Skip to main content

Accelerator-Produced Therapeutic Radionuclides

  • Chapter
  • First Online:
Radiopharmaceuticals for Therapy

Abstract

Particle accelerators have played a key role for the production of radioisotopes since the 1940s, and medical cyclotrons (11–20-MeV protons), in particular, are currently of central importance for the production of short-lived positron emitters for diagnostic applications in nuclear medicine. Commercially, cyclotrons in the 20–35-MeV proton energy range are used to produce a variety of gamma-emitting radioisotopes. In addition, many high-energy accelerators of several different types which accelerate primarily protons play a role in the production of medical radioisotopes, including those which have important roles in therapy. In this chapter, the basic fundamentals of accelerator production and yield calculations are discussed in addition to key therapeutic radioisotopes and comments on their applications as unsealed sources radiopharmaceuticals in nuclear medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aardaneh K, Shirazi B. Rapid separation of radiogallium from Zn and Cu targets using anion exchange technique. J Radioanal Nucl Chem. 2005;265:4.

    Article  Google Scholar 

  • Apostolidis C, Molinet R, Rasmussen G, Morgenstern A. Production of Ac-225 from Th-229 for targeted alpha therapy. Anal Chem. 2005;77:6288–91.

    Article  PubMed  CAS  Google Scholar 

  • Boll RA, Malkemus D, Mirzadeh S. Production of actinium- 225 for alpha particle mediated radioimmunotherapy. Appl Radiat Isot. 2005;62:667–79.

    Article  PubMed  CAS  Google Scholar 

  • Brown LC, Beets AL. Cyclotron production of carrier free indium-111. Int J Appl Radiat Isot. 1972;23:57–63.

    Article  CAS  Google Scholar 

  • Chattopadhyay S, Das MK, Sarkar BR, Ramamoorty N. Radiochemical separation of high purity 111In from cadmium, copper, aluminium and traces of iron: use of a cation exchange resin with hydrobromic acid and hydrobromic acid. Appl Radiat Isot. 1997;48(8):1063–7.

    Article  CAS  Google Scholar 

  • Das SK, Guin R, Saha SK. Carrier-free separation of 111In from a silver matrix. Appl Radiat Isot. 1996;47(3):293–6.

    Article  CAS  Google Scholar 

  • Das MK, Chattopadhayay S, Sarkar BR, Ramamoorthy N. A cation exchange method for separation of 111In from inactive silver, copper, traces of iron and radioactive gallium and zinc isotopes. Appl Radiat Isot. 1997;48(1):11–4.

    Article  CAS  Google Scholar 

  • Dasgupta AK, Mausner LF, Srivastava SC. A new separation procedure for 67Cu from proton irradiated Zn. Appl Radiat Isot. 1991;42:371–6.

    Article  CAS  Google Scholar 

  • Dolley SG, Walt TN, Steyn GFE, Szelecseny F, Kovacs Z. The production and isolation of Cu-64 and Cu-67 from zinc target material and other radionuclides. Czech J Phys. 2006;56:D539–44.

    CAS  Google Scholar 

  • Dumortier R, Weber ME, Vera JH. Removal and recovery of gallium from aqueous solutions by complexation with sodium di-(n-octyl) phosphinate. Hydrometallurgy. 2005;76:207–15.

    Article  CAS  Google Scholar 

  • Eberle SH. Gmelin handbook of inorganic chemistry – astatine. 8th ed. Berlin: Springer; 1985. p. 183–209.

    Google Scholar 

  • El-Azony KM, Ferieg K, Saleh ZA. Direct separation of 67Ga citrate from zinc and copper target materials by anion exchange. Appl Radiat Isot. 2003;59:329.

    Article  PubMed  CAS  Google Scholar 

  • Ermolaev SV, Zhuikov BL, Kokhanyuk V, Srivastava SC. Production of carrier-added Tin-117m from proton irradiated antimony. J Radioanal Chem. 2009;280:319–24.

    Google Scholar 

  • Filoosofov DV, Lebedev NA, Novogrodov A, et al. Production, concentration and deep purification of 111In radiochemicals. J Appl Radiat Isot. 2001;55:293–329.

    Article  Google Scholar 

  • Friedman AM, Zalutsky MR, Wung W, et al. Preparation of a biologically stable and immunogenically competent astatinated protein. Int J Nucl Med Biol. 1977;4:219–24.

    Article  PubMed  CAS  Google Scholar 

  • Gul K. Calculations for the excitation functions of 3–26 MeV proton reactions on 66Zn, 67Zn and 68Zn. Appl Radiat Isot. 2001;54:311–8.

    Article  PubMed  CAS  Google Scholar 

  • Guptna B, Deep A, Malik P. Liquid-Liquid extraction and recovery of Indium using Cyanex 923. Anal Chim Acta. 2004;513:463–71.

    Article  CAS  Google Scholar 

  • Ham GJ. Determination of actinides in environmental materials using extraction chromatography. Scien Tot Environ. 1995;173/174:19–22.

    Article  CAS  Google Scholar 

  • Henricksen G, Hoff P, Alstad J, Larsen RH. 223Ra for endoradiotherapeutic applications prepared from an immobilized 227Ac/227Th source. Radiochim Acta. 2001;89:661–6.

    Google Scholar 

  • Horowitz EE, Bond AH. Purification of radionuclides for nuclear medicine: the multicolumn selectivity inversion generator concept. Czech J Phys. 2003;53:A713–6.

    Article  Google Scholar 

  • Horwitz EP, Dietz ML. Concentration and separation of actinides from urine using a supported bifunctinal organophosphorus extractant. Anal Chim Acta. 1990;238:263–71.

    Article  CAS  Google Scholar 

  • Horwitz EP, Dietz ML, Fisher DE. Separation and pre concentration of strontium from biological, environmental, and nuclear waste samples by extraction chromatography using a crown ether. Anal Chem. 1991;63(5):522–5.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz EP, Chiarizia R, Dietz ML, et al. Separation and preconcentration of actinides from acidic media by extraction chromatography. Anal Chim Acta. 1993;281:361–72.

    Article  CAS  Google Scholar 

  • Horwitz EP, Dietz ML, Chiarizia R, et al. Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger. Application to the characterization of high-level nuclear waste solutions. Anal Chim Acta. 1995;310:63–78.

    Article  CAS  Google Scholar 

  • Horwitz EP, Chiarizia R, Dietz ML, et al. DIPEX: a new extraction chromatographic material for the separation and Pre-concentration of actinides from aqueous solution. React Func Polym. 1997;33:25–36.

    Article  CAS  Google Scholar 

  • Inoue K, Yoshizuka K, Yamguchi S. Solvent extraction of indium 8 trialkylphosphine oxide from sulphuric acid solutions containing chloride. J Chem Engin Japan. 1994;27(6):737–40.

    Article  CAS  Google Scholar 

  • International Atomic Energy Agency (IAEA) Publication Technical Reports Series No. Cyclotron produced radionuclides: physical characteristics and production, 468. Vienna; 2009.

    Google Scholar 

  • Jalilian AR, Yousefnia H, Garousi J, et al. The development of radiogallium-acetylacetonate bis(thiosemicarbazone) complex for tumour imaging. Nucl Med Rev. 2009;12(2):65–71.

    Google Scholar 

  • Jamriska DJ, Taylor WA, Ott MA, et al. Activation rates and chemical recovery of 67Cu produced with low energy proton irradiation of enriched Zn targets. J RadioanaLl ucL Chem. 1995;195:263–70.

    Article  CAS  Google Scholar 

  • Johnson EL, Turkington TG, Jaszczak RJ, et al. Quantitation of 211At in small volumes for evaluation of targeted radiotherapy in animal models. Nucl Med Biol. 1995;22:45–54.

    Article  PubMed  CAS  Google Scholar 

  • Katabuchi T, Watanabe S, Ishioka N, et al. Production of Cu-67 via the Zn-68(p,2p)Cu-67 reaction and recovery of Zn-68 target. J Radioanal Nucl Chem. 2008;277:467–70.

    Article  CAS  Google Scholar 

  • Kirby HW. Residue adsorption – III: mutual separation of 227Ac, 227Th and 223Ra. J Inorg Nucl Chem. 1969;31:3375–85.

    Article  CAS  Google Scholar 

  • Kirby HK. Gmelin handbook of inorganic chemistry – astatine. 8th ed. Berlin: Springer; 1985. p. 95–106.

    Google Scholar 

  • Knogler K, Grünberg J, Zimmermann K, et al. Copper-67 radioimmunotherapy and growth inhibition by anti L1-cell adhesion molecule monoclonal antibodies in a therapy model of ovarian cancer metastasis. Clin Cancer Res. 2007;13:603–11.

    Article  PubMed  CAS  Google Scholar 

  • Lahiri S, Maiti M, Ghosh K. Production and separation of 111 In: an important radionuclide in life sciences: a mini review. J Radioanal Nucl Chem. 2013;297:309–18.

    Article  CAS  Google Scholar 

  • Lambrecht RM, Mirzadeh S. Cyclotron isotopes and radiopharmaceuticals – XXXV. Astatine-211. Int J Appl Radiat Isotop. 1985;36:443–50.

    Article  CAS  Google Scholar 

  • Larsen RH, Murud KM, Akabani G, et al. 211At- and 131I-labeled bisphosphonates with high in vivo stability and bone accumulation. J Nucl Med. 1999;40:1197–203.

    PubMed  CAS  Google Scholar 

  • Levin VI, Kozlova MD, Malinin AB, et al. The production of carrier-free indium. Int J Appl Radiat Isot. 1974;25:286–8.

    Article  CAS  Google Scholar 

  • Lindegren S, Back T, Jensen H. Dry-distillation of astatine-211 from irradiated bismuth targets: a time-saving procedure with high recovery yields. Appl Radiat Isot. 2001;55:157–60.

    Article  PubMed  CAS  Google Scholar 

  • Little FE, Lagunas-Solar MC. Cyclotron production of 67Ga. Cross sections and thick-target yields for the 67Zn (p, n) and 68Zn (p,2n) reactions. Int J Appl Radiat Isot. 1983;34(3):631–7.

    Google Scholar 

  • Martins ADA, Osso Jr JA. Thermal diffusion of 67Ga from irradiated Zn targets. Appl Radiat Isot. 2013;82:279–82.

    Article  CAS  Google Scholar 

  • Massaoud AA, Hanafi HA, Siyam T, Saleh ZA, Ali FA. Separation of Ga(III) from Cu(II), Ni(II) and Zn(II) in aqueous solution using synthetic polymeric resins. Cent Eur J Chem. 2008;6(1):39–45.

    Google Scholar 

  • Mausner LF, Kolsk KL, Joshi V, Srivastava SC. Radionuclide development at BNL for nuclear medicine therapy. Appl Radiat Isot. 1998;49:285–94.

    Article  PubMed  CAS  Google Scholar 

  • Miederer M, Scheinberg DA, McDevitt MR. Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha particle therapy applications. Adv Drug Deliv Rev. 2008;60:1371–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Milesz S, Norseev YV, Szücs Z, Vasáros L. Characterization of DTPA complexes and conjugated antibodies of astatine. J Radioanal Nucl Chem Lett. 1989;137:365–72.

    Article  CAS  Google Scholar 

  • Mirzadeh S, Mausner LF, Srivastava SC. Production of no carrier-added Cu-67. Appl Radiat Isot. 1986;37:29–36.

    Article  CAS  Google Scholar 

  • Mushtaq A, Karim H, Khan M. Production of no-carrier-added 64Cu and 67Cu in a reactor. J. RadioanaL Nucl Chem. 1990;141:261–9.

    Article  CAS  Google Scholar 

  • Naidoo C, Van der Walt TN. Cyclotron production of 67Ga (III) with a tandem natGe–natZn target. Appl Radiat Isot. 2001;54:915–9.

    Article  PubMed  CAS  Google Scholar 

  • Neirincks RD. The separation of cyclotron-produced 111In from a silver matrix, radio. Chem Radioanal Lett. 1971;4(2):153–5.

    Google Scholar 

  • Nelson F, Michelson DC. Ion-exchange procedures ix Cation exchange in HBr solutions. J Chromatogr. 1966;25:414.

    Article  CAS  Google Scholar 

  • Novgorodov AF, Beyer GJ, Zelinski A, et al. Simple method for high temperature release of 111In from silver. J I N R (Dubna). 1984;6(84):609.

    Google Scholar 

  • Paiva AP. Recovery of indium from aqueous solutions by solvent extraction. Sep Sci Technol. 2001;36(7):1395–419.

    Article  CAS  Google Scholar 

  • Polak P, Geradts J, Van der Vlist R, Lindner L. Photonuclear production of 67Cu from ZnO Targets. Radiochim Acta. 1986;40:169–74.

    CAS  Google Scholar 

  • Rajeh N, Subramainan MS. Extractive separation and determination of thallium and indium by liquid scintillation counting. Analyst. 1994;119:2071–4.

    Article  Google Scholar 

  • Roy K, Basu S, Ramaswami A, Nayak D, Lahiri S. Incorporation of thiosemicarbazide in Amberlite IRC-50 for separation of astatine from α-irradiated bismuth oxide. Appl Radiat Isotop. 2004;60:793–9.

    Article  CAS  Google Scholar 

  • Sadeghi M, Mokhtari L. Rapid separation of 67,68Ga from 68Zn target using precipitation technique. J Radioanal Nucl Chem. 2010;284:471–3.

    Article  CAS  Google Scholar 

  • Scheinberg DA, McDevitt MR. Actinium-225 in targeted alpha-particle therapeutic applications. Curr Radiopharm. 2011;4:306–20.

    Article  PubMed  CAS  Google Scholar 

  • Schomakher K, Schwratzbach R, Beyer G-J, Novogorodov AF. A further simplified method for the separation of 111In from Silver targets by thermo chromatography. Appl Radiat Isot. 1988;39(6):483–5.

    Article  Google Scholar 

  • Schwarzbach R, Zimmermann K, Blaeuenstein P, et al. Development of a simple and selective separation of 67Cu from irradiated zinc for use in antibody labelling: a comparison of methods. Appl Radiat Iso. 1995;46:329–36.

    Article  CAS  Google Scholar 

  • Sharma HL, Smith A. The short-lived radioisotope production program at Manchester. J Radioanal Chem. 1981;64(1, 2):249–55.

    Article  Google Scholar 

  • Shigeta N, Matsuoka H, Osa A, Koizumi M, Izumo M, Kobayashi K, Hashimoto K, Sekine T, Lambrecht RM. Production method of no-carrier-added 186Re, J Radioanal Nucl Chem. 1996;205:85–92.

    Google Scholar 

  • Shikata E. Research of radioisotope production with fast neutrons. vi. preparation of Cu-67. J Nucl Sci Technol (Tokyo, Jpn). 1964;1:177–80.

    Article  CAS  Google Scholar 

  • Smit JA, Myburgh JA, Neirinckx RD. Specific inactivation of sensitized lymphocytes in vitro using antigens labelled with astatine-211. Clin Exp Immunol. 1973;14:107–16.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Starovoitova VN, Tchelidze L, Wells DP. Production of medical radioisotopes with linear accelerators. Appl Radiat Isot. 2014;85:39–44.

    Article  PubMed  CAS  Google Scholar 

  • Stoll T, Kastleiner S, Shubin YN, Coenen HH, Qaim SM. Excitation functions of proton induced reactions on 68Zn from threshold up to 71 MeV, with specific reference to the production of 67Cu. Radiochim Acta. 2002;90:309–13.

    Article  CAS  Google Scholar 

  • Turlera A, Huenges E, Henkelmann R, et al. Method for purification of 225Ac from irradiated 226Ra-targets. United States Patent No. US 2013/0266475 A1, 10 Oct 2013.

    Google Scholar 

  • Weidner JW, Mashnik SG, John KD, et al. 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets. Appl Radiat Isot. 2012;70:2590–5.

    Article  PubMed  CAS  Google Scholar 

  • Yagi M, Kondo K. Preparation of carrier-free 67Cu by the 68Zn(g, p) reaction. Int J Appl Radiat Isot. 1978;29:757–9.

    Article  CAS  Google Scholar 

  • Yamamoto K, Matsumoto A. Liquid-Liquid distribution of ion associates of tetrabromoindate (III) with quaternarymoniun counter ions. Talanta. 1977;44:2145–50.

    Article  Google Scholar 

  • Yordanov AT, Deal K, Garmestani K, Kobayashi H, et al. Synthesis and biodistribution study of a new 211At-calix[4]arene complex. J Label Compd Radiopharm. 2000;43:1219–25.

    Article  CAS  Google Scholar 

  • Yordanov AT, Pozzi O, Carlin S, et al. Wet harvesting of no-carrier-added 211At from an irradiated 209Bi target for radiopharmaceutical applications. J Radioanalyt Nucl Chem. 2004;262:593–9.

    Article  CAS  Google Scholar 

  • Zaitseva NG, Knotek O, Kowalew A, et al. Excitation functions and yields for 111In production using. 113,114, natCd(p, xn)111In reaction with 65 MeV protons. Appl Radiat Isot. 1990;41:177–83.

    Article  CAS  Google Scholar 

  • Zalutsky MR, Bigner DD. Radioimmunotherapy with alpha-particle emitting radioimmunoconjugates. Acta Oncol. 1996;35:373–9.

    Article  PubMed  CAS  Google Scholar 

  • Zalutsky MR, Pruszynski M. Astatine-211 – production and availability. Curr Radiopharm. 2011;4(3):177–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Lp W, Fang K, He W, Sheng R, Ying D, Hu W. Excitation functions for natW(p, xn)181-186Re reactions and production of no-carrier-added. 186Re via 186W(p, n)186Re reaction. Radiochim Acta. 1999;86:11–6.

    Google Scholar 

  • Zhang X, Li Q, Li W, Sheng R, Shen S. Production of no-carrier-added 186Re via deuteron induced reactions on isotopically enriched 186W. Appl Radiat Isot. 2001;54:89–92.

    Google Scholar 

  • Zheng WI, Sipes IG, Carter DE. Determination of parts-per-billion concentrations of indium in biological materials by electrothermal atomic absorption spectrometry following Ion pair extraction. Anal Chem. 1993;65:2174–6.

    Article  PubMed  CAS  Google Scholar 

  • Zhuikov BL, Kalmykov SN, Ermolaev SV, et al. Production of 225Ac and 223Ra by irradiation of Th with accelerated protons. Radiochem. 2011;53(1):73–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Knapp, F.F.(., Dash, A. (2016). Accelerator-Produced Therapeutic Radionuclides. In: Radiopharmaceuticals for Therapy . Springer, New Delhi. https://doi.org/10.1007/978-81-322-2607-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2607-9_6

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2606-2

  • Online ISBN: 978-81-322-2607-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics