Skip to main content

Abstract

The production of healthy planting material requires robust diagnostic procedures. The advancements of the molecular virology and biotechnology have witnessed major breakthroughs in the recent years resulting in sensitive and effective technologies/methods.

PCR has been the major a breakthrough leading successful detection RNA/DNA viruses.

The development of qPCR assays helped to avoid the risk of post-PCR contamination and has benefits of high reproducibility and accuracy. The nonthermal methods, like HDA, RPA, NASBA, etc., have proved suitable for poorly resourced laboratories and on-site testing.

NGS technology involving massive parallel sequencing approach followed by bioinformatics analysis has revolutionized discovery of novel viruses. With the increasing competition for machinery and analytical reagents among companies, high-throughput multiplexing and virus detection techniques are becoming cheaper. However, the challenge remains in their use at the site ensuring to maintain highest crop health standards at affordable price.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams IP, Miano DW, Kinyua ZM, Wangai A, Kimani E, Phiri N, Reeder R, Harju V, Glover R, Hany U, Souza-Richards R, Deb Nath P, Nixon T, Fox A, Barnes A, Smith J, Skelton A, Thwaites R, Mumford R, Boonham N (2013) Use of next-generation sequencing for the identification and characterization of Maize chlorotic mottle virus and Sugarcane mosaic virus causing maize lethal necrosis in Kenya. Plant Pathol 62(4):741–749

    Article  CAS  Google Scholar 

  • Agindotan B, Winter S, Lesemann D, Uwaifo A, Mignouna J, Hughes J, Thottappilly G (2006) Diversity of banana streak-inducing viruses in Nigeria and Ghana: twice as many sources detected by immunoelectron microscopy (IEM) than by TAS-ELISA or IC-PCR. Afr J Biotechnol 5(12):1194–1203

    CAS  Google Scholar 

  • Ahmadi S, Almasi MA, Fatehi F, Struik PC, Maradi A (2013) Visual detection of potato leafroll virus by one-step reverse transcription loop-mediated isothermal amplification of DNA with hydroxynaphthol blue dye. J Phytopathol 161:120–124

    Article  CAS  Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 10:535–544

    Article  Google Scholar 

  • Arif A, Aguilar-Moreno GS, Wayadande A, Fletcher J, Ochoa-Corona FM (2014) Primer modification improves rapid and sensitive in vitro and field-deployable assay for detection of high plains virus variants. Appl Environ Microbiol 80(1):320–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bai FW, Zhang HW, Yan J, Qu ZC, Xu J, Wen JG, Ye MM, Shen DL (2002) Selection of phage-display peptides that bind specifically to the outer coat protein of rice black streaked dwarf virus. Acta Virol 46(2):85–90

    CAS  PubMed  Google Scholar 

  • Balamurlikrishnan M, Doraisamy S, Ganapathy T, Vishwanathan R (2002) Serological specificity and titre of sugarcane mosaic virus polyclonal antisera raised under varying immunization procedures and bleeding time. J Plant Dis Protection 109:646–654

    Google Scholar 

  • Banttari EE, Khurana SMP (1998) The potato viruses and their management. In: Khurana SMP (ed) Pathological problems of economic crop plants and their management. Scientific Publishers, Jodhpur, India, pp 489–509

    Google Scholar 

  • Banttari EE, Clapper DL, Hu SP, Daws KM, Khurana SMP (1991) Rapid magnetic microsphere enzyme immunoassay for potato virus X and potato leaf roll virus. Phytopathology 81:1039–1042

    Article  CAS  Google Scholar 

  • Baranwal VK, Arya M, Singh J (2010) First report of two distinct badnaviruses associated with Bougainvillea spectabilis in India. J Gen Plant Pathol 76:236–239

    Article  Google Scholar 

  • Baranwal VK, Sharma SK, Khurana D, Varma R (2013) Sequence analysis of shorter than genome length episomal banana streak OL virus like sequences isolated from banana in India. Virus Genes. doi:10.1007/s11262-013-0984-1

    Google Scholar 

  • Barba M, Czosnek H, Hadidi A (2014) Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 6(1):106–136

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bartlett J (2003) PCR protocols. Humana Press, Totowa

    Book  Google Scholar 

  • Barzon L, Lavezzo E, Militello V, Toppo S, Palu G (2011) Applications of next-generation sequencing technologies to diagnostic virology. Int J Mol Sci 12:7861–7884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baulcombe DC, Fernandez-Northcote EN (1988) Detection of strains of potato virus X and of a broad spectrum of potato virus Y isolates by nucleic acid spot hybridization (NASH). Plant Dis 72:307–309

    Article  Google Scholar 

  • Bertolini E, Olmos A, Martinez MC, Gorris MT, Cambra M (2001) Single-step multiplex RT-PCR for simultaneous and colorimetric detection of six RNA viruses in olive trees. J Virol Methods 96:33–41

    Article  CAS  PubMed  Google Scholar 

  • Bertolini E, Olmos A, Lopez MM, Cambra M (2003) Multiplex nested reverse-transcription polymerase chain reaction in a single tube for sensitive and simultaneous detection of four RNA viruses and Pseudomonas savastanoi pv. savastanoi in olive trees. Phytopathology 93:286–292

    Article  CAS  PubMed  Google Scholar 

  • Bhat A, Varma A, Jain RK, Khurana SMP (1997) Differentiation of potato virus Y strains by N-terminal serology and HPLC peptide profiling. Indian Phytopathol 50:89–96

    CAS  Google Scholar 

  • Biswas C, Dey P, Satpathy S (2013) A multiplex nested PCR assay for simultaneous detection of Corchorus golden mosaic virus and a phytoplasma in white jute (Corchorus capsularis L.). Lett Appl Microbiol 56(5):373–378. doi:10.1111/lam.12058

    Article  CAS  PubMed  Google Scholar 

  • Boonham N, Barker I (1998) Strain specific recombinant antibodies to potato virus Y potyvirus. J Virol Methods 74:193–199

    Article  CAS  PubMed  Google Scholar 

  • Boonham N, Smith P, Walsh K, Tame J, Morris J, Spence N, Bennison J, Barker I (2002) The detection of tomato spotted wilt virus (TSWV) in individual thrips using real-time fluorescent RT-PCR (TaqMan). J Virol Methods 101:37–48

    Article  CAS  PubMed  Google Scholar 

  • Boonham N, Walsh K, Smith P, Madagan K, Graham I, Barker I (2003) Detection of potato viruses using microarray technology: towards a generic method for plant viral disease diagnosis. J Virol Methods 108:181–187

    Article  CAS  PubMed  Google Scholar 

  • Boonham N, Perez LG, Mendez MS, Peralta EL, Blockley A, Walsh K, Barker I, Mumford RA (2004) Development of a real-time RT-PCR assay for the detection of potato spindle tuber viroid. J Virol Methods 116:139–146

    Article  CAS  PubMed  Google Scholar 

  • Boonham N, Tomlinson J, Mumford RA (2007) Microarrays for rapid identification of plant viruses. Annu Rev Phytopathol 45:307–328

    Article  CAS  PubMed  Google Scholar 

  • Boonham N, Kreuzeb J, Winterc S, Vlugtd R, Bergervoetd J, Tomlinsona J, Mumforda R (2014) Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res. doi:10.1016/j.virusres.2013.12.007

    Google Scholar 

  • Bowers JH, Bailey BA, Hebbar PK, Sanogo S, Lumsden RD (2001) The impact of plant diseases on world chocolate production. Online. Plant Health Prog. doi:10.1094/PHP-2001-0709-01-RV

    Google Scholar 

  • Bragard C, Duncan GH, Wesley SV, Naidu RA, Mayo MA (2000) Virus-like particles assemble in plants and bacteria expressing the coat protein gene of Indian peanut clump virus. J Gen Virol 81(1):267–272

    Article  CAS  PubMed  Google Scholar 

  • Byzova NA, Safenkova IV, Chirkov SN, Zherdev AV, Blintsov AN, Dzantiev BB, Atabekov IG (2009) Development of immunochromatographic test systems for express detection of plant viruses. Appl Biochem Microbiol 45(2):204–209

    Article  CAS  Google Scholar 

  • Chamberlain JS, Gibbs RA, Ranier JE, Nguyen PN, Caskey CT (1988) Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res 16:11141–11156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen J, Adams MJ (2001) A universal PCR primer to detect members of the Potyviridae and its use to examine the taxonomic status of several members of the family. Arch Virol 146:757–766

    Article  CAS  PubMed  Google Scholar 

  • Cillo F, Roberts IM, Palukaitis P (2002) In situ localization and tissue distribution of the replication-associated proteins of cucumber mosaic virus in tobacco and cucumber. J Virol 76:10654–10664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clackson T, Hoogenboom HR, Griffiths AD, Winter G (1991) Making antibodies using phage display libraries. Nature 352:624–628

    Article  CAS  PubMed  Google Scholar 

  • Clark MF, Adams AN (1977) Characteristics of the microplate method of enzyme linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34:475–483

    Article  CAS  PubMed  Google Scholar 

  • Clark MF, Lister RM, Bar-Joseph M (1988) ELISA techniques. In: Weissbaum A, Weissbaum H (eds) Methods for plant molecular biology. Academic Press, San Diego, California, p 527

    Google Scholar 

  • Compton J (1991) Nucleic acid sequence-based amplification. Nature 350(6313):91–92

    Article  CAS  PubMed  Google Scholar 

  • Cooper JI, Edwards ML (1986) Variations and limitations of enzyme-amplified immunoassays. In: Jones RAC, Torrance L (eds) Developments and applications in virus testing. Association of Applied Biologists, Wellesbourne, pp 139–154

    Google Scholar 

  • Cooper MA, Singleton VT (2007) A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. J Mol Recognit 20:154–184

    Article  CAS  PubMed  Google Scholar 

  • Corazza MJ, Zanutto CA, Zanineli-Ré ML, Muller GW, Nunes WMC (2012) Comparison of citrus tristeza virus (CTV) isolates by RFLP analysis of the coat protein nucleotide sequences and by the severity of the symptoms. Trop Plant Pathol 37(3):179–184

    Article  Google Scholar 

  • Crosslin JM, Hamm PB, Shiel PJ, Hane DC, Brown CR, Berger PH (2005) Serological and molecular detection of tobacco veinal necrosis isolates of potato virus Y (PVYN) from potatoes grown in the western United States. Am J Potato Res 82:263–269

    Article  CAS  Google Scholar 

  • Dai J, Chen J, Huang T, Zheng X, Wu Y (2012) A multiplex reverse transcription PCR assay for simultaneous detection of five tobacco viruses in tobacco plants. J Virol Methods 183(1):57–62. doi:10.1016/j.jviromet.2012.03.029

    Article  CAS  PubMed  Google Scholar 

  • Danks C, Barker I (2000) On-site detection of plant pathogens using lateral-flow devices. EPPO Bull 30:421–426

    Article  Google Scholar 

  • Deb M, Anderson JM (2008) Development of a multiplexed PCR detection method for barley and cereal yellow dwarf viruses, wheat spindle streak virus, wheat streak mosaic virus and soil-borne wheat mosaic virus. J Virol Methods 148:17–24

    Article  CAS  PubMed  Google Scholar 

  • Derrick KS (1973) Quantitative assay for plant viruses using serologically specific electron microscopy. Virology 56:652–653

    Article  CAS  PubMed  Google Scholar 

  • Desbiez C, Wipf-Scheibel C, Lecoq H (2002) Biological and serological variability, evolution and molecular epidemiology of Zucchini yellow mosaic virus (ZYMV, Potyvirus) with special reference to Caribbean islands. Virus Res 85:5–16

    Article  CAS  PubMed  Google Scholar 

  • Dickert FL, Hayden O, Bindeus R, Mann KJ, Blaas D, Waigmann E (2004) Bioimprinted QCM sensors for virus detection screening of plant sap. Anal Bioanal Chem 378(8):1929–1934

    Article  CAS  PubMed  Google Scholar 

  • Dietzgen RG, Xu Z, Teycheney PY (1994) Digoxigenin-labeled cRNA probes for the detection of two potyviruses infecting peanut (Arachis hypogaea). Plant Dis 78:708–711

    Article  CAS  Google Scholar 

  • Dijkstra J, DeJager CP (1998) Practical plant virology, protocols and exercises. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Dovas CI, Katis NI (2003) A spot nested RT–PCR method for the simultaneous detection of members of the Vitivirus and Foveavirus genera in grapevine. J Virol Methods 107:99–106

    Article  CAS  PubMed  Google Scholar 

  • Drygin YF, Blintsov AN, Grigorenko VG, Andreeva IP, Osipov AP, Varitzev YA, Uskov AI, Kravchenko DV, Atabekov JG (2011) Highly sensitive field test lateral flow immunodiagnostics of PVX infection. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3522-x

    PubMed  Google Scholar 

  • Eun AJ, Seoh M, Wong S (2000) Simultaneous quantitation of two orchid viruses by the TaqMan real-time RT-PCR. J Virol Methods 87:151–160

    Article  CAS  PubMed  Google Scholar 

  • Eun AJ, Huang L, Chew FT, Li SFY, Wong SM (2002) Detection of two orchid viruses using quartz crystal microbalance (QCM) immunosensors. J Virol Methods 99:71–79

    Article  CAS  PubMed  Google Scholar 

  • Eweida M, Xu H, Singh BP, Abouhaidar MG (1990) Comparison between ELISA and biotin-labelled probes from cloned cDNA of potato virus X for the detection of virus in crude tuber extracts. Plant Pathol 30:623–628

    Article  Google Scholar 

  • Fajardo TVM, Barros DR, Nickel O, Kuhn GB, Zerbini FM (2007) Expression of Grapevine leafroll-associated virus 3 coat protein gene in Escherichia coli and production of polyclonal antibodies. Fitopatol Bras 32:496–500

    Google Scholar 

  • Fattouch S, Acheche H, M’hirsi S, Mellouli L, Bejar S, Marrakchi M, Marzouki N (2005) RT-PCR-RFLP for genetic diversity analysis of Tunisian Grapevine fan leaf virus isolates in their natural host plants. J Virol Methods 127:126–132

    Article  CAS  PubMed  Google Scholar 

  • Fukuta S, Iida T, Mizukami Y, Ishida A, Ueda J, Kanbe M, Ishimoto Y (2003a) Detection of Japanese yam mosaic virus by RT-LAMP. Arch Virol 148(9):1713–1720

    Article  CAS  PubMed  Google Scholar 

  • Fukuta S, Kato S, Yoshida K, Mizukami Y, Ishida A, Ueda J, Kanbe M, Ishimoto Y (2003b) Detection of tomato yellow leaf curl virus by loop-mediated isothermal amplification reaction. J Virol Methods 112(1–2):35–40

    Article  CAS  PubMed  Google Scholar 

  • Garger SJ, Turpin T, Carrington JC, Morris TJ, Jordan RL, Dodds JA, Grill LK (1983) Rapid detection of plant RNA viruses by dot blot hybridization. Plant Mol Biol Report 1:21–25

    Article  CAS  Google Scholar 

  • Gawande SJ, Shukla A, Chimote VP, Kaushal N, Kaundal P, Garg ID, Chimote KP (2011) Development of PCR-based techniques for the detection of immobilised potato virus Y virions. J Plant Pathol 93(1):127–132

    CAS  Google Scholar 

  • Gibbs A, Mackenzie A (1997) A primer pair for amplifying part of the genome of all ‘potyvirids’ by RT-PCR. J Virol Methods 63:9–16

    Article  CAS  PubMed  Google Scholar 

  • Glais L, Kerlan C, Tribodet M, Tordo VMJ, Robaglia C, Astier-Manifacier S (1996) Molecular characterization of potato virus YN isolates by PCR-RFLP. Eur J Plant Pathol 102(7):655–662

    Article  CAS  Google Scholar 

  • Gonsalves D (1979) Detection of tomato ring spot virus in grapevines: a comparison of Chenopodium quinoa and enzyme linked immunosorbent assay (ELISA). Plant Dis Rep 63:962–965

    Google Scholar 

  • Griep RA, van Twisk C, Schots A (1999) Selection of beet necrotic yellow vein virus specific single-chain Fv antibodies from a semi-synthetic combinatorial antibody library. Eur J Plant Pathol 105:147–156

    Article  CAS  Google Scholar 

  • Griep RA, Prins M, van Twisk C, Keller HJHG, Kerschbaumer RJ, Kormelink R, Goldbach RW, Schots A (2000) Application of phage display in selecting tomato spotted wilt virus specific single-chain antibodies (scFvs) for sensitive diagnosis in ELISA. Virology 90(2):183–190

    CAS  Google Scholar 

  • Grimme JM, Cropek DM (2013) Biomimetic sensors for rapid testing of water resources. doi:10.5772/52438

    Google Scholar 

  • Grover V, Pierce ML, Hoyt P, Zhang F, Melcher U (2010) Oligonucleotide-based microarray for detection of plant viruses employing sequence-independent amplification of targets. J Virol Methods 163:57–67

    Article  CAS  PubMed  Google Scholar 

  • Hadidi A, Yang X (1990) Detection of pome fruit viroids by enzymatic cDNA amplification. J Virol Methods 30:261–270

    Article  CAS  PubMed  Google Scholar 

  • Haible D, Kober S, Jeske H (2006) Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. J Virol Methods 135:9–16

    Article  CAS  PubMed  Google Scholar 

  • Harper G, Dahal G, Thottappilly G, Hull R (1999a) Detection of episomal banana streak badnavirus by IC–PCR. J Virol Methods 79:1–8

    Article  CAS  PubMed  Google Scholar 

  • Harper G, Osuji J, Heslop-Harrison JS, Hull R (1999b) Integration of banana streak badnavirus into the Musa genome: molecular and cytogenetic evidence. Virology 255:207–213

    Article  CAS  PubMed  Google Scholar 

  • Hema M, Kirthi N, Sreenivasulu P, Savithri HS (2003) Development of recombinant coat protein antibody based IC–PT–PCR for detection and discrimination of sugarcane streak mosaic virus isolates from southern India. Arch Virol 148:1185–1193

    Article  CAS  PubMed  Google Scholar 

  • Heng CK, Noor SM, Yee TS, Othman RY (2007) Biopanning for banana streak virus binding peptide by phage display peptide library. J Biol Sci 7(8):1382–1387

    Article  CAS  Google Scholar 

  • Henson JM, Roy F (1993) The polymerase chain reaction and plant disease diagnosis. Annu Rev Plant Pathol 31:81–109

    CAS  Google Scholar 

  • Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res 15:4133–4137

    Article  Google Scholar 

  • Hu WW, Wong SM (1998) The use of DIG-labelled cRNA probes for the detection of Cymbidium mosaic potexvirus (CymMV) and Odontoglossum ringspot tobamovirus (ORSV) in orchids. J Virol Methods 70:193–199

    Article  CAS  PubMed  Google Scholar 

  • Hull R (2002) Matthews’ plant virology, 4th edn. Academic, San Diego

    Google Scholar 

  • Inoue-Nagata AK, Albuquerque LC, Rocha WB, Nagata T (2004) A simple method for cloning the complete begomovirus genome using the bacteriophage Ï•29 DNA polymerase. J Virol Methods 116:209–211

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Ieki H, Ozaki K (2002) Simultaneous detection of six citrus viroids and apple stem grooving virus from citrus plants by multiplex reverse transcription polymerase chain reaction. J Virol Methods 106:235–239

    Article  CAS  PubMed  Google Scholar 

  • Jacobi V, Bachand GD, Hamelin RC, Castello JD (1998) Development of a multiplex immunocapture RT-PCR assay for detection and differentiation of tomato and tobacco mosaic tobamoviruses. J Virol Methods 74:167–178

    Article  CAS  PubMed  Google Scholar 

  • James D (1999) A simple and reliable protocol for the detection of apple stem grooving virus by RT-PCR and in a multiplex PCR assay. J Virol Methods 83:1–9

    Article  CAS  PubMed  Google Scholar 

  • James AP, Geijskes RJ, Dale JL, Harding RM (2011) Development of a novel rolling-circle amplification technique to detect banana streak virus that also discriminates between integrated and episomal virus sequences. Plant Dis 95(1):57–62

    Article  CAS  Google Scholar 

  • Johne R, Muller H, Rector A, Van Ranst M, Stevens H (2009) Rolling-circle amplification of viral DNA genomes using phi29 polymerase. Trends Microbiol 17(5):205–211

    Article  CAS  PubMed  Google Scholar 

  • Jones RA (2009) Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res 141:113–130

    Article  CAS  PubMed  Google Scholar 

  • Joseph J, Savithri HS (1999) Determination of 3 ΄-terminal nucleotide sequence of pepper vein banding virus RNA and expression of its coat protein in Escherichia coli. Arch Virol 144:1679–1687

    Article  CAS  PubMed  Google Scholar 

  • Karande AA, Savithri HS, Khurana SMP (1998) Monoclonal antibodies production and application for the detection and diagnosis of potato viruses. In: Khurana SMP et al (eds) Comprehensive potato biotechnology. MPH, New Delhi, pp 163–186

    Google Scholar 

  • Karyeija RF, Kreuze JF, Gibson RW, Volkonen JPT (2000) Two serotypes of sweetpotato feathery mottle virus in Uganda and their interaction with resistant sweetpotato cultivars. Phytopathology 90:1250–1255

    Article  CAS  PubMed  Google Scholar 

  • Katul L (1992) Characterization by serology and molecular biology of bean leaf roll virus and Faba Bean Necrotic yellows virus. PhD thesis, Gottingen, Germany: University of Gottingen, 115 pp

    Google Scholar 

  • Khan JA, Lohuid H, Goldbach RW, Dijkstra J (1990) Distinction of strains of bean common mosaic virus and blackeye cowpea mosaic virus using antibodies to N- and C- or N-terminal peptide domains of coat proteins. Ann Appl Biol 117:583–593

    Article  Google Scholar 

  • Khurana SMP (1990) Modern approaches for detection and management of the potato viruses and viroid. In: Grewal JS et al (ed) Current facets in potato research. IPA, CPRI, Simla, India, pp 98–108

    Google Scholar 

  • Khurana SMP, Garg ID (1993) New techniques for detection of viruses and viroids. In: Chadha KL, Grewal JS (eds) Advances in horticulture, vol 7. MPH, New Delhi, pp 529–566

    Google Scholar 

  • Kim YH, Kim OKS, Roh JH, Moon JY, Sohn SI, Lee SC, Lee JY (2004) Identification of soybean mosaic virus strains by RT-PCR/RFLP analysis of cylindrical inclusion coding region. Plant Dis 88(6):641–644

    Article  CAS  Google Scholar 

  • Klerks MM, Leone G, Lindner JL, Schoen CD, van den Heuvel JFJM (2001) Rapid and sensitive detection of apple stem pitting virus in apple trees through RNA amplification and probing with fluorescent molecular beacons. Phytopathology 91:1085–1091

    Article  CAS  PubMed  Google Scholar 

  • Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S (2009) Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388:1–7

    Article  CAS  PubMed  Google Scholar 

  • Kuan CP, Deng TC, Huang HC, Chi HH, Lu YL (2014) Use of reverse transcription loop-mediated isothermal amplification for the detection of Zucchini yellow mosaic virus. J Phytopathol 162:238–244

    Article  CAS  Google Scholar 

  • Kubo C, Nakazono-Nagaoka E, Hagiwara K, Kajihara H, Takeuchi S, Matsuo K, Ichiki TU, Omura T (2005) New severe strains of Melon necrotic spot virus: symptomatology and sequencing. Plant Pathol 54:615–620

    Article  CAS  Google Scholar 

  • Kumari SG, Makkouk KM, Attar N (2006) An improved antiserum for sensitive serologic detection of Chickpea chlorotic dwarf virus. J Phytopathol 154:129–133

    Article  CAS  Google Scholar 

  • Kumari SG, Makkouk KM, Loh MH, Negassi K, Tsegay S, Kidane R, Kibret A, Tesfatsion Y (2008) Viral diseases affecting chickpea crops in Eritrea. Phytopathol Mediterr 47:42–49

    CAS  Google Scholar 

  • Kushwaha R, Payne CM, Downie AB (2013) Uses of phage display in agriculture: a review of food-related protein-protein interactions discovered by biopanning over diverse baits. Comput Math Methods Med 2013:12

    Google Scholar 

  • Kwon JY, Hong JS, Kim MJ, Choi SH, Min BE, Song EG, Kim HH, Ryu KH (2014) Simultaneous multiplex PCR detection of seven cucurbit-infecting viruses. J Virol Methods 206:133–139. doi:10.1016/j.jviromet.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  • Lamptey JNL, Osei MK, Mochiah MB, Osei K, Berchie JN, Bolfrey-Arku G, Gilbertson RL (2013) Serological detection of tobacco mosaic virus and cucumber mosaic virus infecting tomato (Solanum Lycopersicum) using a lateral flow immunoassay technique. J Agric Stud 1(2):102–113

    Article  Google Scholar 

  • Langeveld SA, Dore JM, Memelink J, Derks AF, Van der Vlugt CI, Asjes CJ, Bol JF (1991) Identification of potyviruses using the polymerase chain reaction with degenerated primers. J Gen Virol 72:1531–1541

    Article  CAS  PubMed  Google Scholar 

  • Le DT, Netsu O, Uehara-Ichiki T, Shimizu T, Choi IR, Omura T, Sasaya T (2010) Molecular detection of nine rice viruses by a reverse-transcription loop-mediated isothermal amplification assay. J Virol Methods 170:90–93

    Article  CAS  PubMed  Google Scholar 

  • LeProvost G, Iskra-Caruana ML, Acina I, Teycheney P-Y (2006) Improved detection of episomal banana streak viruses by multiplex immunocapture PCR. J Virol Methods 137:7–13

    Article  CAS  Google Scholar 

  • Lima JAA, Purcifull DE (1980) Immunochemical and microscopical techniques for detecting blackeye cowpea mosaic and soybean mosaic viruses in hypocotyls of germinated seeds. Phytopathology 70(2):142–147

    Article  Google Scholar 

  • Lima JAA, Nascimento AKQ, Radaelli P, Silva AKF, Silva FR (2011) Immune precipitation polymerase chain reaction for identification of plant viruses. In: Proceedings of XXII national meeting of virology, vol 16(1), pp 56, Atibaia, SP

    Google Scholar 

  • Lima JAA, Nascimento AKQ, Radaelli P, Purcifull DE (2012) Serology applied to plant virology. In: Moslih Al-Moslih. (Org.) Serological diagnosis of certain human, animal and plant diseases. InTech, 1, Rijeka. pp 71–94

    Google Scholar 

  • Liu W, Zhao X, Zhang P, Mar TT, Liu Y, Zhang Z, Han C, Wang X (2013) A one step real-time RT-PCR assay for the quantitation of wheat yellow mosaic virus (WYMV). Virol J 10:173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Applic 4:357–362

    Google Scholar 

  • Luigi M, Costantini E, Luison D, Mangiaracina P, Tomassoli L, Faggioli F (2014) A diagnostic method for the simultaneous detection and identification of Pospiviroids. J Plant Pathol 96(1):151–158

    CAS  Google Scholar 

  • Mackay IM, Arden KE, Nitsche A (2002) Real-time PCR in virology. Nucleic Acids Res 30:1292–1305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Makkouk KM, Kumari SG (1996) Detection of ten viruses by the tissue-blot immunoassay (TBIA). Arab J Plant Prot 14:3–9

    Google Scholar 

  • Martin RR, James D, Le’vesque CA (2000) Impacts of molecular diagnostic technologies on plant disease management. Annu Rev Phytopathol 38:207–239

    Article  CAS  PubMed  Google Scholar 

  • Maule AJ, Hull R, Donson J (1983) The application of spot hybridization to the detection of DNA and RNA viruses in plant tissues. J Virol Methods 6:215–224

    Article  CAS  PubMed  Google Scholar 

  • McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348(6301):552–554

    Article  CAS  PubMed  Google Scholar 

  • Milne RG (1991) Immunoelectron microscopy for virus identification. In: Mendgen K, Lesemann DE (eds) Electron microscopy of plant pathogens. Springer, Berlin, pp 87–120

    Chapter  Google Scholar 

  • Mulholland V (2009) Immunocapture-PCR for plant virus detection. Methods Mol Biol 508:183–192

    Article  CAS  PubMed  Google Scholar 

  • Mullis K, Faloona F (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350

    Article  CAS  PubMed  Google Scholar 

  • Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51:263–273

    Article  CAS  PubMed  Google Scholar 

  • Mumford RA, Walsh K, Barker I, Boonham N (2000) Detection of potato mop top virus and tobacco rattle virus using a multiplex real-time fluorescent reverse-transcription polymerase chain reaction assay. Phytopathology 90:448–453

    Article  CAS  PubMed  Google Scholar 

  • Naidu RA, Hughes Jd’A (2001) Methods for the detection of plant virus diseases. In: Hughes Jd’A, Odu BO (eds) Plant virology in Sub-Saharan Africa. Proceedings of a conference organized by IITA. International Institute of Tropical Agriculture, Ibadan, pp 233–260

    Google Scholar 

  • Narayanasamy P (2011) Detection of virus and viroid pathogens in plants. Microbial plant pathogens-detection and disease diagnosis. Springer Dordrecht Heidelberg London New York, pp 7–220

    Google Scholar 

  • Nassuth A, Pollari E, Helmeczy K, Stewart S, Kofalvi SA (2000) Improved RNA extraction and one-tube RT-PCR assay for simultaneous detection of control plant RNA plus several viruses in plant extracts. J Virol Methods 90:37–49

    Article  CAS  PubMed  Google Scholar 

  • Nie XH, Singh RP (2000) Detection of multiple potato viruses using an oligo(dT) as a common cDNA primer in multiplex RT-PCR. J Virol Methods 86:179–185

    Article  CAS  PubMed  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28, e63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olmos A, Bertolini E, Cambra M (2007) Isothermal amplification coupled with rapid flow-through hybridization for sensitive diagnosis of plum pox virus. J Virol Methods 139(1):111–115

    Article  CAS  PubMed  Google Scholar 

  • Ounouna H, Kerlen C, Lafaye P, Loukili MJ, EIGaaied A (2002) Production of monoclonal antibodies against synthetic peptides of the N-terminal region of potato virus Y coat protein and their use in PVY strain differentiation. Plant Pathol 51:487–494

    Article  CAS  Google Scholar 

  • Owens RA, Diener TO (1984) Spot hybridization for the detection of viroids and viruses. In: Maramorosch K, Koprowski H (eds) Methods in virology, vol VII. Academic, New York, pp 173–189

    Google Scholar 

  • Pappu HR (1997) Managing tospoviruses through biotechnology: progress and prospects. Biotechnol Dev Monit 32:14–17

    Google Scholar 

  • Peng J, Zhang J, Xiaa Z, Li Y, Huang J, Fan Z (2012) Rapid and sensitive detection of banana bunchy top virus by loop-mediated isothermal amplification. J Virol Methods 185:254–258

    Article  CAS  PubMed  Google Scholar 

  • Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4(7), e204

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Prabha K, Baranwal VK, Jain RK (2013) Applications of next generation high throughput sequencing technologies in characterization, discovery and molecular interaction of plant viruses. Indian J Virol 24:157–165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ragozzino E, Faggioli F, Barba M (2004) Development of a one tube-one step RT-PCR protocol for the detection of seven viroids in four genera: Apscaviroid, Hostuviroid, Pelamoviroid and Pospiviroid. J Virol Methods 121:25–29

    Article  CAS  PubMed  Google Scholar 

  • Riedel D, Lesemann DE, Mai E (1998) Ultrastructural localization of nonstructural and coat proteins of 19 potyviruses using antisera to bacterially expressed proteins of plum pox potyvirus. Arch Virol 143:2133–2158

    Article  CAS  PubMed  Google Scholar 

  • Rodoni BC, Dale JL, Harding RM (1999) Characterization and expression of the coat protein-coding region of banana bract mosaic potyvirus, development of diagnostic assays and detection of the virus in banana plants from five countries in Southeast Asia. Arch Virol 144:1725–1737

    Article  CAS  PubMed  Google Scholar 

  • Rosenfield SI, Jaykus LAA (1999) Multiplex reverse transcription polymerase chain reaction method for the detection of foodborne viruses. J Food Prot 62:1210–1214

    CAS  PubMed  Google Scholar 

  • Rosner A, Lee RF, Bar-Joseph M (1986) Differential hybridization with cloned cDNA sequences for detecting a specific isolate of citrus tristeza virus. Phytopathology 76:820–824

    Article  CAS  Google Scholar 

  • Roy A, Fayad A, Barthe G, Brlansky RH (2005) A multiplex polymerase chain reaction method for reliable, sensitive and simultaneous detection of multiple viruses in citrus trees. J Virol Methods 129:47–55

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Ruiz S, Moreno P, Guerri J, Ambrós S (2009) Discrimination between mild and severe citrus tristeza virus isolates with a rapid and highly specific real-time reverse transcription-polymerase chain reaction method using TaqMan LNA probes. Virology 99(3):307–315

    CAS  Google Scholar 

  • Safenkova I, Zherdev A, Dzantiev B (2012) Factors influencing the detection limit of the lateral-flow sandwich immunoassay: a case study with potato virus X. Anal Bioanal Chem 403(6):1595–1605

    Article  CAS  PubMed  Google Scholar 

  • Salomone A, Roggero P (2002) Host range, seed transmission and detection by ELISA and lateral flow of an Italian isolate of Pepino mosaic virus. J Plant Pathol 84:65–68

    Google Scholar 

  • Salomone A, Bruzzone C, Minuto G, Minuto A, Roggero P (2002) A comparison of lateral flow and ELISA for the detection of tomato mosaic virus in tomato. J Plant Pathol 84:193

    Google Scholar 

  • Salomone A, Mongelli M, Roggero P, Boscia D (2004) Reliability of detection of citrus tristeza virus by an immunochromatographic lateral flow assay in comparison with ELISA. J Plant Pathol 86(1):43–48

    CAS  Google Scholar 

  • Sanchez-Navarro JA, Aparicio F, Herranz MC, Minafra A, Myrta A, Pallas V (2005) Simultaneous detection and identification of eight stone fruit viruses by one-step RT- PCR. Eur J Plant Pathol 111:77–84

    Article  CAS  Google Scholar 

  • Saponaria M, Loconsoleb G, Liaoc HH, Jiangd B, Savinob V, Yokomie RK (2013) Validation of high-throughput real time polymerase chain reaction assays for simultaneous detection of invasive citrus pathogens. J Virol Methods 193:478–486

    Article  CAS  Google Scholar 

  • Schaad NW, Frederick RD (2002) Real-time PCR and its application for rapid plant disease diagnostics. Can J Plant Pathol 24:250–258

    Article  CAS  Google Scholar 

  • Schaad NW, Opgenorth D, Gaush P (2002) Real-time polymerase chain reaction for one-hour on-site diagnosis of Pierce’s disease of grape in early season symptomatic vines. Phytopathology 92:721–728

    Article  CAS  PubMed  Google Scholar 

  • Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19:227–240

    Article  CAS  Google Scholar 

  • Sherwood JL, German TL, Moyer JW, Ullman DE (2003) Tomato spotted wilt. Plant Health Instruct. doi:10.1094/PHI-I-2003-0613-02

    Google Scholar 

  • Singh M, Singh RP (1995) Digoxigenin-labelled cDNA probes for the detection of potato virus Y in dormant potato tubers. J Virol Methods 52:133–143

    Article  CAS  PubMed  Google Scholar 

  • Smith HG, Stevens M, Hallsworth PB (1991) The use of monoclonal antibodies to detect beet mild yellowing virus and beet western yellows virus in aphids. Ann Appl Biol 119:295–302

    Article  Google Scholar 

  • Sun W, Jiao K, Zhang S, Zhang C, Zhang Z (2001) Electrochemical detection for horseradish peroxidase-based enzyme immunoassay using p-aminophenol as substrate and its application to detection of plant virus. Anal Chim Acta 434:43–50

    Article  CAS  Google Scholar 

  • Susi P, Ziegler A, Torrance L (1998) Selection of single-chain variable fragment antibodies to black currant reversion associated virus from a synthetic phage display library. Phytopathology 88:230–233

    Article  CAS  PubMed  Google Scholar 

  • Szemes M, Schoen CD (2003) Design of molecular beacons for AmpliDet RNA assay characterization of binding stability and probe specificity. Anal Biochem 315:189–201

    Article  CAS  PubMed  Google Scholar 

  • Thelwell N, Millington S, Solinas A, Booth J, Brown T (2000) Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Res 28:3752–3761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tiberini A, Tomassoli L, Barba M, Hadidi A (2010) Oligonucleotide microarray-based detection and identification of 10 major tomato viruses. J Virol Methods 168(1–2):133–140

    Article  CAS  PubMed  Google Scholar 

  • Torrance L (1995) Use of monoclonal antibodies in plant pathology. Eur J Plant Pathol 101:351–363

    Article  CAS  Google Scholar 

  • Tyagi S, Kramer FR (1996) Molecular Beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    Article  CAS  PubMed  Google Scholar 

  • Uhde K, Kerschbaumer RJ, Koenig R, Hirschl S, Lemaire O, Boonham N, Roake W, Himmler G (2000) Improved detection of Beet necrotic yellow vein virus in a DAS ELISA by means of antibody single chain fragments (scFv) which were selected to protease-stable epitopes from phage display libraries. Arch Virol 145:179–185

    Article  CAS  PubMed  Google Scholar 

  • Van den Heuvel JFJM, Peters D (1989) Improved detection of potato leafroll virus in plant material and in aphids. Phytopathology 79:963–967

    Article  Google Scholar 

  • Van Regenmortel MHV, Dubs MC (1993) Serological procedures. In: Matthews REF (ed) Diagnosis of plant virus diseases. CRC, Boca Raton, Florida pp 159–214

    Google Scholar 

  • Varga A, James D (2006) Use of reverse transcription loop-mediated isothermal amplification for the detection of plum pox virus. J Virol Methods 138:184–190

    Article  CAS  PubMed  Google Scholar 

  • Vashisht SK, Vashisht P (2011) Recent advances in quartz crystal microbalance-based sensors. J Sensors. doi:10.1155/2011/571405

    Google Scholar 

  • Vaskov D, Spak J, Klerks MM, Schoen CD, Thompson JR, Jelkmann W (2004) Real-time NASBA for detection of strawberry vein banding virus. Eur J Plant Pathol 110:213–221

    Article  Google Scholar 

  • Villmor DEV, Bajet NB, Lockhart BE (2003) Purification and production of antiserum against abaca mosaic potyvirus. Philipp Agric Sci 86:368–376

    Google Scholar 

  • Vincent M, Xu Y, Kong H (2004) Helicase-dependent isothermal DNA amplification. EMBO Rep 5:795–800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walsh K, North J, Barker I, Boonham N (2001) Detection of different strains of potato virus Y and their mixed infections using competitive fluorescent RT–PCR. J Virol Methods 91:167–173

    Article  CAS  PubMed  Google Scholar 

  • Wambulwa MC, Wachira FN, Karanja LS, Muturi SM (2012) Rolling circle amplification is more sensitive than PCR and serology-based methods in detection of banana streak virus in Musa germplasm. Am J Plant Sci 3:1581–1587

    Article  CAS  Google Scholar 

  • Waterhouse PM, Chu PWG (1995) Nucleic acid based approaches to plant virus and viroid diagnostics. In: Skerritt JH, Appels R (eds) New diagnostics in crop sciences, biotechnology in agriculture, vol 13. CAB International, Wallingford, pp 195–114

    Google Scholar 

  • Webster CG, Wylie SJ, Jones MGK (2004) Diagnosis of plant viral pathogens. Curr Sci 86(12):1604–1607

    CAS  Google Scholar 

  • Wesley SV, Miller JS, Devi PS, Delfosse P, Naidu RA, Mayo MA, Reddy DVR, Jana MK (1996) Sensitive broad-spectrum detection of Indian peanut clump virus by nonradioactive nucleic acid probes. Phytopathology 86:1234–1237

    Article  CAS  Google Scholar 

  • Wetzel T, Condresse T, Macquaire G, Ravelonandro M, Dunez J (1992) A highly sensitive immunocapture polymerase chain reaction method for plum pox potyvirus detection. J Virol Methods 39:27–37

    Article  CAS  PubMed  Google Scholar 

  • Willment JA, Martin DP, Rybicki EP (2001) Analysis of the diversity of African streak mastreviruses using PCR-generated RFLP’s and partial sequence data. J Virol Methods 93:75–87

    Article  CAS  PubMed  Google Scholar 

  • Wittwer CT, Herrmann MG, Moss AA, Rasmussen AP (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22:130–138

    CAS  PubMed  Google Scholar 

  • Wylie SJ, Wilson CR, Jones RAC, Jones MGK (1993) A polymerase chain reaction assay for cucumber mosaic virus in lupin seeds. Aust J Agric Res 44:41–51

    Article  CAS  Google Scholar 

  • Xu H, Nie J (2006) Identification, characterization, and molecular detection of Alfalfa mosaic virus in potato. Virology 96(11):1237–1242

    CAS  Google Scholar 

  • Xu H, D’Aubin J, Nie J (2010) Genomic variability in potato virus M and the development of RT-PCR and RFLP procedures for the detection of this virus in seed potatoes. Virol J 7:25

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yadav N, Khan JA (2008) Identification of a potyvirus associated with mosaic disease of Narcissus sp. in India. Plant Pathol 57:394

    Article  Google Scholar 

  • Yadav N, Khan JA (2009) Over expression of Narcissus potyvirus coat protein in E. coli. Indian J Virol 21:44

    Google Scholar 

  • YaJuan Q, Yi X, Qi Z, XuePing Z (2014) Application of next-generation sequencing technology for plant virus identification. Scientia Sinica Vitae 44(4):351–363

    Article  Google Scholar 

  • Yang IC, Hafner GJ, Revill PA, Dale JL, Harding RM (2003) Sequence diversity of South Pacific isolates of Taro bacilliform virus and the development of a PCR-based diagnostic test. Arch Virol 148:1957–1968

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZY, Liu XJ, Li DW, Yu JL, Han CG (2011) Rapid detection of wheat yellow mosaic virus by reverse transcription loop-mediated isothermal amplification. Virol J 8:550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang S, Ravelonandro M, Russell P, McOwen N, Briard P, Bohannon S, Vrient A (2014) Rapid diagnostic detection of plum pox virus in Prunus plants by isothermal AmplifyRP(®) using reverse transcription-recombinase polymerase amplification. J Virol Methods 207:114–120

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Rodoni BC, Gibbs MJ, Gibbs AJ (2010) A novel pair of universal primers for the detection of potyviruses. Plant Pathol 59:211–220

    Article  CAS  Google Scholar 

  • Zhou T, Du L, Fan Y, Zhou Y (2012) Reverse transcription loop mediated isothermal amplification of RNA for sensitive and rapid detection of southern rice black-streaked dwarf virus. J Virol Methods 180:91–95

    Article  CAS  PubMed  Google Scholar 

  • Ziegler A, Torrance L (2002) Applications of recombinant antibodies in plant pathology. Mol Plant Pathol 3:401–407

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Paul Khurana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Yadav, N., Khurana, S.M.P. (2016). Plant Virus Detection and Diagnosis: Progress and Challenges. In: Shukla, P. (eds) Frontier Discoveries and Innovations in Interdisciplinary Microbiology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2610-9_7

Download citation

Publish with us

Policies and ethics