Skip to main content

Robustness Quantification and Worst-Case Robust Optimization in Intensity-Modulated Proton Therapy

  • Chapter
Particle Radiotherapy

Abstract

Intensity-Modulated Proton Therapy (IMPT) is highly sensitive to uncertainties in beam range, patient setup and organ motion. Therefore, it is essential to evaluate the robustness of the IMPT plans against these uncertainties and design robustly optimized plans to improve the plan quality. The root-mean-square-dose volume histograms (RVH) measure the sensitivity of the dose to uncertainties and the areas under the RVH curve (AUCs) can be used to evaluate plan robustness. Results of our research have shown the following. In the worst case and nominal scenarios, robustly optimized plans have better target coverage, improved dose homogeneity, and lower or equivalent dose to organs at risk (OARs). Additionally, robust optimization provides significantly more robust dose distributions to targets and organs than conventional optimization in IMPT. Reduction of PTV and planning directly based on CTV provides better or equivalent OAR sparing. Also 4D robust optimization provides more respiratory-motion-insensitive plans compared to 3D robust optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Register SP, Zhang X, Mohan R, Chang JY. Proton stereotactic body radiation therapy for clinically challenging cases of centrally and superiorly located stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2011;80:1015–22.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhang XD, Li YP, Pan XN, Li XQ, Mohan R, Komaki R, Cox JD, Chang JY. Intensity-modulated proton therapy reduces the dose to normal tissue compared with intensity-modulated radiation therapy or passive scattering proton therapy and enables individualized radical radiotherapy for extensive stage IIIB non-small-cell lung cancer: a virtual clinical study. Int J Radiat Oncol Biol Phys. 2010;77:357–66.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lomax A. Intensity modulation methods for proton radiotherapy. Phys Med Biol. 1999;44:185.

    Article  CAS  PubMed  Google Scholar 

  4. Li YP, Zhang XD, Mohan R. An efficient dose calculation strategy for intensity modulated proton therapy. Phys Med Biol. 2011;56:N71–84.

    Article  PubMed  Google Scholar 

  5. Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 1: the potential effects of calculational uncertainties. Phys Med Biol. 2008;53:1027–42.

    Article  CAS  PubMed  Google Scholar 

  6. Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions. Phys Med Biol. 2008;53:1043–56.

    Article  CAS  PubMed  Google Scholar 

  7. Lomax AJ, Boehringer T, Coray A, Egger E, Goitein G, Grossmann M, Juelke P, Lin S, Pedroni E, Rohrer B, Roser W, Rossi B, Siegenthaler B, Stadelmann O, Stauble H, Vetter C, Wisser L. Intensity modulated proton therapy: a clinical example. Med Phys. 2001;28:317–24.

    Article  CAS  PubMed  Google Scholar 

  8. Pflugfelder D, Wilkens JJ, Oelfke U. Worst case optimization: a method to account for uncertainties in the optimization of intensity modulated proton therapy. Phys Med Biol. 2008;53:1689–700.

    Article  CAS  PubMed  Google Scholar 

  9. Unkelbach J, Bortfeld T, Martin BC, Soukup M. Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning. Med Phys. 2009;36:149–63.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Unkelbach J, Chan TCY, Bortfeld T. Accounting for range uncertainties in the optimization of intensity modulated proton therapy. Phys Med Biol. 2007;52:2755–73.

    Article  PubMed  Google Scholar 

  11. Unkelbach J, Soukup M, Alber M, Bortfeld T. Setup and dose calculation errors in IMPT and their interrelation. World Congr Med Phys Biomed Eng. 2009;25:900–3.

    Google Scholar 

  12. Maleike D, Unkelbach J, Oelfke U. Simulation and visualization of dose uncertainties due to interfractional organ motion. Phys Med Biol. 2006;51:2237–52.

    Article  CAS  PubMed  Google Scholar 

  13. Kang YX, Zhang XD, Chang JY, Wang H, Wei X, Liao ZX, Komaki R, Cox JD, Balter PA, Liu H, Zhu XR, Mohan R, Dong L. 4D proton treatment planning strategy for mobile lung tumors. Int J Radiat Oncol Biol Phys. 2007;67:906–14.

    Article  PubMed  Google Scholar 

  14. Jiang SB, Pope C, Al Jarrah KM, Kung JH, Bortfeld T. An experimental investigation on intra-fractional organ motion effects in lung IMRT treatments. Phys Med Biol. 2003;48:1773–84.

    Article  PubMed  Google Scholar 

  15. Meyer J, Bluett J, Amos R, Levy L, Choi S, Nguyen QN, Zhu XR, Gillin M, Lee A. Spot scanning proton beam therapy for prostate cancer: treatment planning technique and analysis of consequences of rotational and translational alignment errors. Int J Radiat Oncol Biol Phys. 2010;78:428–34.

    Article  PubMed  Google Scholar 

  16. Goitein M. Calculation of the uncertainty in the dose delivered during radiation-therapy. Med Phys. 1985;12:608–12.

    Article  CAS  PubMed  Google Scholar 

  17. Schwarz M. Treatment planning in proton therapy. Eur Phys J Plus. 2011;126:67–76.

    Article  Google Scholar 

  18. Liu W, Frank SJ, Li X, Li Y, Park P, Dong L, Zhu XR, Mohan R. Effectiveness of robust optimization in intensity-modulated proton therapy planning for head and neck cancers. Med Phys. 2013;40:051711–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu W, Mohan R, Park P, Liu Z, Li H, Li X, Li Y, Wu R, Sahoo N, Dong L, Zhu XR, Grosshans DR. Dosimetric benefits of robust treatment planning for intensity modulated proton therapy for base-of-skull cancers. Pract Rad Oncol. 2014;4:384–91.

    Article  Google Scholar 

  20. Lomax AJ, Pedroni E, Rutz H, Goitein G. The clinical potential of intensity modulated proton therapy. Z Med Phys. 2004;14:147–52.

    Article  PubMed  Google Scholar 

  21. Quan M, Liu W, Wu R, Li Y, Frank SJ, Zhang X, Zhu XR, Mohan R. Preliminary evaluation of multi-field and single-field optimization for the treatment planning of spot-scanning proton therapy of head and neck cancer. Med Phys. 2013;40:081709.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li Y, Liu W, Li X, Quan EM, Zhang X. Toward a thorough evaluation of IMPT plan sensitivity to uncertainties: revisit the worst-case analysis with an exhaustively sampling approach. Med Phys. 2011;38:3853.

    Article  Google Scholar 

  23. Liu W, Zhang X, Li Y, Mohan R. Robust optimization in intensity-modulated proton therapy. Med Phys. 2012;39:1079–91.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Trofimov A, Kang J, Unkelbach J, Adams JA, Zhang X, Bortfeld T, Liebsch NJ, DeLaney TF. Evaluation of dosimetric gain and uncertainties in proton therapy delivery with scanned pencil beam in treatment of base-of-skull and spinal Tumors. Int J Radiat Oncol Biol Phys. 2010;78:S133–4.

    Article  Google Scholar 

  25. Liu W, Liao Z, Schild SE, Liu Z, Li H, Li Y, Park PC, Li X, Stoker J, Shen J, Keole S, Anand A, Fatyga M, Dong L, Sahoo N, Vora S, Wong W, Zhu XR, Bues M, Mohan R. Impact of respiratory motion on worst-case scenario optimized intensity-modulated proton therapy for lung cancers. Pract Rad Oncol. 2015;5(2):e77–86.

    Article  Google Scholar 

  26. Albertini F, Hug EB, Lomax AJ. Is it necessary to plan with safety margins for actively scanned proton therapy? Phys Med Biol. 2011;56:4399–413.

    Article  CAS  PubMed  Google Scholar 

  27. Park P, Cheung J, Zhu X, Lee A, Sahoo N, Liu W, Mohan R, Tucker S, Li H, Court L, Dong L. Statistical assessment of proton treatment plans under setup and range uncertainties. Int J Radiat Oncol Biol Phys. 2013;86(5):1007–13.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen W, Unkelbach J, Trofimov A, Madden T, Kooy H, Bortfeld T, Craft D. Including robustness in multi-criteria optimization for intensity-modulated proton therapy. Phys Med Biol. 2012;57:591–608.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fredriksson A, Forsgren A, Hardemark B. Minimax optimization for handling range and setup uncertainties in proton therapy. Med Phys. 2011;38:1672–84.

    Article  PubMed  Google Scholar 

  30. Liu W, Li Y, Li X, Cao W, Zhang X. Influence of robust optimization in intensity-modulated proton therapy with different dose delivery techniques. Med Phys. 2012;39:3089–4001.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Stuschke M, Kaiser A, Pottgen C, Lubcke W, Farr J. Potentials of robust intensity modulated scanning proton plans for locally advanced lung cancer in comparison to intensity modulated photon plans. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2012;104:45–51.

    Article  Google Scholar 

  32. Liu W, Frank SJ, Li X, Li Y, Zhu RX, Mohan R. PTV-based IMPT optimization incorporating planning risk volumes vs robust optimization. Med Phys. 2013;40:021709–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li HSS, Romeijn HE, Dempsey JF. A Fourier analysis on the maximum acceptable grid size for discrete proton beam dose calculation. Med Phys. 2006;33:3508–18.

    Article  PubMed  Google Scholar 

  34. Gottschalk B. Passive beam spreading in proton radiation therapy. 2004.

    Google Scholar 

  35. Pedroni E, Scheib S, Bohringer T, Coray A, Grossmann M, Lin S, Lomax A. Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams. Phys Med Biol. 2005;50:541–61.

    Article  CAS  PubMed  Google Scholar 

  36. Sawakuchi GO, Zhu XR, Poenisch F, Suzuki K, Ciangaru G, Titt U, Anand A, Mohan R, Gillin MT, Sahoo N. Experimental characterization of the low-dose envelope of spot scanning proton beams. Phys Med Biol. 2010;55:3467–78.

    Article  PubMed  Google Scholar 

  37. Nocedal J. Updating quasi-Newton matrices with limited storage. Math Comp. 1980;35:773–82.

    Article  Google Scholar 

  38. Meza JC, Oliva RA, Hough PD, Williams PJ. OPT++: an object-oriented toolkit for nonlinear optimization. Acm Trans Math Softw. 2007;33:12.

    Article  Google Scholar 

  39. Fredriksson A. A characterization of robust radiation therapy treatment planning methods-from expected value to worst case optimization. Med Phys. 2012;39:5169–81.

    Article  PubMed  Google Scholar 

  40. Kraus KM, Heath E, Oelfke U. Dosimetric consequences of tumor motion due to respiration for a scanned proton beam. Phys Med Biol. 2011;56:6563–81.

    Article  CAS  PubMed  Google Scholar 

  41. Phillips MH, Pedroni E, Blattmann H, Boehringer T, Coray A, Scheib S. Effects of respiratory motion on dose uniformity with a charged-particle scanning method. Phys Med Biol. 1992;37:223–34.

    Article  CAS  PubMed  Google Scholar 

  42. Lambert J, Suchowerska N, McKenzie DR, Jackson M. Intrafractional motion during proton beam scanning. Phys Med Biol. 2005;50:4853–62.

    Article  CAS  PubMed  Google Scholar 

  43. Grozinger SO, Bert C, Haberer T, Kraft G, Rietzel E. Motion compensation with a scanned ion beam: a technical feasibility study. Radiat Oncol. 2008;3:34.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Seco J, Robertson D, Trofimov A, Paganetti H. Breathing interplay effects during proton beam scanning: simulation and statistical analysis. Phys Med Biol. 2009;54:N283–94.

    Article  CAS  PubMed  Google Scholar 

  45. Grozinger SO, Rietzel E, Li Q, Bert C, Haberer T, Kraft G. Simulations to design an online motion compensation system for scanned particle beams. Phys Med Biol. 2006;51:3517–31.

    Article  PubMed  Google Scholar 

  46. Dowdell S, Grassberger C, Sharp GC, Paganetti H. Interplay effects in proton scanning for lung: a 4D Monte Carlo study assessing the impact of tumor and beam delivery parameters. Phys Med Biol. 2013;58:4137–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grassberger C, Dowdell S, Lomax A, Sharp G, Shackleford J, Choi N, Willers H, Paganetti H. Motion interplay as a function of patient parameters and spot size in spot scanning proton therapy for lung cancer. Int J Radiat Oncol Biol Phys. 2013;86:380–6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chan TCY, Bortfeld T, Tsitsiklis JN. A robust approach to IMRT optimization. Phys Med Biol. 2006;51:2567–83.

    Article  PubMed  Google Scholar 

  49. Sheng K, Cai J, Brookeman J, Molloy J, Christopher J, Read P. A computer simulated phantom study of tomotherapy dose optimization based on probability density functions (PDF) and potential errors caused by low reproducibility of PDF. Med Phys. 2006;33:3321–6.

    Article  PubMed  Google Scholar 

  50. Pan T, Lee TY, Rietzel E, Chen GTY. 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Med Phys. 2004;31:333–40.

    Article  PubMed  Google Scholar 

  51. Vedam SS, Keall PJ, Kini VR, Mostafavi H, Shukla HP, Mohan R. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Phys Med Biol. 2003;48:45–62.

    Article  CAS  PubMed  Google Scholar 

  52. Bortfeld T, Chan TCY, Trofimov A, Tsitsiklis JN. Robust management of motion uncertainty in intensity-modulated radiation therapy. Oper Res. 2008;56:1461–73.

    Article  Google Scholar 

  53. Engelsman M, Kooy HM. Target volume dose considerations in proton beam treatment planning for lung tumors. Med Phys. 2005;32:3549–57.

    Article  PubMed  Google Scholar 

  54. Casiraghi M, Albertini F, Lomax AJ. Advantages and limitations of the ‘worst case scenario’ approach in IMPT treatment planning. Phys Med Biol. 2013;58:1323.

    Article  CAS  PubMed  Google Scholar 

  55. Trofimov A, Unkelbach J, DeLaney TF, Bortfeld T. Visualization of a variety of possible dosimetric outcomes in radiation therapy using dose-volume histogram bands. Pract Rad Oncol. 2012;2:164–71.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Martin Bues for many instructive discussions. This research was supported by the National Cancer Institute through grants P01CA021239, K25CA168984, and the Fraternal Order of Eagles Cancer Research Fund, Career Development Award Program, and The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Liu, W. (2016). Robustness Quantification and Worst-Case Robust Optimization in Intensity-Modulated Proton Therapy. In: Rath, A., Sahoo, N. (eds) Particle Radiotherapy. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2622-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2622-2_10

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2621-5

  • Online ISBN: 978-81-322-2622-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics