys. 1980;7:365–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Kanematsu N, Inaniwa T, Koba Y. Relationship between electron density and effective densities of body tissues for stopping, scattering and nuclear interactions of proton and ion beams. Med Phys. 2012;39:1016–20.CrossRefPubMedGoogle Scholar
  30. 30.
    Knopf AC, Hong TS, Lomax AJ. Scanned proton radiotherapy for mobile targets – the effectiveness of re-scanning in the context of different treatment planning approaches and for different motion characteristics. Phys Med Biol. 2011;56:7257–71.CrossRefPubMedGoogle Scholar
  31. 31.
    Knopf A, Boye D, Lomax AJ, Mori S. Adequate margin definition for scanned particle therapy in the incidence of intra-fractional motion. Phys Med Biol. 2013;58:6079–94.CrossRefPubMedGoogle Scholar
  32. 32.
    Knopf A, Lomax AJ. In-vivo range verification: a review. Phys Med Biol. 2013;58:R131–60.CrossRefPubMedGoogle Scholar
  33. 33.
    Koehler AM. Proton radiograpy. Science. 1968;160:303–4.CrossRefPubMedGoogle Scholar
  34. 34.
    Koehler AM, Schneider RJ, Sisterson JM. Range modulators for protons and heavy ions. Med Phys. 1975;131:437–40.Google Scholar
  35. 35.
    Koehler AM, Schneider RJ, Sisterson JM. Flattening of proton dose distributions for large fields. Nucl Instrum Methods. 1977;4:297–301.Google Scholar
  36. 36.
    Korreman SS. Motion in radiotherapy: photon therapy. Phys Med Biol. 2012;57:R161–91.CrossRefPubMedGoogle Scholar
  37. 37.
    Litzenberg DW, Bajema JF, Becchetti FD, et al. Online monitoring and PET imaging of proton radiotherapy beams. IEEE Trans Nucl Sci. 1993;40:954–6.Google Scholar
  38. 38.
    Litzenberg DW, Roberts DA, Lee MY. Online monitoring of radiotherapy beams: experimental results with proton beams. Med Phys. 1999;26:992–1006.CrossRefPubMedGoogle Scholar
  39. 39.
    Lomax AJ, Pedroni E, Schaffner B, Scheib S, Schneider U, Tourovsky A. 3D treatment planning for conformal proton therapy by spot scanning. In: Proceedings of 19th L H Gray conference. London: BIR Publishing; 1996. p. 67–71.Google Scholar
  40. 40.
    Lomax AJ. Intensity modulated methods for proton therapy. Phys Med Biol. 1999;44:185–205.CrossRefPubMedGoogle Scholar
  41. 41.
    Lomax AJ. Intensity modulated proton therapy. In: Delaney T, Kooy H, editors. Proton and charged particle radiotherapy. Boston: Lippincott, Williams and Wilkins; 2008.Google Scholar
  42. 42.
    Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 1: the potential effects of calculational uncertainties. Phys Med Biol. 2008;53:1027–42.CrossRefPubMedGoogle Scholar
  43. 43.
    Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions. Phys Med Biol. 2008;53:1043–56.CrossRefPubMedGoogle Scholar
  44. 44.
    Lu HM, et al. A respiratory-gated treatment system for proton therapy. Med Phys. 2007;34:3273–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Luechtenborg R, Saito N, Chaudhri N, Durante M, Rietzel E, Bert C. On-line compensation of dose changes introduced by tumor motion during scanned particle therapy. In: Doessel O, Schlegel W, editors. World congress on medical physics. 1st ed. Heidelberg: Springer; 2009. p. 449–52.Google Scholar
  46. 46.
    Min CH, Kim CH, Youn MY, et al. Prompt gamma measurements for locating the dose fall-off region in the proton therapy. Appl Phys Lett. 2006;89:183517.CrossRefGoogle Scholar
  47. 47.
    Minohara S, et al. Respiratory gated irradiation system for heavy-ion radiotherapy Int. J Radiat Oncol. 2000;47:1097–103.CrossRefGoogle Scholar
  48. 48.
    Moteabbed M, España S, Paganetti H. Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy. Phys Med Biol. 2011;56:1063–82.CrossRefPubMedGoogle Scholar
  49. 49.
    Moyers MF, Miller DW, Bush DA, Slater JD. Methodologies and tools for proton beam design for lung tumors. Int J Radiat Oncol Biol Phys. 2001;49:1429–38.CrossRefPubMedGoogle Scholar
  50. 50.
    Mumot M, Algranati C, Hartmann M, Schippers JM, Hug EB, Lomax AJ. Proton range verification using a range probe: definition of concept and initial analysis. Phys Med Biol. 2010;55:4771–82.CrossRefPubMedGoogle Scholar
  51. 51.
    Murphy MJ. Tracking moving organs in real time. Semin Radiat Oncol. 2004;14:91–100.CrossRefPubMedGoogle Scholar
  52. 52.
    Mustafa A, Jackson DF. The relation between x-ray CT numbers and charged particle stopping powers and its significance for radiotherapy treatment planning. Phys Med Biol. 1983;2:169–76.CrossRefGoogle Scholar
  53. 53.
    Newhauser WD, Giebeler A, Langen KM, Mirkovic D, Mohan R. Can megavoltage computed tomography reduce proton range uncertainties in treatment plans for patients with large metal implants? Phys Med Biol. 2008;53:2327–44.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Oelfke U, Lam GK, Atkins MS. Proton dose monitoring with PET: quantitative studies in Lucite. Phys Med Biol. 1996;41:177–96.CrossRefPubMedGoogle Scholar
  55. 55.
    Paans AM, Schippers JM. Proton therapy in combination with PET as monitor: a feasibility study. IEEE Trans Nucl Sci. 1993;40:1041–4.CrossRefGoogle Scholar
  56. 56.
    Parodi K, Enghardt W. Potential application of PET in quality assurance of proton therapy. Phys Med Biol. 2000;45:N151–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Paganetti H, Niemierko A, Ancukiewicz M, Gerweck LE, Loeffler JS, Goitein M, Suit HD. Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys. 2002;53:407–21.CrossRefPubMedGoogle Scholar
  58. 58.
    Paganetti H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol. 2012;57:99–117.CrossRefGoogle Scholar
  59. 59.
    Paganetti H, van Luijk P. Biological considerations when comparing proton therapy with photon therapy. Semin Radiat Oncol. 2013;23:77–87.CrossRefPubMedGoogle Scholar
  60. 60.
    Pedroni E, Bacher E, Blattmann H, et al. The 200 MeV proton therapy project at PSI: conceptual design and practical realization. Med Phys. 1995;22:37–53.CrossRefPubMedGoogle Scholar
  61. 61.
    Pedroni E, Bearpark R, Böhringer T, Coray A, Duppich J, Forss S, George D, Grossmann M, Goitein G, Hilbes C. The PSI Gantry 2: a second generation proton scanning gantry. Z Med Phys. 2004;14:25–34.CrossRefPubMedGoogle Scholar
  62. 62.
    Penfold SN, Rosenfeld AB, Schulte RW, et al. A more accurate reconstruction system matrix for quantitative proton computed tomography. Med Phys. 2009;36:4511–48.CrossRefPubMedGoogle Scholar
  63. 63.
    Pflugfelder D, Wilkens JJ, Oelfke U. Worst case optimization: a method to account for uncertainties in the optimization of intensity modulated proton therapy. Phys Med Biol. 2008;53:1689–700.CrossRefPubMedGoogle Scholar
  64. 64.
    Phillips M, Pedroni E, Blattman H, Böhringer T, Coray A, Scheib S. Effects of respiratory motion on dose uniformity with a charged particle scanning method. Phys Med Biol. 1992;37:223–34.CrossRefPubMedGoogle Scholar
  65. 65.
    Polf JC, Peterson S, Ciangaru G, et al. Prompt gamma-ray emission from biological tissues during proton irradiation: a preliminary study. Phys Med Biol. 2009;54:731–43.CrossRefPubMedGoogle Scholar
  66. 66.
    Richter D, et al. Mitigation of residual motion effects in scanned ion beam therapy. Radiother Oncol. 2010;96:S72.Google Scholar
  67. 67.
    Rietzel E, Bert C. Respiratory motion management in particle therapy. Med Phys. 2010;37:449–60.CrossRefPubMedGoogle Scholar
  68. 68.
  69. 69.
    Romero JL, Osborne JH, Brady FP, et al. Patient positioning for proton therapy using a proton range telescope. Nucl Instrum Methods Phys Res A. 1994;356:558–65.CrossRefGoogle Scholar
  70. 70.
    Schätti A, Zakova M, Meer D, Lomax AJ. Experimental verification of motion mitigation of discrete proton spot scanning by re-scanning. Phys Med Biol. 2013;8:8555–72.CrossRefGoogle Scholar
  71. 71.
    Schätti A, Meer D, Lomax AJ. First experimental results of motion mitigation by continuous line scanning of protons. Phys Med Biol. 2014;59(19):5707–23.CrossRefPubMedGoogle Scholar
  72. 72.
    Schaffner B, Pedroni E. The precision of proton range calculations in proton radiotherapy treatment planning: experimental verification of the relation between CT-HU and proton stopping power. Phys Med Biol. 1998;43:1579–92.CrossRefPubMedGoogle Scholar
  73. 73.
    Schneider U, Pedroni E. Proton radiography as a tool for quality control. Med Phys. 1995;22:353–63.CrossRefPubMedGoogle Scholar
  74. 74.
    Schneider U, Pedroni E, Lomax AJ. On the calibration of CT-Hounsfield units for radiotherapy treatment planning. Phys Med Biol. 1996;41:111–24.CrossRefPubMedGoogle Scholar
  75. 75.
    Seco J, et al. Breathing interplay effects during proton beam scanning: simulation and statistical analysis. Phys Med Biol. 2009;54:N283–94.CrossRefPubMedGoogle Scholar
  76. 76.
    von Siebenthal M, Cattin P, Lomax AJ, Boesiger P, Székely G. 4D MRI imaging of respiratory organ motion and its variability. Phys Med Biol. 2007;52:1547–64.CrossRefGoogle Scholar
  77. 77.
    Timmermann B, Lomax AJ, Nobile L, Grotzer MA, Weiss M, Kortmann RD, Bolsi A, Goitein G. Novel technique of craniospinal axis proton therapy with the spot-scanning system: avoidance of patching multiple fields and optimized ventral dose distribution. Strahlenther Onkol. 2007;183:685–8.CrossRefPubMedGoogle Scholar
  78. 78.
    Unkelbach J, Bortfeld T, Martin BC, Soukup M. Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning. Med Phys. 2009;36:149–63.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Urie M, Goitein M, Doppke K, Kutcher G, LoSasso T, Mohan R, et al. The role of uncertainty analysis in treatment planning. Int Radiat Oncol Biol Phys. 1991;47:1121–35.Google Scholar
  80. 80.
    Vynckier S, Derreumaux S, Richard F, et al. Is it possible to verify directly a proton-treatment plan using positron emission tomography? Radiother Oncol. 1993;26:275–7.CrossRefPubMedGoogle Scholar
  81. 81.
    Wong JW, et al. The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys. 1999;44:911–9.CrossRefPubMedGoogle Scholar
  82. 82.
    van de Water S, Kreuger R, Zenklusen S, Hug EB, Lomax AJ. Tumour tracking with scanned proton beams: assessing the accuracy and practicalities. Phys Med Biol. 2009;54:6549–63.CrossRefPubMedGoogle Scholar
  83. 83.
    Yang N, Virshup G, Clayton J, Zhu XR, Mohan R, Dong L. Theoretical variance analysis of single- and dual-energy computed tomography methods for calculating proton stopping power ratios of biological tissues. Phys Med Biol. 2010;55:1343–62.CrossRefPubMedGoogle Scholar
  84. 84.
    Zenklusen SM, Pedroni E, Meer D, Bula C, Safai S. Preliminary investigations for the option to use fast uniform scanning with compensators on a gantry designed for IMPT. Med Phys. 2011;39:5208–16.CrossRefGoogle Scholar
  85. 85.
    Zenklusen SM, Pedroni E, Meer D. A study on repainting strategies for treating moderately moving targets with proton pencil beam scanning at the new Gantry 2 at PSI. Phys Med Biol. 2010;55:5103–21.CrossRefPubMedGoogle Scholar
  86. 86.
    Zhang Y, Knopf A, Tanner C, Lomax AJ. Online image guided tumour tracking with scanned proton beams: a comprehensive simulation study. Phys Med Biol. 2014;59(24):7793–817.CrossRefPubMedGoogle Scholar
  87. 87.
    Zhang Y, Knopf A, Tanner C, Boye D, Lomax AJ. Deformable motion reconstruction for scanned proton beam therapy using on-line x-ray imaging. Phys Med Biol. 2013;58:8621–45.CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Centre for Proton Therapy, Paul Scherrer InstituteVilligenSwitzerland

Personalised recommendations