Skip to main content

Modeling of Biological Effect of Charged Particles for C-Ion RT

  • Chapter
Particle Radiotherapy
  • 1648 Accesses

Abstract

Absorbed dose is considered to be the most fundamental physical quantity in describing biological effects of ionizing radiations. The effect is then expressed as a function of the dose, which enables these effects to analyze quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elsässer T, Scholz M. Cluster Effects within the Local Effect Model. Radiat Res. 2007;167:319–29.

    Article  PubMed  Google Scholar 

  2. Friedrich T, et al. Calculation of the biological effects of ion beams based on the microscopic spatial damage distribution pattern. Int J Radiat Biol. 2012;88:103–7.

    Article  CAS  PubMed  Google Scholar 

  3. Fossati P, et al. Dose prescription in carbon ion radiotherapy: a planning study to compare NIRS and LEM approaches with a clinically-oriented strategy. Phys Med Biol. 2012;57:7543–54.

    Article  PubMed  Google Scholar 

  4. Hawkins RB. A statistical theory of cell killing by radiation of varying linear energy transfer. Radiat Res. 1994;140:366–74.

    Google Scholar 

  5. Inaniwa T, et al. Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model. Phys Med Biol. 2010;55(2010):6721–37.

    Article  PubMed  Google Scholar 

  6. Kanai T, et al. Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys. 1999;44:201–10.

    Article  CAS  PubMed  Google Scholar 

  7. Kanai T, et al. Examination of GyE system for HIMAC carbon therapy. Int J Radiat Oncol Biol Phys. 2006;64:650–6.

    Article  PubMed  Google Scholar 

  8. Kase Y, et al. Microdosimetric measurements and estimation of human cell survival for heavy-ion beams. Radiat Res. 2006;166:629–38.

    Article  CAS  PubMed  Google Scholar 

  9. Kase Y, et al. Biophysical calculation of cell survival probabilities using amorphous track structure models for heavy-ion irradiation. Phys Med Biol. 2008;53:37–59.

    Article  PubMed  Google Scholar 

  10. Kellerer M, Rossi HH. A generalized formation of dual radiation action. Radiat Res. 1978;75:471–88.

    Article  Google Scholar 

  11. Krämer M, Scholz M. Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose. Phys Med Biol. 2000;45:3319–30.

    Article  PubMed  Google Scholar 

  12. Matsufuji N, et al. 2007 Specification of carbon ion dose at the National Institute of Radiological Sciences (NIRS). J Radiat Res. 2007;48:81–6.

    Article  Google Scholar 

  13. Miyamoto T, et al. Carbon ion radiotherapy for stage I non-small cell lung cancer. Radiother Oncol. 2003;66:127–40.

    Google Scholar 

  14. Scholz M, Elsässer T. Biophysical models in ion beam radiotherapy. Adv Space Res. 2007;40:1381–91.

    Google Scholar 

  15. Scholz M, Kraft G. Track structure and the calculation of biological effects of heavy charged particles. Adv Space Res. 1996;18:5–14.

    Article  CAS  PubMed  Google Scholar 

  16. Weyrather W, et al. RBE for carbon track-segment irradiation in cell lines of differing repair capacity. Int J of Radiation Biol. 1999;75:1357–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naruhiro Matsufuji PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Matsufuji, N. (2016). Modeling of Biological Effect of Charged Particles for C-Ion RT. In: Rath, A., Sahoo, N. (eds) Particle Radiotherapy. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2622-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2622-2_11

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2621-5

  • Online ISBN: 978-81-322-2622-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics