Advertisement

Metabolic Engineering of Compatible Solute Trehalose for Abiotic Stress Tolerance in Plants

  • Saroj Kumar Sah
  • Gurwinder Kaur
  • Shabir H. Wani

Abstract

It is estimated that by 2050 the world population will reach 9.1 billion, but the production of agricultural products is the same. In order to feed the whole population, global agricultural production should be increased by 60–110 %, and to feed the additional 2.3 billion population, 70 % more food should be grown to fulfill the demand. Due to abiotic stresses, agricultural production is lowered, so now abiotic stresses are a foremost area of concern to fulfill the required food demand. The major abiotic stresses which threaten the food security worldwide are high salinity, drought, submerge tolerance, and cold. To produce stress-tolerant crops, genetic engineering of stress-signaling pathway is one of the main goals of agricultural research. In recent years, biotechnologist is trying to develop a new abiotic stress-tolerant variety by engineering a trehalose metabolism in crops which can have a substantial impact on worldwide food production. Trehalose, a nonreducing disaccharide, has tremendous effects in abiotic stress tolerance and metabolic regulation in a wide range of organisms. Trehalose-6-phosphate synthase (TPS and trehalose-6-phosphate phosphatase (TPP are two key enzymes which help in the biosynthesis of plants. Trehalose is an uncommon sugar present in bacteria, fungi, and desiccation-tolerant higher plants and has exceptional capacities to protect biomolecules by stabilizing dry biological membrane and proteins from environmental stress. It has a multiple function and some of them are species specific. Many research groups showed that there is a linkage between trehalose and abiotic stress by conducting different experiments. They introduced trehalose biosynthetic genes to develop stress tolerance line in important crops like rice, tomato, and potato. Here, in this review, we discuss occurrence, characters, chemical and biological characteristics, uses, pathways, and successful examples in crop plants.

Keywords

Trehalase Activity Trehalose Synthesis Trehalose Accumulation Trehalose Biosynthesis Trehalose Dihydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albini FM, Murelli C, Patritti G, Rovati M, Zienna P, Vita Finzi P (1994) Low-molecular weight substances from the resurrection plant Sporobolus stapfianus. Phytochemistry 37:137–142CrossRefGoogle Scholar
  2. Almeida AM, Villalobos E, Araújo SS, Leyman B, van Dijck P, Alfaro-Cardoso L, Fevereiro PS, Torné JM, Santos DM (2005) Transformation of tobacco with an Arabidopsis thaliana gene involved in trehalose biosynthesis increases tolerance to several abiotic stresses. Euphytica 146:165–176CrossRefGoogle Scholar
  3. Almeida AM, Santos M, Villalobos E, Araujo SS, van Dijck P, Leyman B, Cardoso LA, Santos D, Fevereiro PS, Torne JM (2007) Immunogold localization of trehalose-6- phosphate synthase in leaf segments of wild-type and transgenic tobacco plants expressing the AtTPS1 gene from Arabidopsis thaliana. Protoplasma 230:41–49CrossRefPubMedGoogle Scholar
  4. Avonce N, Leyman B, Mascorro-Gallardo JO, Van Dijck P, Thevelein JM, Iturriaga G (2004) The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol 136:3649–3659PubMedCentralCrossRefPubMedGoogle Scholar
  5. Avonce N, Leyman B, Thevelein J, Iturriaga G (2005) Trehalose metabolism and glucose sensing in plants. Biochem Soc Trans 33:276–279CrossRefPubMedGoogle Scholar
  6. Bae HH, Herman E, Bailey B, Bae HJ, Sicher R (2005) Exogenous trehalose alters Arabidopsis transcripts involved in cell wall modification, abiotic stress, nitrogen metabolism, and plant defense. Physiol Plant 125:114–126CrossRefGoogle Scholar
  7. Barraza A, Estrada-Navarrete G, Rodriguez-Alegria ME, Lopez-Munguia A, Merino E, Quinto C, Sanchez F (2013) Down-regulation of PvTRE1 enhances nodule biomass and bacteriod number in the common bean. New Phytol 197:194–206CrossRefPubMedGoogle Scholar
  8. Belocopitow E, Marechal LR (1970) Trehalose phosphorylase from Euglena gracilis. Biochim Biophys Acta 198:151–154CrossRefPubMedGoogle Scholar
  9. Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276:24261–24267CrossRefPubMedGoogle Scholar
  10. Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F, Bartels D (1993) The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol Plant 87(2):223–226CrossRefGoogle Scholar
  11. Blazquez MA, Santos E, Flores CL, Martinez-Zapater JM, Salinas J, Gancedo C (1998) Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant J 13:685–690CrossRefPubMedGoogle Scholar
  12. Blum A (1988) Plant breeding for stress environments. CRC Press, Boca RatonGoogle Scholar
  13. Chary SN, Hicks GR, Choi YG, Carter D, Raikhel NV (2008) Trehalose-6-phosphate synthase/phosphatase regulates cell shape and plant architecture in Arabidopsis. Plant Physiol 146:97–107PubMedCentralCrossRefPubMedGoogle Scholar
  14. Cortina C, Culiáñez-Macià FA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169(1):75–82CrossRefGoogle Scholar
  15. Crowe JH, Crowe LM (1990) Lyotropic effects of water on phospholipids. In: Franks F (ed) Water science reviews. Cambridge University Press, Cambridge, UK, pp 1–23Google Scholar
  16. Crowe JH, Crowe LM (2000) Preservation of mammalian cells – learning nature’s tricks. Nat Biotechnol 18:145–146CrossRefPubMedGoogle Scholar
  17. Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703CrossRefPubMedGoogle Scholar
  18. Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599CrossRefPubMedGoogle Scholar
  19. Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124CrossRefPubMedGoogle Scholar
  20. Dai X, Wang Y, Zhou J (2001) Expression of otsA gene in tobacco and improvement stress tolerance. Wei Sheng Wu Xue Bao 41:427–431PubMedGoogle Scholar
  21. Debast S, Nunes-Nesi A, Hajirezaei MR, Hofmann J, Sonnewald U, Fernie AR, Börnke F (2011) Altering trehalose-6-phosphate content in transgenic potato tubers affects tuber growth and alters responsiveness to hormones during sprouting. Plant Physiol 156:1754–1771PubMedCentralCrossRefPubMedGoogle Scholar
  22. Donnamaria MC, Howard EI, Grigera JR (1994) Interaction of water with a, a-trehalose in solution: molecular dynamics simulation approach. J Chem Soc Faraday Trans 90:2731–2735CrossRefGoogle Scholar
  23. Drennan PM, Smith MT, Goldsworthy D, van Staden J (1993) The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. J Plant Physiol 142:493–496CrossRefGoogle Scholar
  24. Eastmond PJ, Graham IA (2003) Trehalose metabolism: a regulatory role for trehalose-6-phosphate? Curr Opin Plant Biol 6:231–235CrossRefPubMedGoogle Scholar
  25. Eastmond PJ, van Dijken AJ, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JD, Smeekens SC, Graham IA (2002) Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J 29:225–235CrossRefPubMedGoogle Scholar
  26. Elbein AD (1974) The metabolism of a, a- trehalose. Adv Carbohydr Chem Biochem 30:227–256CrossRefPubMedGoogle Scholar
  27. Fougere F, Le Rudulier D, Streeter JG (1991) Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiol 96:1228–1236PubMedCentralCrossRefPubMedGoogle Scholar
  28. Freeman BC, Chen C, Beattie GA (2010) Identification of the trehalose biosynthetic loci of Pseudomonas syringae and their contribution to fitness in the phyllosphere. Environ Microbiol 12:1486–1497PubMedGoogle Scholar
  29. Garcia AB, Engler JA, Iyer S, Gerats T, Van Montagu M, Caplan AB (1997) Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol 115:50–69Google Scholar
  30. Garg AK, Kim JK, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99:15898–15903PubMedCentralCrossRefPubMedGoogle Scholar
  31. Goddijn OJM, van Dun K (1999) Trehalose metabolism in plants. Trends Plant Sci 4:315–319CrossRefPubMedGoogle Scholar
  32. Goddijn OJ, Verwoerd TC, Voogd E, Krutwagen RW, de Graaf PT, van Kun K, Poels J, Ponstein AS, Damm B, Pen J (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113:181–190PubMedCentralCrossRefPubMedGoogle Scholar
  33. Gomez LD, Baud S, Gilday A, Li Y, Graham IA (2006) Delayed embryo development in the ARABIDOPSIS TREHALOSE-6-PHOSPHATE SYNTHASE 1 mutant is associated with altered cell wall structure, decreased cell division and starch accumulation. Plant J 46:69–84CrossRefPubMedGoogle Scholar
  34. Gomez-Escobedo IA, Cabrera-Ponce JL, Herrera-Estrella LR, Hernández-Luna C, Montes de Oca-Luna R (2004) Mejora del crecimiento de plantas de tabaco mediante la inhibiciœn del gen de la trehalasa. Ciencia UANL VII:483–489Google Scholar
  35. Han SE, Park SR, Kwon HB, Yi BY, Lee GB, Byun MO (2005) Genetic engineering of drought-resistant tobacco plants by introducing the trehalose phosphorylase (TP) gene from Pleurotus sajor-caju. Plant Cell Tiss Org Cult 82:151–158CrossRefGoogle Scholar
  36. Henry C, Bledsoe SW, Siekman A, Kollman A, Waters BM, Feil R, Stitt M, Lagrimini LM (2014) The trehalose pathway in maize: conservation and gene regulation in response to the diurnal cycle and extended darkness. J Exp Bot 65:5959–5973PubMedCentralCrossRefPubMedGoogle Scholar
  37. Hincha DK, Hagemann M (2004) Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. Biochem J 383:277–283PubMedCentralCrossRefPubMedGoogle Scholar
  38. Holmstrom KO, Mantyla E, Welin B, Mandal A, Palva ET, Tunnela OE, Londesborough J (1996) Drought tolerance in tobacco. Nature 379:683–684CrossRefGoogle Scholar
  39. Hottiger T, Boller T, Wiemken A (1987) Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS LETT 220:113–115CrossRefPubMedGoogle Scholar
  40. Hounsa CG, Brandt EV, Thevelein J, Hohmann S, Prior BA (1998) Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144:671–680CrossRefPubMedGoogle Scholar
  41. Iordachescu M, Imai R (2011) Trehalose and abiotic stress in biological systems, abiotic stress and plant mechanisms and adaptations. In: Shanker A (ed) In Tech. doi: 10.5772/22208
  42. Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524PubMedCentralCrossRefPubMedGoogle Scholar
  43. Karim S, Aronsson H, Ericson H, Pirhonem M, Leyman B, Welin B, Mantyla E, Palva ET, Van Dijck P, Holmstrom KO (2007) Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol 64:371–386CrossRefPubMedGoogle Scholar
  44. Kawai H, Sakurai M, Inoue Y, Chujo R, Kobayashi S (1992) Hydration of oligosaccharides: anomalous hydration ability of trehalose. Cryobiology 29:599–606CrossRefPubMedGoogle Scholar
  45. Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolarity environments. Arch Microbiol 170:319–330CrossRefPubMedGoogle Scholar
  46. Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P (2005) Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci U S A 102:11118–11123PubMedCentralCrossRefPubMedGoogle Scholar
  47. Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed 11:1–13CrossRefGoogle Scholar
  48. Leyman B, Van Dijck P, Thevelein JM (2001) An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends Plant Sci 6:510–513CrossRefPubMedGoogle Scholar
  49. Leyman B, Avonce N, Ramon M, van Dijck P, Thevelein JM, Iturriaga G (2004) New selection marker for plant transformation. Methods Mol Biol 267:385–396PubMedGoogle Scholar
  50. Leyman B, Avonce N, Ramon M, Van Dijck P, Iturriaga G, Thevelein JM (2006) Trehalose-6-phosphate synthase as an intrinsic selection marker for plant transformation. J Biotechnol 301:309–317CrossRefGoogle Scholar
  51. Li H, Su H, Kim SB, Chang YK, Hong S, Seo YG, Kim CJ (2011) Enhanced production of trehalose in Escherichia coli by homologous expression of otsBA in the presence of the trehalase inhibitor, validamycin A, at high osmolarity. J Biosci Bioeng 113:224–232CrossRefPubMedGoogle Scholar
  52. Lopez M, Tejera NA, Iribarne C, Lluch C, Herrera-Cervera JA (2008) Trehalose and trehalase in root nodules of Medicago truncatula and Phaseolus vulgaris in response to salt stress. Physiol Plant 134:575–582CrossRefPubMedGoogle Scholar
  53. Martins MC, Hejazi M, Fettke J, Steup M, Feil R, Krause U et al (2013) Feedback inhibition of starch degradation in Arabidopsis leaves mediated by trehalose-6-phosphate. Plant Physiol 163:1142–1163PubMedCentralCrossRefPubMedGoogle Scholar
  54. Maruta K, Nakada T, Kubota M, Chaen H, Sugimoto T, Kurimoto M, Tsujisaka Y (1995) Formation of trehalose from maltooligosaccharides by a novel enzymatic system. Biosci Biotechnol Biochem 59:1829–1834CrossRefPubMedGoogle Scholar
  55. Maruta K, Hattori K, Nakada T, Kubota M, Sugimoto T, Kurimoto M (1996) Cloning and sequencing of trehalose biosynthesis genes from Rhizobium sp. M-11. Biosci Biotechnol Biochem 60:717–720CrossRefPubMedGoogle Scholar
  56. Miranda JA, Avonce N, Suarez R, Thevelein JM, Dijck P, Iturriaga G (2007) A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226:1411–1421CrossRefPubMedGoogle Scholar
  57. Paul MJ, Primavesi LF, Jhurreea D, Zhang YH (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441CrossRefPubMedGoogle Scholar
  58. Paul MJ, Jhurreea D, Zhang Y, Primavesi LF, Delatte T, Schluepmann H, Wingler A (2010) Upregulation of biosynthetic processes associated with growth by trehalose-6-phosphate. Plant Signal Behav 5:368–392CrossRefGoogle Scholar
  59. Pellny TK, Ghannoum O, Conroy JP, Schluepmann H, Smeekens S, Andralojc J, Krause KP, Goddijn O, Paul MJ (2004) Genetic modification of photosynthesis with E. coli genes for trehalose synthesis. Plant Biotechnol J 2:71–82CrossRefPubMedGoogle Scholar
  60. Penna S (2003) Building stress tolerance through over-producing trehalose in transgenic plants. Trends Plant Sci 8:355–357CrossRefPubMedGoogle Scholar
  61. Pilon-Smits EAH, Terry N, Sears T, Kim H, Zayed A, Hwang S, van Dun K, Voogd E, Verwoerd TC, Krutwagen RWHH, Goddijn OJM (1998) Trehalose producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol 152:525–532CrossRefGoogle Scholar
  62. Pramanik MHR, Imai R (2005) Functional identification of a trehalose-6- phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol Biol 58:751–762CrossRefPubMedGoogle Scholar
  63. Qu Q, Lee SJ, Boos W (2004) TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. J Biol Chem 279:47890–47897CrossRefPubMedGoogle Scholar
  64. Ramon M, Rolland F, Thevelein JM, Van Dijck P, Leyman B (2007) ABI4 mediates the effects of exogenous trehalose on Arabidopsis growth and starch breakdown. Plant Mol Biol 63:195–206CrossRefPubMedGoogle Scholar
  65. Richards AB, Krakiwka S, Dexter LB, Schid H, Wolterbeek APM, Waalkens-Berendsen DH, Shigoyuki A, Murimoto M (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple studies. Food Chem Toxicol 40:871–898CrossRefPubMedGoogle Scholar
  66. Roelofs D, Aarts MGM, Schat H, van Straalen M (2008) Functional ecological genomics to demonstrate general and specific responses to abiotic stress. Funct Ecol 22:8–18Google Scholar
  67. Romero C, Belles JM, Vaya JL, Serrano R, Culianez-Macia FA (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201:293–297CrossRefPubMedGoogle Scholar
  68. Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metabol Eng 4:49–56CrossRefGoogle Scholar
  69. Roughley RJ, Gemell LG, Thompson JA, Brockwell J (1993) The number of Bradyrhizobium sp. (Lupinus) applied to seed and its effect on rhizosphere colonization, nodulation and yield of lupin. Soil Biol Biochem 25:1453–1458CrossRefGoogle Scholar
  70. Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441:227–230CrossRefPubMedGoogle Scholar
  71. Schluepmann H, Pellny T, van Dijken A, Smeekens S, Paul M (2003) Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc Natl Acad Sci U S A 100:6849–6854PubMedCentralCrossRefPubMedGoogle Scholar
  72. Schluepmann H, Pellny T, van Dijken A, Smeekens S, Paul M (2004) Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6849–6854CrossRefGoogle Scholar
  73. Scott P (2000) Resurrection plants and the secret of eternal leaf. Ann Bot 85:159–166CrossRefGoogle Scholar
  74. Stiller I, Dulai S, Kondrak M, Tarnai R, Szabo L, Toldi O (2008) Effect of drought on water content and photosynthetic parameters in potato plants expressing the trehalose-6-phosphate synthase gene of Saccharomyces cerevisiae. Planta 227:299–308CrossRefPubMedGoogle Scholar
  75. Streeter JG (2003) Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation. J Appl Microbiol 95:484–491CrossRefPubMedGoogle Scholar
  76. Strom AR, Kaasen I (1993) Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8:205–210CrossRefPubMedGoogle Scholar
  77. Sugawara M, Cytryn EJ, Sadowsky MJ (2010) Functional role of Bradyrhizobium japonicum trehalose biosynthesis and metabolism genes during physiological stress and nodulation. Appl Environ Microbiol 76:1071–1081PubMedCentralCrossRefPubMedGoogle Scholar
  78. Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R (2008) The transcriptional coactivator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem 283:9269–9275CrossRefPubMedGoogle Scholar
  79. Tzvetkov M, Klopprogge C, Zelder O, Liebl W (2003) Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition. Microbiology 149:1659–1673CrossRefPubMedGoogle Scholar
  80. Van Dijken A, Schluepmann H, Smeekens SCM (2004) Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering. Plant Physiol 135:969–977PubMedCentralCrossRefPubMedGoogle Scholar
  81. Veluthambi K, Mahadevan S, Maheshwari R (1982) Trehalose toxicity in Cuscuta reflexa: sucrose content decreases in shoot tips upon trehalose feeding. Plant Physiol 69:1247–1251PubMedCentralCrossRefPubMedGoogle Scholar
  82. Vogel G, Aeschbacher RA, MuÈller J, Boller T, Wiemken A (1998) Trehalose-6-phosphate phosphatases from Arabidopsis thaliana: identification by functional complementation of the yeast tps2 mutant. Plant J 13:673–683CrossRefPubMedGoogle Scholar
  83. Wiggers HA (1832) Annalen der Chemie u. Pharmazie 1:173Google Scholar
  84. Wingler A (2002) The function of trehalose biosynthesis in plants. Phytochemistry 60:437–440CrossRefPubMedGoogle Scholar
  85. Yeo ET, Kwon HB, Han SE, Lee JT, Ryu JC, Byu MO (2000) Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phosphate synthase (TPS1) gene form saccharomyces cerevisiae. Mol Cells 10:263–268PubMedGoogle Scholar
  86. Zentella R, Moscorro-Gallardo JO, Van Dijck P, Folch-Mallol J, Bonini B, Van Vaeck C, Gaxiola R, Covarrubias A, Nieto-Sotelo J, Thevelein J, Iturriaga GA (1999) A Selaginella lepidophylla trehalose-6-phosphate synthase complements growth and stress tolerance defects in a yeast tps1 mutant. Plant Physiol 119:1473–1482PubMedCentralCrossRefPubMedGoogle Scholar
  87. Zhang Y, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RAC, Powers SJ, Schluepmann HJ, Delatte T, Wingler A, Paul MJ (2009) Inhibition of SNF1- related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol 149:1860–1871PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Saroj Kumar Sah
    • 1
  • Gurwinder Kaur
    • 2
  • Shabir H. Wani
    • 3
  1. 1.Department of Biochemistry, Molecular Biology, Entomology and Plant PathologyMississippi State UniversityStarkvilleUSA
  2. 2.School of Agricultural BiotechnologyPunjab Agricultural UniversityLudhianaIndia
  3. 3.Division of Genetics and Plant BreedingSKUAST-KSrinagarIndia

Personalised recommendations