Reactor-Produced Therapeutic Radionuclides

  • F. F. (Russ) Knapp
  • Ashutosh Dash


Therapeutic radioisotopes are generally artificially produced using research reactors or particle accelerators. Since most therapeutic radioisotopes are neutron rich and subsequently decay by beta (β)-particle emission, the irradiation of stable nuclei under neutron bombardment is a major important strategy for production. Most reactors are owned and operated by federal governments, so the accessibility and support of these facilities continues to be an important factor to insure the availability of a wide variety of reactor-produced radioisotopes. In this chapter the principle reactor production and processing strategies are described for a wide variety of radioisotopes which have important therapeutic applications in nuclear medicine, oncology interventional cardiology/radiology, and related disciplines.


International Atomic Energy Agency Neutron Flux Thermal Neutron Neutron Irradiation Neutron Capture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbasi I, Ishfaq M, Sohaib M. Preparation and pre-clinical study of 177Lu-labelled hydroxyapatite for application in radiation synovectomy of small joints. Q J Nucl Med Mol Imaging. 2011;55:458–68.PubMedGoogle Scholar
  2. Abbasi IA, Zaidi JH, Arif M, Waheed S, Subhani MS. Measurement of fission neutron spectrum averaged cross sections of some threshold reactions on zirconium: production possibility of no-carrier-added 90Y in a nuclear reactor. Radiochim Acta. 2006;94:381–4.Google Scholar
  3. Abalin S, Vereschagin Y, Grigoriev G, et al. Method of strontium-89 Radioisotope production. United States Patent US 6,456,680; 2002.Google Scholar
  4. Ahmad S, Mannan A, Ahmad I, Qureshi IH. Radiochemical separation of 99Mo, 99mTc and 131I from irradiated uranium. Int J Appl Radiat Isot. 1982;33:469–72.CrossRefGoogle Scholar
  5. Alanis J, Navarrete M. Optimal parameters to produce 131I by neutron irradiation and melting of sintered tellurium dioxide. Nucl Inst Meth Phys Res A. 1999;422:10–5.Google Scholar
  6. Alanis J, Navarrete M. Industrial production and purification of 32P by sulfur irradiation with partially moderated neutron fluxes and target melting. J Radioanal Nucl Chem. 2007;273:659–62.CrossRefGoogle Scholar
  7. Alberto R, Bläuenstein P, Novak-Hofer I, et al. An improved method for the separation of 111Ag from irradiated natural palladium. Int J Radiat Appl Inst A Appl Radiat Isot. 1992;43:869–72.CrossRefGoogle Scholar
  8. Al-Janabi MAA, Kadem AHM. Radiochemical separation of 131I from irradiated natural uranium and tellurium dioxide by solvent extraction using dibenzo-18-crown-6. Int J Radiat Appl Inst A. 1990;41:787–8.CrossRefGoogle Scholar
  9. Alvarez RD, Partridge EE, Khazaeli MB, et al. Intraperitoneal radioimmunotherapy of ovarian cancer with 177Lu-CC49: a phase I/II study. Gynecol Oncol. 1997;65:94–101.PubMedCrossRefGoogle Scholar
  10. Ambade RN, Shinde SN, Khan MSA, et al. Development of a dry distillation technology for the production of 131I using medium flux reactor for radiopharmaceutical applications. J Radioanal Nucl Chem. 2015;303:451–67.CrossRefGoogle Scholar
  11. Ambrosetti MC, Colato C, Dardano A, Monzani F, Ferdeghini M. Radioiodine ablation: when and how. Q J Nucl Med Mol Imaging. 2009;53(5):473–81.Google Scholar
  12. Ando A, Ando I, Tonami N, et al. Production of 105Rh-EDTMP and its bone accumulation. Appl Radiat Isot. 2000;52:211–5.PubMedCrossRefGoogle Scholar
  13. Appelbaum FR, Brown PA, Sandmaier BM, et al. Specific marrow ablation before marrow transplantation using an aminophosphonic acid conjugate 166Ho-EDTMP. Blood. 1992;80:1608–13.PubMedGoogle Scholar
  14. Arrol WJ. Apparatus for large scale production of phosphorus-32. Nucleonics. 1953;11:26–8.Google Scholar
  15. Asavatanabodee P, Sholter D, Davis P. Yttrium-90 radiochemical synovectomy in chronic knee synovitis: a one year retrospective review of 133 treatment interventions. J Rheumato. 1997;24(4):639–42.Google Scholar
  16. Bahrami-Samani A, Bagheri R, Jalilian AR, et al. Production, quality control and pharmacokinetic studies of Ho-EDTMP for therapeutic applications. Sci Pharm. 2010;78:423–33.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bakht MK, Sadeghi M. Internal radiotherapy techniques using radiolanthanide praseodymium-142: a review of production routes, brachytherapy, unsealed source therapy. Ann Nucl Med. 2011;25:529–35. Google Scholar
  18. Bakker WH, Breeman WA, Kwekkeboom DJ, et al. Practical aspects of peptide receptor radionuclide therapy with [177Lu][DOTA0, Tyr3]octreotate. Q J Nucl Med Mol Imaging. 2006;50:265–71.PubMedGoogle Scholar
  19. Baranauskas Z, Valuckas K, Aleknavicius E, et al. Use of strontium-89 in the analgesic treatment of cancer patients with bone metastases. Medicina (Kaunas). 2006;42:11–4.Google Scholar
  20. Beard SJ, Moore RL. Large-scale recovery and purification of fission products. In: Stevenson CE, Mason EA, Gresky AT, editors. Progress in nuclear energy (series III), process chemistry, vol. 4. London: Pergamon Press; 1969. p. 645.Google Scholar
  21. Beyer G-J, Pimentel-Gonzales G. Physicochemical and radiochemical aspects of separation of radioiodine from TeO-targets. Radiochim Acta. 2000;88:175–8.CrossRefGoogle Scholar
  22. Bilewicz A, Zuchowska K, Bartos B. Separation of Yb as YbSO4 from 176Yb target for production of 177Lu via the 176Yb(n, γ)177Yb → 177Lu process. J Radioanal Nucl Chem. 2009;280:167–9.CrossRefGoogle Scholar
  23. Bishayee S, Rao DV, Srivastava SC, et al. Marrow-sparing effects of Sn-117m (4+)DTPA for radionuclide therapy of cancer in bone. J Nuc Med. 2000;41:2043–50.Google Scholar
  24. Blower PJ, Lewis JS, Zweit J. Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl Med Biol. 1996;23:957–80.PubMedCrossRefGoogle Scholar
  25. Bodei L, Cremonesi M, Grana CM, et al. Peptide receptor radionuclide therapy with 177Lu-DOTATATE: the IEO phase I-II study. Eur J Nucl Med Mol Imaging. 2011;38:2125–35.PubMedCrossRefGoogle Scholar
  26. Bokhari TH, Ahmad M, Khan IU. Separation of no-carrier-added arsenic-77 from neutron irradiated germanium. Radiochim Acta. 2009;97:503–6.CrossRefGoogle Scholar
  27. Bomanji JB, Wong W, Gaze MN, Cassoni A, Waddington W, Solano J, Ell PJ. Treatment of neuroendocrine tumours in adults with 131I-MIBG therapy. Clin Oncol (R Coll Radiol). 2003;15:193–8.CrossRefGoogle Scholar
  28. Bonardi M, Gallorini M, Groppi F, et al. N.C.A. Gold-199: a radionuclide suitable for both spect and radionuclide therapy: production yield, radiochemical separation, radionuclidic purity and specific activity. J Label Compd Radiopharm. 2001;44:S767–9.CrossRefGoogle Scholar
  29. Boussoufi M, Flocchini R G, Lagunas-Solar MC, et al. Development of a large-scale Iodine-125 production at UC Davis’s MNRC, Proc of ANS embedded topical meeting “Isotopes for Medicine and Industry” in Anaheim, 9–12 June 2008. p. 905–6. (Retrieved from:
  30. Bouvier M, Bouysset M, Bonvoisin B, et al. Erbium-169 synoviortheses and infiltrations of triamcinolone hexacetonide in metatarsophalangeal arthritis of chronic inflammatory rheumatism. Rev Rhum Mal Osteoarti. 1983;50:267–71.Google Scholar
  31. Bray LA. The recovery and purification of multi-kilocurie quantities of fission product strontium by cation exchange, Rep. HW-70998. Richland: Hanford Atomic Products Operation; 1961.Google Scholar
  32. Bryan JN, Bommarito D, Kim DY, et al. Comparison of systemic toxicities of 177Lu-DOTMP and 153Sm-EDTMP administered intravenously at equivalent skeletal doses to normal dogs. J Nucl Med Technol. 2009;37:45–52.PubMedCrossRefGoogle Scholar
  33. Breeman WA, de Jong M, Visser TJ, et al. Optimising conditions for radiolabelling of DOTA-peptides with 90Y, 111In and 177Lu at high specific activities. Eur J Nucl Med Mol Imaging. 2003;30:917–20.PubMedCrossRefGoogle Scholar
  34. Breen SL, Powe JE, Porter AT. Dose estimation in strontium-89 radiotherapy of metastatic prostatic carcinoma. J Nucl Med. 1992;33:1316–23.PubMedGoogle Scholar
  35. Breitz HB, Wendt RE, Stabin MS, et al. 166Ho-DOTMP radiation-absorbed dose estimation for skeletal targeted radiotherapy. J Nucl Med. 2006;47:534–42.PubMedGoogle Scholar
  36. Brooks RC, Carnochan P, Vollano JF, et al. Metal complexes of bleomycin: evaluation of [Rh-105]-bleomycin for use in targeted radiotherapy. Nucl Med Biol. 1999;26:421–30.PubMedCrossRefGoogle Scholar
  37. Callahan AP, Mirzadeh S, Knapp Jr FF. Large-scale production of tungsten-188. Radioact Radiochem. 1992;3:46–8.Google Scholar
  38. Castillo AX, Pérez-Malo M, Isaac-Olivé K, et al. Production of large quantities of 90Y by ion-exchange chromatography using an organic resin and a chelating agent. Nucl Med Biol. 2010;37:935–42.PubMedCrossRefGoogle Scholar
  39. Castellani MR, Chiti A, Seregni E, Bombardieri E. Role of 131I-metaiodobenzylguanidine (MIBG) in the treatment of neuroendocrine tumours. Experience of the National Cancer Institute of Milan. Q J Nucl Med. 2000;44:77–87.PubMedGoogle Scholar
  40. Chakraborty S, Das T, Banerjee S, et al. Preparation and preliminary biological evaluation of a 166Ho labeled polyazamacrocycle for possible use as an intravascular brachytherapy (IVBT) agent. Appl Radiat Isot. 2006a;64:462–9.PubMedCrossRefGoogle Scholar
  41. Chakraborty S, Unni PR, Banerjee S, et al. Potential 166Ho radiopharmaceuticals for intravascular radiation therapy (IVRT)-I: [(166)Ho] holmium labeled ethylene dicysteine. Nucl Med Biol. 2001;28:309–17.PubMedCrossRefGoogle Scholar
  42. Chakraborty S, Das T, Banerjee S, et al. 177Lu-EDTMP: a viable bone pain palliative in skeletal metastasis. Cancer Biother Radiopharm. 2008a;23:202–13.PubMedCrossRefGoogle Scholar
  43. Chakraborty S, Das T, Banerjee S, et al. Preparation and preliminary biological evaluation of 177Lu-labelled hydroxyapatite as a promising agent for radiation synovectomy of small joints. Nucl Med Commun. 2006b;27:661–8.PubMedCrossRefGoogle Scholar
  44. Chakraborty S, Das T, Sarma HD, Venkatesh M, Banerjee S. Preparation and preliminary studies on 177Lu-labeled hydroxyapatite particles for possible use in the therapy of liver cancer. Nucl Med Biol. 2008b;35:589–97.Google Scholar
  45. Chakraborty S, Vimalnath KV, Lohar SP, et al. On the practical aspects of large-scale production of 177Lu for peptide receptor radionuclide therapy using direct neutron activation of 176Lu in a medium flux research reactor: the Indian experience. J Radioanal Nucl Chem. 2014;302:233–43.CrossRefGoogle Scholar
  46. Chakraborty S, Das T, Sarma HD, et al. Comparative studies of 177Lu-EDTMP and 177Lu-DOTMP as potential agents for palliative radiotherapy of bone metastasis. Appl Radiat Isot. 2008c;66:1196–205.PubMedCrossRefGoogle Scholar
  47. Chakraborty S, Unni PR, Venkatesh M, Pillai MRA. Feasibility study for production of 175Yb: a promising therapeutic radionuclide. Appl Radiat Isot. 2002;57:295–301.PubMedCrossRefGoogle Scholar
  48. Chakraborty S, Das T, Banerjee S, et al. 175Yb-labeled hydroxyapatite: a potential agent for use in radiation synovectomy of small joints. Nucl Med Biol. 2006c;33:585–91.PubMedCrossRefGoogle Scholar
  49. Chakravarty R, Chakraborty S, Chirayil V, Dash A. Reactor production and electrochemical purification of 169Er: a potential step forward for its utilization in in vivo therapeutic applications. Nucl Med Biol. 2014;41:163–70.PubMedCrossRefGoogle Scholar
  50. Chakravarty R, Das T, Dash A, Venkatesh M. An electro-amalgamation approach to isolate no-carrier-added 177Lu from neutron irradiated Yb for biomedical applications. Nucl Med Biol. 2010;37:811–20.PubMedCrossRefGoogle Scholar
  51. Chakravarty R, Dash A, Pillai MRA. Availability of yttrium-90 from strontium-90: a nuclear medicine perspective. Cancer Biother Radiopharm. 2012a;27:621–41.PubMedCrossRefGoogle Scholar
  52. Chakravarty R, Ram R, Jagdeesan KC, et al. Polymer embedded nanocrystalline titania: a new generation sorbent for the separation of 77As from Ge for biomedical applications. Chromatographia. 2011;74:531–40.CrossRefGoogle Scholar
  53. Chakravarty R, Das T, Venkatesh M, Dash A. An electro-amalgamation approach to produce 175Yb suitable for radiopharmaceutical applications. Radiochim Acta. 2012b;100:255–61.CrossRefGoogle Scholar
  54. Chanda AN, Kan P, Watkinson LD, et al. Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice. Nanomedicine. 2010;6:201–9.PubMedCrossRefGoogle Scholar
  55. Chapuy B, Hohloch K, Trümper L. Yttrium 90 ibritumomab tiuxetan (Zevalin): a new bullet in the fight against malignant lymphoma? Biotechnol J. 2007;2:1435–43.PubMedCrossRefGoogle Scholar
  56. Chattopadhyay S, Pal S, Vimalnath KV, Das MK. A versatile technique for radiochemical separation of medically useful no-carrier-added (nca) radioarsenic from irradiated germanium oxide targets. Appl Radiat Isot. 2007;65:1202–7.PubMedCrossRefGoogle Scholar
  57. Chattopadhyay S, Vimalnath KV, Saha S, et al. Preparation and evaluation of a new radiopharmaceutical for radiosynovectomy,111Ag-labelled hydroxyapatite (HA) particles. Appl Radiat Isot. 2008;66:334–9.PubMedCrossRefGoogle Scholar
  58. Chattopadhyay S, Saha-Das S. Recovery of 131I from alkaline solution of n-irradiated tellurium target using a tiny Dowex-1 column. Appl Radiat Isot. 2010;68:1967–9.PubMedCrossRefGoogle Scholar
  59. Cheson BD. The role of radioimmunotherapy with yttrium-90 ibritumomab tiuxetan in the treatment of non-Hodgkin lymphoma. BioDrugs. 2005;19:309–22.PubMedCrossRefGoogle Scholar
  60. Cheung MC, Haynes AE, Stevens A, et al. Yttrium 90 ibritumomab tiuxetan in lymphoma. Leuk Lymphoma. 2006;47:967–77.PubMedCrossRefGoogle Scholar
  61. Chinol M, Cutler CS, Papi S, et al. Production of GMP-compliant lutetium-177: radiochemical precursor for targeted cancer therapy. Nucl Med Biol. 2010;37:717.CrossRefGoogle Scholar
  62. Constan R. Production de 131I sans porteur a partir d’acide tellurique. J Inorg Nucl Chem. 1958;7:133–9.CrossRefGoogle Scholar
  63. Crawford ED, Kozlowski JM, Debruyne FM, et al. The use of strontium 89 for palliation of pain from bone metastases associated with hormone-refractory prostate cancer. Urology. 1994;44:481–5.PubMedCrossRefGoogle Scholar
  64. Cutler CS, Hennkens HM, Sisay N, et al. Radiometals for combined imaging and therapy. Chem Rev. 2013;113:858–83.PubMedCrossRefGoogle Scholar
  65. Cyclotron produced radionuclides: physical characteristics and production. Technical reports series no. 468. Vienna: An International Atomic Energy Agency (IAEA) publication; 2009.Google Scholar
  66. Dadachova E, Mirzadeh S, Lambrecht RM, et al. Separation of carrier-free Holmium-166 from neutron-irradiated dysprosium targets. Anal Chem. 1994;66:4272–7.CrossRefGoogle Scholar
  67. Dadachova E, Mirzadeh S, Lambrecht RM, et al. Separation of carrier-free166 Ho from Dy2 O3targets by partition chromatography and electrophoresis. J Radioanal Nucl Chem. 1995;199:115–23.CrossRefGoogle Scholar
  68. Dadachova E, Mirzadeh S, Smith SV, et al. Radiolabeling antibodies with holmium-166. Appl Radiat Isot. 1997;48:477–81.PubMedCrossRefGoogle Scholar
  69. Das NR, Banerjee K, Chatterjee K, Lahiri S. Separation of carrier-free 199Au as a β-decay product of 199Pt. Appl Radiat Isot. 1999;50:643–7.CrossRefGoogle Scholar
  70. Das T, Chakraborty S, Sarma HD, et al. 166Ho-labeled hydroxyapatite particles: a possible agent for liver cancer therapy. Cancer Biother Radiopharm. 2009a;24:7–14.PubMedCrossRefGoogle Scholar
  71. Das T, Chakraborty S, Sarma HD, et al. Preparation of 166Ho-oxine-lipiodol and its preliminary bioevaluation for the potential application in therapy of liver cancer. Nucl Med Commun. 2009b;30:362–7.PubMedCrossRefGoogle Scholar
  72. Das T, Chakraborty S, Unni PR, et al. 177Lu-labeled cyclic polyaminophosphonates as potential agents for bone pain palliation. Appl Radiat Isot. 2002;57:177–84.PubMedCrossRefGoogle Scholar
  73. Das T, Chakraborty S, Sarma HD, et al. 170Tm-EDTMP: a potential cost-effective alternative to 89SrCl2 for bone pain palliation. Nucl Med Biol. 2009c;36:561–8.PubMedCrossRefGoogle Scholar
  74. Dash A, Pillai MR, Knapp Jr FF. Production of 177Lu for targeted radionuclide therapy: available options. Nucl Med Mol Imaging. 2015a;49:85–107.PubMedCrossRefGoogle Scholar
  75. Dash A, Chakravarty R, Knapp FF (R), Pillai MR. Indirect production of No Carrier Added (NCA) 177Lu from Irradiation of Enriched 176Yb: options for Ytterbium/Lutetium separation. Curr Radiopharm. 2015b;8(2):107–18.PubMedCrossRefGoogle Scholar
  76. Danon Y, Werner CJ, Youk G, et al. Neutron total cross-section measurements and resonance parameter analysis of holmium, thulium, and erbium from 0.001 to 20eV. Nucl Sci Eng. 1998;128:61–9.Google Scholar
  77. de Jong M, Breeman WA, Bernard BF, et al. Evaluation in vitro and in rats of 161Tb-DTPA-octreotide, a somatostatin analogue with potential for intraoperative scanning and radiotherapy. Eur J Nucl Med. 1995;22:608–16.PubMedCrossRefGoogle Scholar
  78. De Klerk JM, Zonnenberg BA, Blijham GH, et al. Treatment of metastatic bone pain using the bone seeking radiopharmaceutical Re-186-HEDP. Anticancer Res. 1997;17:1773–7.PubMedGoogle Scholar
  79. Delpassand ES, Samarghandi A, Zamanian S, et al. Peptide receptor radionuclide therapy with 177Lu-DOTATATE for patients with somatostatin receptor-expressing neuroendocrine tumors: the first US phase 2 experience. Pancreas. 2014;43:518–25.PubMedCrossRefGoogle Scholar
  80. DeNardo SJ, DeNardo GL, Kukis DL, Shen S, Kroger LA, DeNardo DA, Goldstein DS, Mirick GR, Salako QA, Mausner LF, Srivastava SC, Meares CF. 67Cu-21T-BAT-Lym-1 pharmacokinetics, radiation dosimetry, toxicity and tumor regression in patients with lymphoma. J Nucl Med. 1999;40:302–9.Google Scholar
  81. Dewaraja YK, Schipper MJ, Roberson PL, et al. 131I-tositumomab radioimmunotherapy: initial tumor dose–response results using 3-dimensional dosimetry including radiobiologic modeling. J Nucl Med. 2010;51:1155–62.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Dillman RO. Radioimmunotherapy of B-cell lymphoma with radiolabelled anti-CD20 monoclonal antibodies. Clin Exp Med. 2006;6:1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Dumont RA, Seiler D, Marincek N, et al. Survival after somatostatin based radiopeptide therapy with 90Y-DOTATOC vs. 90Y-DOTATOC plus 177Lu-DOTATOC in metastasized gastrinoma. Am J Nucl Med Mol Imaging. 2015;5:46–55.PubMedPubMedCentralGoogle Scholar
  84. Dvorakova Z, Henkelmann R, Lin X, Türler A, Gerstenberg H. Production of 177Lu at the new research reactor FRM-II: irradiation yield of 176Lu(n, gamma)177Lu. Appl Radiat Isot. 2008;66:147–51.Google Scholar
  85. El-Absy MA, El-Garhy MA, El-Amir MA, Fasih TW, El-Shaha MF. Separation and purification of 131I from neutron irradiated tellurium dioxide targets by wet-distillation method. Sep Purif Technol. 2010;71:1–12.CrossRefGoogle Scholar
  86. El-Azony KM, Mohty AA, Salah M. Separation and purification of 131I from tellurium material using ion exchange for preparing tetra-butyl ammonium iodide 131I. Appl Radiat Isot. 2004;61:1185–8.PubMedCrossRefGoogle Scholar
  87. Elom Achoribo AS, Akaho EH, Nyarko BJ, Osae Shiloh KD, Odame Duodu G, Gibrilla A. Feasibility study for production of I-131 radioisotope using MNSR research reactor. Appl Radiat Isot. 2012;70:76–80.PubMedCrossRefGoogle Scholar
  88. Emran A, Hosain F, Spencer RP, Kolstad KS. Synthesis and biodistribution of radioarsenic labeled dimethylarsinothiols: derivatives of penicillamine and mercaptoethanol. Int J Nucl Med Biol. 1984;11:259–61.PubMedCrossRefGoogle Scholar
  89. Emran AM, Phillips DR. Biomedical use of arsenic radioisotopes new trends in radiopharmaceutical synthesis. In: New trends in radiopharmaceutical synthesis, quality assurance, and regulatory control. New York: Plenum Press; 1991. p. 153–68.CrossRefGoogle Scholar
  90. Emmanouilides C. Review of Y-ibritumomab tiuxetan as first-line consolidation radio-immunotherapy for B-cell follicular non-Hodgkin’s lymphoma. Cancer Manag Res. 2009;1:131–6.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Ermolaev SV, Zhuikov BL, Kokhanyuk VM, et al. Production of no-carrier added Tin-117m from proton irradiated antimony. J Radioanal Chem. 2009;280:319–24.CrossRefGoogle Scholar
  92. Erdtmann G. Neutron activation tables. Weinheim: Verlag Chemie; 1976.Google Scholar
  93. Esser JP, Krenning EP, Teunissen JJ, et al. Comparison of [177Lu-DOTA(0), Tyr(3)]octreotate and [177Lu-DOTA(0), Tyr(3)]octreotide: which peptide is preferable for PRRT? Eur J Nucl Med Mol Imaging. 2006;33:1346–51.PubMedCrossRefGoogle Scholar
  94. Ezziddin S, Sabet A, Ko YD, et al. Repeated Radionuclide therapy in metastatic paraganglioma leading to the highest reported cumulative activity of 131I-MIBG. Radiat Oncol. 2012;7:8.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Ferro-Flores G, Hernández-Oviedo O, Arteaga de Murphy C, et al. 166Dy/166Ho hydroxide macroaggregates: an in vivo generator system for radiation synovectomy. Appl Radiat Isot. 2004;61:1227–33.PubMedCrossRefGoogle Scholar
  96. Ferro-Flores G, Arteaga de Murphy C, Pedraza-López M, et al. Labeling of biotin with 166Dy/166Ho as a stable in vivo generator system. Int J Pharm. 2003;255:129–38.PubMedCrossRefGoogle Scholar
  97. Firusian N, Schmidt CG. Radioactive strontium for treatment incurable pain in skeletal neoplasm. Dtsch Med Wochenschr. 1973;98:2347–51.PubMedCrossRefGoogle Scholar
  98. Firestone RB, Shirley VS. Table of isotopes, vol. 2. 8th ed. New York: Wiley; 1995.Google Scholar
  99. Frier M. Rhenium-188 and copper-67 radiopharmaceuticals for the treatment of bladder cancer. Mini Rev Med Chem. 2004;4:61–8.PubMedCrossRefGoogle Scholar
  100. Fukushima S, Hayashi S, Kume S, et al. The production of high specific activities of tin. Bull Chem Soc Japan. 1963;36(10):1225–8.CrossRefGoogle Scholar
  101. Gedik GK, Hoefnagel CA, Bais E, Olmos RA. 131I-MIBG therapy in metastatic phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2008;35:725–33.PubMedCrossRefGoogle Scholar
  102. Gharemano AR, Najafi R, Nejad V, et al. Preparation of ortho-phosphoric acid/H3 32P O4/for application in medicine and agriculture in iran. Radiochem Radioanal Lett. 1983;58:49–53.Google Scholar
  103. Giovanella L. Thyroglobulin-guided 131I ablation in low-risk differentiated thyroid carcinoma: is the yardstick accurate enough? Head Neck. 2011;33:1379–80.PubMedCrossRefGoogle Scholar
  104. Gisselbrecht C, Bethge W, Duarte RF, et al. Current status and future perspectives for yttrium-90(90Y)-ibritumomab tiuxetan in stem cell transplantation for non-Hodgkin’s lymphoma. Bone Marrow Transplant. 2007;40:1007.PubMedCrossRefGoogle Scholar
  105. Goldenberg DM, Sharkey RM. Advances in cancer therapy with radiolabeled monoclonal antibodies. QJ Nucl Med Mol Imaging. 2006;50:248–64.Google Scholar
  106. Goswami N, Nef W, Alberto R, et al. Rhodium-105 tetrathioether complexes: radiochemistry and initial biological evaluation. Nucl Med Biol. 1999;26:951–7.PubMedCrossRefGoogle Scholar
  107. Grazman B, Troutner DE. 105Rh as a potential radiotherapeutic agent. Int J Rad Appl Instrum A. 1988;39:257–60.PubMedCrossRefGoogle Scholar
  108. Gulenchyn KY, Yao X, Asa SL, Singh S, Law C. Radionuclide therapy in neuroendocrine tumours: a systematic review. Clin Oncol (R Coll Radiol). 2012;24:294–308.CrossRefGoogle Scholar
  109. Gumpel JM, Matthews SA, Fisher M. Synoviorthesis with erbium-169: a double-blind controlled comparison of erbium-169 with corticosteroid. Ann Rheum Dis. 1979;38:341–3.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Hainfeld JF. A small gold-conjugated antibody label: Improved resolution for electron microscopy. Science. 1987;236:450–3.PubMedCrossRefGoogle Scholar
  111. Hainfeld JF. Gold cluster-labelled antibodies. Nature. 1988;333:281–2.PubMedCrossRefGoogle Scholar
  112. Hainfeld JF, Foley CJ, Srivastava SC, et al. Radioactive gold cluster immunoconjugates:potential agents for cancer therapy. Int J Rad Appl Instrum B. 1990;17:287–94.PubMedCrossRefGoogle Scholar
  113. Hagenbeek A. Radioimmunotherapy for NHL: experience of Y-ibritumomab tiuxetan in clinical practice. Leuk Lymphoma. 2003;44:S37–47.PubMedCrossRefGoogle Scholar
  114. Harper PV, Siements WD, Lathrop KA, et al. Production and use of Iodine 125. J Nucl Med. 1963;4:277–89.PubMedGoogle Scholar
  115. Hashimoto K, Matsuoka H, Uchida S. Production of no-carrier-added 177Lu via the 176Yb(n, γ)177Yb → 177Lu process. J Radioanal Nucl Chem. 2003;255:575–9.CrossRefGoogle Scholar
  116. Hassal SB. Method and apparatus for production of radioactive iodine. U.S. Patent No. 5633900. 27 May 1997.Google Scholar
  117. Hong YD, Park KB, Jang BS, et al. Holmium-166-DTPA as a liquid source for endovascular brachytherapy. Nucl Med Biol. 2002;29:833–9.PubMedCrossRefGoogle Scholar
  118. Hong YD, Choi SJ, Choi SM, Jang BS. The availability of contrast media in the application of Holmium-166-DTPA for vascular brachytherapy. Nucl Med Biol. 2004;31:225–30.PubMedCrossRefGoogle Scholar
  119. Horwitz EP, Mc Alister DR, Bond AH, Barrans RE, Williamson JM. A process for the separation of 177Lu from neutron irradiated 176Yb targets. Appl Radiat Isot. 2005;63:23–36.PubMedCrossRefGoogle Scholar
  120. Horwitz EP, Dietz ML, Fisher DE. SREX: A new process for the extraction and recovery of strontium from acidic nuclear waste streams. Solv Extr Ion Exch. 1991;9:1–25.CrossRefGoogle Scholar
  121. Hosain F, Emran A, Spencer RP, Clampitt KS. Synthesis of radioarsenic labeled dimethylchloroarsine for derivation of a new group of radiopharmaceuticals. Int J Appl Radiat Isot. 1982;33:1477–8.CrossRefGoogle Scholar
  122. Hu F, Cutler CS, Hoffman T, et al. Pm-149 DOTA bombesin analogs for potential radiotherapy. In vivo comparison with Sm-153 and Lu-177 labeled DO3A-amide-betaAla-BBN(7–14)NH(2). Nucl Med Biol. 2002;29:423–30.PubMedCrossRefGoogle Scholar
  123. Ibatici A, Pica GM, Nati S, et al. Safety and efficacy of 90Yttrium-ibritumomab-tiuxetan for untreated follicular lymphoma patients. An Italian cooperative study. Br J Haematol. 2014;164:710–6.PubMedCrossRefGoogle Scholar
  124. International Atomic Energy Agency (IAEA). Production of long lived parent radionuclides for generators: 68Ge, 82Sr, 90Sr and 188W, IAEA radioisotopes and radiopharmaceuticals series, vol. 2. Vienna: International Atomic Energy Agency (IAEA); 2010.Google Scholar
  125. Islami-Rad SZ, Shamsaei M, Gholipour-Peyvandi R, et al. Reactor production and purification of 153Sm radioisotope via natSm target irradiation. Radiochemistry. 2011;53:642–5.CrossRefGoogle Scholar
  126. Iznaga-Escobar N. Direct radiolabeling of monoclonal antibodies with rhenium-188 for radioimmunotherapy of solid tumors-a review of radiolabeling characteristics, quality control and in vitro stability studies. Appl Radiat Isot. 2001;54:399–406.PubMedCrossRefGoogle Scholar
  127. Jager PL, Kooistra A, Piers DA. Treatment with radioactive 89strontium for patients with bone metastases from prostate cancer. BJU Int. 2000;86:929–34.PubMedCrossRefGoogle Scholar
  128. Jennewein M, Schirrmacher R, Maus S, et al. Macroscopic synthesis of arsenoorganic precursors and first no-carrier-added radioarsenic labelling. J Lab Comp Radiopharm. 2003;46:42.Google Scholar
  129. Jennewein M, Qaim SM, Hermanne A, et al. A new method for radiochemical separation of arsenic from irradiated germanium oxide. Appl Radiat Isot. 2005;63:343–51.PubMedCrossRefGoogle Scholar
  130. Jennewein M, Hermanne A, Mason RP, et al. A new method for the labelling of proteins with radioactive arsenic isotopes, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 569, Issue 2, Proceedings of the 3rd International Conference on Imaging Technologies in Biomedical Sciences – Innovation in Nuclear and Radiological Imaging: from Basic Research to Clinical Application, 20 Dec 2006. p. 512–7.Google Scholar
  131. Johnsen AM, Heidrich BJ, Durrant CB, et al. Reactor production of 64 Cu and 67 Cu using enriched zinc target material. J Radioanal Nucl Chem. 2015;305:61–71.CrossRefGoogle Scholar
  132. Jia W, Ehrhardt GJ. Production of 186Re, 188Re and other radionuclides via inorganic Szilard-chalmers process, United States Patent No. 5,862,193 dt. 01/19/1999; 1999.Google Scholar
  133. Jia BW, Ma D, Volkert EW, et al. Production of No-Carrier-Added 105Rh from Neutron Irradiated Ruthenium Target. Platinum Metals Rev. 2000;44:50–5.Google Scholar
  134. Jeong JM, Knapp Jr FF. Use of the Oak Ridge National Laboratory tungsten-188/rhenium-188 generator for preparation of the rhenium-188 HDD/lipiodol complex for trans-arterial liver cancer therapy. Semin Nucl Med. 2008;38:S19–29.PubMedCrossRefGoogle Scholar
  135. Jeong JM, Chung JK. Therapy with 188Re-labeled radiopharmaceuticals: an overview of promising results from initial clinical trials. Cancer Biother Radiopharm. 2003;18:707–17.PubMedCrossRefGoogle Scholar
  136. Joshi PV, Jagadeesan KC, Manolkar RB, et al. Production of 125I from neutron irradiation of natural Xe gas and a wet distillation process for radiopharmaceutical applications. Ind Eng Chem Res. 2012;51:8575–82.CrossRefGoogle Scholar
  137. John CS, Pillai MRA, Lo JM, et al. Labeling of proteins with 105Rh. Appl Radiat Isot. 1989;40:701–5.CrossRefGoogle Scholar
  138. Johnson PE, Milne DB, Lykken GI. Effects of age and sex on copper absorption, biological half-life, and status in humans. A J Clin Nutr. 1992;56:917–25.Google Scholar
  139. Junde H, Xialong H, Tuli JK. Nucl Data Sheets. 106, 159 (2005). Data extracted from the ENSDF database, (April 1, 2005) National Nuclear Data Base. Brookhaven National Laboratory, USA; 2005.Google Scholar
  140. Jurisson SS, Ketring AR, Volkert WA. Rhodium-105 complexes as potential radiotherapeutic agents. Transit Met Chem. 1997;22:315–7.CrossRefGoogle Scholar
  141. Kahan A, Mödder G, Menkes CJ, et al. 169Erbium-citrate synoviorthesis after failure of local corticosteroid injections to treat rheumatoid arthritis-affected finger joints. Clin Exp Rheumatol. 2004;22:722–6.PubMedGoogle Scholar
  142. Kam BLR, Teunissen JJM, Krenning EP, et al. Lutetium-labelled peptides for therapy of neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39:103–12.PubMedCentralCrossRefGoogle Scholar
  143. Kamadhenu Electrochemical 90Sr/90Y generator. Model KA 01 operating manual. Isotope Technologies Dresden, Germany; 2010.Google Scholar
  144. Kampen WU, Voth M, Pinkert J, Krause A. Therapeutic status of radiosynoviorthesis of the knee with yttrium [90Y] colloid in rheumatoid arthritis and related indications. Rheumatology (Oxford). 2007;46:16–24.CrossRefGoogle Scholar
  145. Kan RW, Tsang SH, Poon RT, et al. Update on yttrium-90-based radio-embolization for treatment of hepatocellular carcinoma. ANZ J Surg. 2012;82:505–9.PubMedCrossRefGoogle Scholar
  146. Karelin Ye A, Efimov VN, Filimonov VT, Kuznetsov RA, Revyakin YL, Andreev OI, Zhemkov IY, Bukh VG, Lebedev VM, Spiridonov Ye N. Radionuclide production using a fast flux reactor. Appl Radiat Isot. 2000;53:825–7.PubMedCrossRefGoogle Scholar
  147. Katabuchi T, Watanabe S, Ishioka NS, et al. Production of 67Cu via the 68Zn(p,2p)67Cu reaction and recovery of 68Zn target. J Radioanal Nucl Chem. 2008;277:467–70.CrossRefGoogle Scholar
  148. Karavida N, Notopoulos A. Radiation Synovectomy: an effective alternative treatment for inflamed small joints. Hippokratia. 2010;14:22–7.PubMedPubMedCentralGoogle Scholar
  149. Khalafi H, Nazari K, Ghannadi-Maragheh M. Investigation of efficient 131I production from natural uranium at Tehran research reactor. Ann Nucl Energy. 2005;32:729–40.CrossRefGoogle Scholar
  150. Khalid M, Mushtaq A, Iqbal MZ. Separation of 111Ag from neutron irradiated natural palladium using alumina as an adsorbent. Appl Radiat Isot. 2000;52:19–22.PubMedCrossRefGoogle Scholar
  151. Kern W. 131I tositumomab: a viewpoint by Wolfgang Kern. Bio Drugs. 2000;14:203–4.Google Scholar
  152. Ketring AR, Ehrhardt GJ, Embree MF, et al. Production and supply of high specific activity radioisotopes for radiotherapy applications. Alasbimn. Article N° AJ19-2. 2003.
  153. Kiss I, Gróz P, Révész A, Sipos T. Production of 125I from pile-irradiated xenon difluoride. J Inorg Nucl Chem. 1969;31:1225–7.CrossRefGoogle Scholar
  154. Kolsky KL, Joshi V, Mausner LF, Srivastava SC. Radiochemical purification of no-carrier-added scandium-47 for radioimmunotherapy. Appl Radiat Isot. 1998a;49:1541–9.PubMedCrossRefGoogle Scholar
  155. Knapp Jr FF, Callahan AP, Beets AL, et al. Processing of reactor-produced 188W for fabrication of clinical scale alumina based 188W/188Re Generators. Appl Radiat Isot. 1994;45:1123–8.CrossRefGoogle Scholar
  156. Knapp FF, Mirzadeh S, Beets AL, et al. Reactor-produced radioisotopes from ORNL for bone pain palliation. Appl Radiat Isot. 1998;49(4):309–15.PubMedCrossRefGoogle Scholar
  157. Knapp Jr FF (R), Beets AL, Guhlke S. Development of the alumina-based tungsten-188/Rhenium-188 generator and use of Rhenium-188-labeled radiopharmaceuticals for cancer treatment. Antican Res. 1997;17:1783–96.Google Scholar
  158. Knapp Jr FF, Mirzadeh S, Beets AL, Du M. Production of therapeutic radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for applications in nuclear medicine, oncology and interventional cardiology. J Radioanal Nucl Chem. 2005;263:503–9.CrossRefGoogle Scholar
  159. Knapp Jr FF, Mirzadeh S, Garland M, et al. Reactor production and processing of 188W. In Production of long lived parent radionuclides for generators. 68Ge, 82Sr, 90Sr and 188W. IAEA; 2010. p. 79–109.
  160. Kolsky KL, Mausner LF. Production of no-carrier-added 199Au for gold cluster-labelled antibodies. Appl Radiat Isot. 1993;44:553–60.PubMedCrossRefGoogle Scholar
  161. Kolsky KL, Joshi V, Mausner LF, et al. Radiochemical purification of no-carrier-added Scandium-47 for radioimmunotherapy. Appl Radiat Isot. 1998b;49:1541–9.PubMedCrossRefGoogle Scholar
  162. Kothari K, Pillai MR, Unni PR, et al. Preparation, stability studies and pharmacological behaviour of [186Re]Re-HEDP. Appl Radiat Isot. 1999;51:51–8.PubMedCrossRefGoogle Scholar
  163. Kozempel PJ, Abbas K, Simonelli F, et al. Preparation of 67Cu via deuteron irradiation of 70Zn. Radiochim Acta. 2012;100:419–23.CrossRefGoogle Scholar
  164. Krishnamurthy GT, Swailem FM, Srivastava SC, et al. Tin-117m(4+)DTPA: pharmacokinetics and imaging characteristics in patients with metastatic bone pain. J Nucl Med. 1997;38:230–7.PubMedGoogle Scholar
  165. Kumric K, Trtic-Petrovic T, Koumarianou E, et al. Supported liquid membrane extraction of 177Lu(III) with DEHPA and its application for the purification of 177Lu-DOTA-lanreotide. Sep Purif Technol. 2006;51:310–7.CrossRefGoogle Scholar
  166. Küçük NO, Ibiş E, Aras G, et al. Palliative analgesic effect of Re-186 HEDP in various cancer patients with bone metastases. Ann Nucl Med. 2000;14:239–45.PubMedCrossRefGoogle Scholar
  167. Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA0, Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26:2124–30.PubMedCrossRefGoogle Scholar
  168. Lahiri S, Volkers KJ, Wierczinski B. Production of 166Ho through 164Dy(n, gamma)165Dy(n, gamma)166Dy(beta-)166Ho and separation of 166Ho. Appl Radiat Isot. 2004;61:1157–61.PubMedCrossRefGoogle Scholar
  169. Lahiri S, Nayak D, Nandy M, Das NR. Separation of carrier free lutetium produced in proton activated ytterbium with HDEHP. Appl Radiat Isot. 1998;49:911–3.CrossRefGoogle Scholar
  170. Lam MG, de Klerk JM, van Rijk PP. 186Re-HEDP for metastatic bone pain in breast cancer patients. Eur J Nucl Med Mol Imaging. 2004;31:S162–70.PubMedCrossRefGoogle Scholar
  171. Lambert B, Bacher K, Defreyne L. Rhenium-188 based radiopharmaceuticals for treatment of liver tumours. Q J Nucl Med Mol Imaging. 2009;53:305–10.PubMedGoogle Scholar
  172. Lambert B, de Klerk JM. Clinical applications of 188Re-labelled radiopharmaceuticals for radionuclide therapy. Nucl Med Commun. 2006;27:223–9.PubMedCrossRefGoogle Scholar
  173. Lange G, Herrmann G, Strassmann F. Preparation of strontium-90 free yttrium-90 by electrolysis(Die darstellung von strontium-90-freiem yttrium-90 durch elektrolyse). J Inorg Nucl Chem. 1957;4:146–54.CrossRefGoogle Scholar
  174. Lau WY, Lai EC, Leung TW. Current role of selective internal irradiation with yttrium-90 microspheres in the management of hepatocellular carcinoma: a systematic review. Int J Radiat Oncol Biol Phys. 2011;81:460–7. Google Scholar
  175. Lawrence EO, Cooksey D. On the apparatus for the multiple acceleration of light ions to high speeds. Phys Rev. 1936;50:1131–40.CrossRefGoogle Scholar
  176. Le VS, Morcos N, Zaw M, et al. Alternative chromatographic processes for no-carrier added 177Lu radioisotope separation, Part I. Multi-column chromatographic process for clinically applicable. J Radioanal Nucl Chem. 2008a;277(3):663–73.CrossRefGoogle Scholar
  177. Le VS, Morcos N, Zaw M. Alternative chromatographic processes for no-carrier added 177Lu radioisotope separation. Part II. J Radioanal Nucl Chem. 2008b;277(3):675–83.CrossRefGoogle Scholar
  178. Lebedev NA, Novgorodov AF, Misiak R, et al. Radiochemical separation of no-carrier-added 177Lu as produced via the 176Yb(n, γ)177Yb → 177Lu process. Appl Radiat Isot. 2000;53:421–5.PubMedCrossRefGoogle Scholar
  179. Lehenberger S, Barkhausen C, Cohrsb S, et al. The low-energy β − and electron emitter 161Tb as an alternative to 177Lu for targeted radionuclide therapy. Nucl Med Biol. 2011;38:917–24.PubMedCrossRefGoogle Scholar
  180. Leonard A. Metals and their compounds in the environment: occurrence, analysis, and biological relevance. Weinheim/New York/Basel/Cambridge: VCH; 1991. p. 751.Google Scholar
  181. Lewis MR, Zhang J, Jia F, et al. Biological comparison of 149Pm-, 166Ho-, and 177Lu-DOTA-biotin pretargeted by CC49 scFv-streptavidin fusion protein in xenograft-bearing nude mice. Nucl Med Biol. 2004;31:213–23.PubMedCrossRefGoogle Scholar
  182. Lewington V. Development of 131I-tositumomab. Semin Oncol. 2005;32:S50–6.PubMedCrossRefGoogle Scholar
  183. Lewington VJ. Cancer therapy using bone seeking isotopes. Phys Med Biol. 1996;41:2027–42.PubMedCrossRefGoogle Scholar
  184. Li N, Struttman M, Higginbotham C, Grall AJ, et al. Biodistribution of model 105Rh-labeled tetradentate thiamacrocycles in rats. Nucl Med Biol. 1997;24(1):85–92.PubMedCrossRefGoogle Scholar
  185. Li WP, Smith CJ, Cutler CS. Aminocarboxylate complexes and octreotide complexes with no carrier added 177Lu, 166Ho and 149Pm. Nucl Med Biol. 2003;30:241–51.PubMedCrossRefGoogle Scholar
  186. Linder MC, Hazegh-Azam M. Copper biochemistry and molecular biology. Am J Clin Nutr. 1996;63:797S–811.PubMedGoogle Scholar
  187. Liu C, Brasic JR, Liu X, et al. Timing and optimized acquisition parameters for the whole-body imaging of 177Lu-EDTMP toward performing bone palliation treatment. Nucl Med Commun. 2012;33:90–6.PubMedCrossRefGoogle Scholar
  188. Lo JM, Pillai MR, John CS, Troutner DE. Labeling of human serum albumin with 105Rh-cysteine complexes. Int J Rad Appl Instrum A. 1990;41:63–7.PubMedCrossRefGoogle Scholar
  189. Lumetta GJ, Wester DW, Morrey JR, et al. Preliminary evaluation of chromatographic techniques for the separation of radionuclides from high level radioactive waste. Solv Extr Ion Exch. 1993;11:663–82.CrossRefGoogle Scholar
  190. Ma D, Ketring AR, Ehrhardt GJ, Jia W. Production of radiolanthanides and radiotherapy research at MURR. J Radioanal Nuc Chem. 1996;206:119–26.CrossRefGoogle Scholar
  191. Majali MA, Saxena SK, Joshi SH, et al. Potential 166Ho radiopharmaceuticals for endovascular radionuclide therapy. II. Preparation and evaluation of 166Ho-DTPA. Nucl Med Commun. 2001;22:97–103.PubMedCrossRefGoogle Scholar
  192. Majali MA, Debnath MC, Saxena SK, Joshi SH. Preparation and evaluation of [166Ho] holmium-dimethyl diethylenetriaminepentaaceticacid (DMDTPA) as potential radiopharmaceutical for endovascular radiation therapy (EVRT). Appl Radiat Isot. 2002;56:863–9.PubMedCrossRefGoogle Scholar
  193. Maki Y, Murakami Y. The separation of arsenic-77 in a carrier-free state from the parent nuclide germanium-77 by a thin-layer chromatographic method. J Radioanal Chem. 1974;22:5–12.CrossRefGoogle Scholar
  194. Manual for reactor produced radioisotopes. Printed by the International Atomic Energy Agency (IAEA) in Austria, ISBN 92-0-101103-2, ISSN 1011–4289, © IAEA; 2003.Google Scholar
  195. Marques F, Paulo A, Campello MP, et al. Radiopharmaceuticals for targeted radiotherapy. Rad Prot Dos. 2005;116:601–4.CrossRefGoogle Scholar
  196. Martinho E, Neves MA, Freitas MC. 125I production: neutron irradiation planning. In J Appl Radiat Isotope. 1984;35:933–8.CrossRefGoogle Scholar
  197. Mathew B, Chakraborty S, Das T, et al. 175Yb labeled polyaminophosphonates as potential agents for bone pain palliation. Appl Radiat Isot. 2004;60:635–42.PubMedCrossRefGoogle Scholar
  198. Máthé D, Balogh L, Polyák A, et al. Multispecies animal investigation on biodistribution, pharmacokinetics and toxicity of 177Lu-EDTMP, a potential bone pain palliation agent. Nucl Med Biol. 2010;37:215–26.PubMedCrossRefGoogle Scholar
  199. Mausner LF, Kolsky KL, Mease RC, et al. Production and evaluation of Sc-47 for radioimmunotherapy. J Label Compds Radiopharm. 1993;32:388–90.Google Scholar
  200. Mausner LF, Kolsky KL, Joshi V, Srivastava SC. Radionuclide development at BNL for nuclear medicine therapy. Appl Radiat Isot. 1998;49:285–94.PubMedCrossRefGoogle Scholar
  201. Mausner LF, Mirzadeh S, Srivastava SC. Improved specific activity of reactor produced 117mSn with the Szilard-Chalmers process. Int J Radiat Appl Instrum Appl Radiat Iso. 1992;43:1117–22.CrossRefGoogle Scholar
  202. Maxon HR, Schroder LE, Thomas SR, et al. Rhenium-186 HEDP for treatment of painful osseous metastases: initial clinical experience in 20 patients with hormone-resistant prostate cancer. Radiology. 1990;176:155–9.PubMedCrossRefGoogle Scholar
  203. Medvedev DG, Mausner LF, Meinken GE, et al. Development of a large scale production of 67Cu from 68Zn at the high energy proton accelerator: Closing the 68Zn cycle. Appl Radiat Isot. 2012;70:423–9.PubMedCrossRefGoogle Scholar
  204. Meuret G, Hoffmann G, Gmelin R. 32P-therapy in polycythemia vera. Klin Wochenschr. 1975;53:519–21.PubMedCrossRefGoogle Scholar
  205. Michel RB, Andrews PM, Rosario AV, et al. 177Lu-antibody conjugates for single-cell kill of B-lymphoma cells in vitro and for therapy of micrometastases in vivo. Nucl Med Biol. 2005;32:269–78.PubMedCrossRefGoogle Scholar
  206. Mikolajczak R, Parus JL, Pawlak D, et al. Reactor produced 177Lu of specific activity and purity suitable for medical applications. J Radioanal Nucl Chem. 2004;257:53–7.CrossRefGoogle Scholar
  207. Miller WH, Hartmann-Siantar C, Fisher D, et al. Evaluation of beta-absorbed fractions in a mouse model for 90Y, 188Re, 166Ho, 149Pm, 64Cu, and 177Lu-radionuclides. Cancer Biother Radiopharm. 2005;20:436–49.PubMedCrossRefGoogle Scholar
  208. Minutoli F, Herberg A, Spadaro P, et al. [186Re]HEDP in the palliation of painful bone metastases from cancers other than prostate and breast. Q J Nucl Med Mol Imaging. 2006;50(4):355–62.PubMedGoogle Scholar
  209. Micallef IN. Ongoing trials with yttrium 90-labeled ibritumomab tiuxetan in patients with non-Hodgkin’s lymphoma. Clin Lymphoma. 2004;5:S27–32.PubMedCrossRefGoogle Scholar
  210. Mirz MY. A new method for the carrier-free production of 90Y from 90Sr/90Y mixture and 89Sr from neutron-irradiated Y2O3. Anal Chim Acta. 1968;40:229–33.CrossRefGoogle Scholar
  211. Mirzadeh S, Knapp Jr FF, Callahan AP. Production of tungsten-188 and osmium-194 in a nuclear reactor for new clinical generators. In: Qaim SM, editor. Proceedings of the international conference on nuclear data for science and technology. New York: Springer; 1992. p. 595–7.CrossRefGoogle Scholar
  212. Mirzadeh S, Lambrecht RM. Radiochemistry of germanium. J Radioanal Nuc Chem. 1996;202:7–102.Google Scholar
  213. Mirzadeh S, Knapp Jr FF, Lambrecht RM. Burn-up cross section of 188W. Radiochim Acta. 1997;77:99–102.CrossRefGoogle Scholar
  214. Mirzadeh S, Du M, Beets AL. Knapp Jr FF (Russ). Method for preparing high specific activity 177Lu. United States Patent 6716353dt; 2004. 04 June 2004.Google Scholar
  215. Mirzadeh S, Mausner LF, Garland MA. Reactor-produced medical radionuclides. In: Vértes A, Nagy S, Klencsár Z, Lovas RG, Rösch F, editors. Handbook of nuclear chemistry. Mexico: Playa del Carmen. 2012; ISBN: 978-0-7354-1127-2.Google Scholar
  216. Miszczyk L, Wozniak G, Jochymek B, et al. Effectiveness evaluation of knee joint 90Y radiosynovectomy. Przegl Lek. 2007;64:450–3.PubMedGoogle Scholar
  217. Mohsin H, Jia F, Sivaguru G, et al. Radiolanthanide-labeled monoclonal antibody CC49 for radioimmunotherapy of cancer: biological comparison of DOTA conjugates and 149Pm, 166Ho, and 177Lu. Bioconjug Chem. 2006;17:485–92.PubMedCrossRefGoogle Scholar
  218. Montaña RL, González IH, Ramirez AA, Garaboldi L, Chinol M. Yttrium-90 – current status, expected availability and applications of a high beta energy emitter. Curr Radiopharm. 2012;5:253–63.PubMedCrossRefGoogle Scholar
  219. Morcos N, Zaw M, Pellegrini P, et al. Alternative chromatographic processes for no-carrier added 177Lu radioisotope separation Part II. The conventional column chromatographic separation combined with HPLC for high purity. J Radioanal Nucl Chem. 2008;277:675–83.CrossRefGoogle Scholar
  220. Morschhauser F, Radford J, Van Hoof A. Phase III trial of consolidation therapy with yttrium-90-ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J Clin Oncol. 2008;26:5156–64.PubMedCrossRefGoogle Scholar
  221. Morschhauser F, Radford J, Van Hoof A, et al. 90Yttrium-ibritumomab tiuxetan consolidation of first remission in advanced-stage follicular non-Hodgkin lymphoma: updated results after a median follow-up of 7.3 years from the International, Randomized, Phase III First-LineIndolent trial. J Clin Oncol. 2013;31:1977–83.PubMedCrossRefGoogle Scholar
  222. Najean Y, Rain JD. Treatment of polycythemia vera: use of 32P alone or in combination with maintenance therapy using hydroxyurea in 461 patients greater than 65 years of age. The French Polycythemia Study Group. Blood. 1997;89:2319–27.PubMedGoogle Scholar
  223. Najean Y, Rain JD, Dresch C, et al. Risk of leukaemia, carcinoma, and myelofibrosis in 32P- or chemotherapy-treated patients with polycythaemia vera: a prospective analysis of 682 cases. The French Cooperative Group for the Study of Polycythaemias. Leuk Lymphoma. 1996;1:111–9.CrossRefGoogle Scholar
  224. National Bureau of Standards Handbook (Maximum permissible body burden and maximum permissible concentrations of radionuclides in air and water for occupational exposure), vol 69. Washington, DC: US Government Printing Office; 1963, p. 38.Google Scholar
  225. Nassan L, Achkar B, Yassine T. Production of 166Ho and 153Sm using hot atom reactions in neutron irradiated tris(cyclopentadienyl) compounds. Nukleonika. 2011;56(4):263–7.Google Scholar
  226. Nazari K, Ghannadi-Maragheh M, Shamsaii M, Khalafi H. A new method for separation of 131I, produced by irradiation of natural uranium. Appl Radiat Isot. 2001;55:605–8.PubMedCrossRefGoogle Scholar
  227. Neves M, Kling A, Lambrecht RM. Radionuclide production for therapeutic radio-pharmaceuticals. Appl Radiat Isot. 2002;57:657–64.PubMedCrossRefGoogle Scholar
  228. Nijsen JFW, Zonnenberg BA, Woittiez JRW, et al. Holmium-166 poly lactic acid microspheres applicable for intra-arterial radionuclide therapy of hepatic malignancies: effects of preparation and neutron activation techniques. Eur J Nucl Med. 1999;26:699–704.PubMedCrossRefGoogle Scholar
  229. Nir-El Y. Production of 177Lu by neutron activation of 176Lu. J Radioanal Nucl Chem. 2004;262:563–7.CrossRefGoogle Scholar
  230. Nisa L, Savelli G, Giubbini R. Yttrium-90 DOTATOC therapy in GEP-NET and other SST2 expressing tumors: a selected review. Ann Nucl Med. 2011;25:75–85.PubMedCrossRefGoogle Scholar
  231. Orth RJ, Kurath DE. Review and assessment of technologies for the separation of strontium from alkaline and acidic media, Rep. PNL-9053. Richland: Pacific Northwest National Laboratory; 1994.Google Scholar
  232. Pagano L, Klain M, Pulcrano M, et al. Follow-up of differentiated thyroid carcinoma. Minerva Endocrinol. 2004;29:161–74.PubMedGoogle Scholar
  233. Pandey U, Dhami PS, Jagesia P, et al. A novel extraction paper chromatography (EPC) technique for the radionuclidic purity evaluation of 90Y for clinical use. Anal Chem. 2008;80:801–80.PubMedCrossRefGoogle Scholar
  234. Payamara J. Production of iodine-131using dry distillation method. J Chem Pharm Res. 2011;3:375–80.Google Scholar
  235. Pecher C. Biological investigations with radioactive calcium and strontium: preliminary report on the use of radioactive strontium in the treatment of bone cancer. Univ Calif Publ Pharmacol. 1942;2:1117–49.Google Scholar
  236. Pietrelli L, Mausner LF, Kolsky KL. Separation of carrier free 47Sc from titanium targets. J Radioanal Nucl Chem. 1992;157:335–45.CrossRefGoogle Scholar
  237. Pitoia F, Cavallo A. Thyroid cancer. In search of individualized treatment. Medicina (B Aires). 2012;72:503–13.Google Scholar
  238. Pons F, Herranz R, Garcia A, et al. Strontium-89 for palliation of pain from bone metastases in patients with prostate and breast cancer. Eur J Nucl Med. 1997;24:1210–4.PubMedCrossRefGoogle Scholar
  239. Pillai MR, Lo JM, John CS, Troutner DE. Labeling of proteins using [Rh]Rh-4-(p-aminobenzyl)-diethylenetriamine. Int J Rad Appl Instrum B. 1990a;17:419–26.PubMedCrossRefGoogle Scholar
  240. Pillai MR, John CS, Troutner DE. Labeling of human IgG with rhodium-105 using a new pentadentate bifunctional ligand. Bioconjug Chem. 1990b;1:191–7.PubMedCrossRefGoogle Scholar
  241. Pillai MR, Lo JM, Troutner DE. Labeling of hematoporphyrin with 105Rh and binding studies with human gamma globulin. Int J Rad Appl Instrum A. 1990c;41:69–73.PubMedCrossRefGoogle Scholar
  242. Pillai MR, Dash A, Knapp Jr FF. Rhenium-188: availability from the 188W/188Re generator and status of current applications. Curr Radiopharm. 2012;3:228–43.CrossRefGoogle Scholar
  243. Pillai MR, Chakraborty S, Das T, Venkatesh M, Ramamoorthy N. Production logistics of 177Lu for radionuclide therapy. Appl Radiat Isot. 2003;59(2–3):109–18.PubMedCrossRefGoogle Scholar
  244. Ponsard B, Srivastava SC, Mausner LF, Knapp FF, Garland MA, Mirzadeh S. Production of Sn-117m in the BR2 high-flux reactor. Appl Radiat Isot. 2009;67(7–8):1158–61.PubMedCrossRefGoogle Scholar
  245. Provencio M, Cruz Mora MÁ, Gómez-Codina J, et al. Consolidation treatment with Yttrium-90 ibritumomab tiuxetan after new induction regimen in patients with intermediate- and high-risk follicular lymphoma according to the follicular lymphoma international prognostic index: a multicenter, prospective phase II trial of the Spanish Lymphoma Oncology Group. Leuk Lymphoma. 2014;55:51–5.PubMedCrossRefGoogle Scholar
  246. Qaim SM. Therapeutic radionuclides and nuclear data. Radiochim Acta. 2001;89:297–302.Google Scholar
  247. Rajendran JG, Eary JF, Bensinger W, et al. High-dose 166Ho-DOTMP in myeloablative treatment of multiple myeloma: pharmacokinetics, biodistribution, and absorbed dose estimation. J Nucl Med. 2002;43:1383–90.PubMedGoogle Scholar
  248. Ramamoorthy N, Saraswathy P, Das MK, Mehra KS, Ananthakrishnan M. Production logistics and radionuclidic purity aspects of 153Sm for radionuclide therapy. Nucl Med Commun. 2002;23:83–9.PubMedCrossRefGoogle Scholar
  249. Ramanujam A, Dhami PS, Chitnis RR, Achuthan PV, Kannan R, Gopaiakrishnan V, Batu K. Separation of strontium-90 from PUREX high level waste and development of 90Sr/90Y generator. BARC report 2000/E/009. BARC India; 2000.Google Scholar
  250. Razbash AA, Nerozin NA, Panarin MV et al. Winning 32P in the BR-10 Reactor. Atomnaya Ehnergiya(Soviet Atomic Energy). 1991;70:333–35. Available at:
  251. Reynolds JC, Robbins J. The changing role of radioiodine in the management of differentiated thyroid cancer. Semin Nucl Med. 1997;27:152–64.PubMedCrossRefGoogle Scholar
  252. Robinson RG, Preston DF, Schiefelbein M, et al. Strontium 89 therapy for the palliation of pain due to osseous metastases. JAMA. 1995;274:420–4.PubMedCrossRefGoogle Scholar
  253. Safarzadeh L, Ghannadi-Maragheh M, Anvari A, et al. Production, radiolabeling and biodistribution studies of 175Yb-DOTMP as bone pain palliation. Iran J Pharm Sci. 2012;8(2):135–41.Google Scholar
  254. Samsahl K. The Jener method for the extraction of pure 32P from neutron-irradiated sulphur. Atompraxis. 1958;4:14–7.Google Scholar
  255. Sato KT. Yttrium-90 radioembolization for the treatment of primary and metastatic liver tumors. Semin Roentgenol. 2011;46:159–65.PubMedCrossRefGoogle Scholar
  256. Shen S, DeNardo GL, DeNardo SJ, et al. Dosimetric evaluation of Copper-64 in copper-67-2IT-BAT-Lym-1 for radioimmunotherapy. J Nucl Med. 1996;37:146–50.PubMedGoogle Scholar
  257. Sheybani S, Pourbeygi H, Tavakoli YH, Keyvani M. Production and evaluation of 186Re radionuclide in the Tehran Research reactor for therapeutic applications. J Nucl Sci Tech. 2010;2:58–62.Google Scholar
  258. Shikata E, Amano H. Dry-distillation of iodine-131 from several tellurium compounds. J Nucl Sci Technol. 1973;10:80–8.CrossRefGoogle Scholar
  259. Simindokht SA, Bahrami-Samani A, Jalilian AR, Ghannadi-Maragheh M. Production, quality control and biodistribiotion studies of 170Tm-DOTA-NHS-Cetuximab Iranian. J Nucl Med. 2010;18:18.Google Scholar
  260. Siri S, Mondino AV. Production of fission 131I. J Radioanal Nucl Chem. 2005;266:317–24.CrossRefGoogle Scholar
  261. Smith NA, Bowers DL, Ehst DA. The production, separation, and use of 67Cu for radioimmunotherapy: a review. Appl Radiat Isot. 2012;70:2377–83.PubMedCrossRefGoogle Scholar
  262. So LV, Morcos N, Zaw M, Pellegrini P, Greguric I. Alternative chromatographic processes for no-carrier added 177Lu radioisotope separation, part I. Multi-column chromatographic process for clinically applicable. J Radioanal Nucl Chem. 2008;277:663–73.CrossRefGoogle Scholar
  263. Soffen EM, Greenberg A, Baumann J, et al. The role of strontium-89 systemic radiotherapy in the management of osseous metastases from prostate cancer. Tech Urol. 1997;3:76–80.PubMedGoogle Scholar
  264. Sohaib M, Ahmad M, Jehangir M, et al. Ethylene diamine tetramethylene phosphonic acid labeled with various β()-emitting radiometals: labeling optimization and animal biodistribution. Cancer Biother Radiopharm. 2011;26:159–64.PubMedCrossRefGoogle Scholar
  265. Sorantin H, Bildstein H. Rapid preparation of carrier free I-131 from neutron-irradiated telluric acid. J Inorg Nucl Chem. 1965;27:521–6.CrossRefGoogle Scholar
  266. Spahn I, Coenen HH, Qaim SM. Enhanced production possibility of the therapeutic radionuclides 64Cu,67Cu and 89Sr via (n, p) reactions induced by fast spectral neutrons. Radiochim Acta. 2004;92:183–6.CrossRefGoogle Scholar
  267. Srivastava SC, Atkins HL, Krishnamurthy GT, et al. Treatment of metastatic bone pain with tin-117m(4+)DTPA: a phase II clinical study. Clin Cancer Res. 1998;4:61–8.PubMedGoogle Scholar
  268. Srivastava SC, Dadachova E. Recent advances in radionuclide therapy. Semin Nucl Med. 2001;31:330–41.PubMedCrossRefGoogle Scholar
  269. Srivastava SC. Treatment of bone and joint pain with electron emitting radiopharmaceuticals. Ind J Nucl Med. 2004;19:89–97.Google Scholar
  270. Srivastava SC. Radionuclide therapy with high-LET electron emitters: therapeutic applications of conversion electron emitter tin-117m. In: Mazzi U, Editoriali SG, editors. Technetium, rhenium, and other metals in chemistry and nuclear medicine. Padova: SG Editoriali; 2006. p. 553–68.Google Scholar
  271. Srivastava SC. The role of electron-emitting radiopharmaceuticals in the palliative treatment of metastatic bone pain and for radiosynovectomy: applications of conversion electron emitter tin-117m. Brazil Arch Biol Technol. 2007;50:49–62.CrossRefGoogle Scholar
  272. Srivastava SC. Theragnostic radiometals: getting closer to personalized medicine. In: Mazzi U et al., editors. Technetium and other radiometals in chemistry and nuclear medicine. Padova: SG Editoriali; 2010. p. 553–68.Google Scholar
  273. Srivastava SC. Paving the way to personalized medicine: production of some promising theragnostic radionuclides at Brookhaven national laboratory. Sem Nucl Med. 2012;42:151–63.CrossRefGoogle Scholar
  274. Swailem FM, Krishnamurthy GT, Srivastava SC, et al. In vivo tissue uptake and retention of Sn-117m (4+) DTPA in a human subject with metastatic bone pain and in normal mice. Nucl Med Biol. 1998;25:279–87.PubMedCrossRefGoogle Scholar
  275. Swärd C, Bernhardt P, Ahlman H, et al. [177Lu-DOTA 0-Tyr 3]-octreotate treatment in patients with disseminated gastroenteropancreatic neuroendocrine tumors: the value of measuring absorbed dose to the kidney. World J Surg. 2010;34:1368–72.PubMedCrossRefGoogle Scholar
  276. Szelecsényi F, Steyn GF, Dolley SG, et al. Investigation of the 68Zn(p,2p)67Cu nuclear reaction: new measurements up to 40 MeV and compilation up to 100 MeV. Nucl Instr Meth Phys Res B. 2009;267:1877–81.CrossRefGoogle Scholar
  277. Tabasi M, Ghannadi-Maragheh M, Shamsai M, Khanchi AR. Separation of 133Xe from 99Mo, 131I and uranium, and removal of impurities using gas chromatography. J Radioanal Nucl Chem. 2005;264:679–86.CrossRefGoogle Scholar
  278. Taylor WJ, Corkill MM, Rajapaske CN. A retrospective review of yttrium-90 synovectomy in the treatment of knee arthritis. Br J Rheumatol. 1997;36:1100–5.PubMedCrossRefGoogle Scholar
  279. Tefferi A. Polycythemia vera and essential thrombocythemia: update on diagnosis, risk stratification, and management. Am J Hematol. 2012;87:285–93.PubMedCrossRefGoogle Scholar
  280. Tefferi A, Silverstein MN. Treatment of polycythaemia vera and essential thrombocythaemia. Baillieres Clin Haematol. 1998;11:769–85.PubMedCrossRefGoogle Scholar
  281. Teunissen JJ, Kwekkeboom DJ, Krenning EP. Staging and treatment of differentiated thyroid carcinoma with radiolabeled somatostatin analogs. Trends Endocrinol Metab. 2006;17:19–25.PubMedCrossRefGoogle Scholar
  282. Theobald T, editor. Sampson’s textbook of radiopharmacy. 4th ed. London: Pharmaceutcial Press; 2011.Google Scholar
  283. Tomblyn M. Radioimmunotherapy for B-cell non-hodgkin lymphomas. Cancer Control. 2012;19:196–203.PubMedGoogle Scholar
  284. Toporov YG, Andreyev OI, Akhetov FZ, et al. Reactor production of high specific activity Tin-117m at RIAR. Proceeding of 5th Conference on Isotopes Brusels, Belgium, 25–29 Apr 2005. p. 47–53.Google Scholar
  285. Tsai DE, Maillard I, Downs LH, et al. Use of iodine 131I-tositumomab radioimmunotherapy in a patient with Waldenstrom’s macroglobulinemia. Leuk Lymphoma. 2004;45:591–5.PubMedCrossRefGoogle Scholar
  286. Unni PR, Pillai MRA. Production and radiochemical separation of rhodium-105 for radiopharmaceutical applications. Radiochim Acta. 2002;90:363–9.CrossRefGoogle Scholar
  287. Van Essen M, Krenning EP, Kam BL, et al. Salvage therapy with 177Lu-octreotate in patients with bronchial and gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2010;51:383–90.PubMedCrossRefGoogle Scholar
  288. Vanderheyden JE, Su F, Ehrhardt GJ. Soluble irradiation targets and methods for the production of radiorhenium United States Patent 5,145,636; 1992.Google Scholar
  289. Van der Linden R, De Corte F, Hoste J. A compilation of infinite dilution resonance integrals-II. J Radioanal Chem. 1974;20:695–706.CrossRefGoogle Scholar
  290. Vaughan AT, Varley NR. Antibodies labeled with 199Au: potential of l99Au for radioimmunotherapy. Nucl Med Biol. 1988;15:293–7.Google Scholar
  291. Venkatesh M, Goswami N, Volkert WA, et al. A Rh-105 complex of tetrathiacyclohexadecane diol with potential for formulating bifunctional chelates. Nucl Med Biol. 1996;23:33–40.PubMedCrossRefGoogle Scholar
  292. Villard L, Romer A, Marincek N, et al. Cohort study of somatostatin-based radiopeptide therapy with [(90)Y-DOTA]-TOC versus [(90)Y-DOTA]-TOC plus [(177)Lu-DOTA]-TOC in neuroendocrine cancers. J Clin Oncol. 2012;30:1100–6.PubMedCrossRefGoogle Scholar
  293. Vimalnath KV, Das MK, Venkatesh M, et al. Prospects and problems in the production of 143Pr for radionuclide therapy applications. Radiochim Acta. 2005;93:419–26.CrossRefGoogle Scholar
  294. Vimalnath KV, Shetty P, Chakraborty S, et al. Practicality of production of 32P by direct neutron activation for its utilization in bone pain palliation as Na3[32P]PO4. Cancer Biother Radiopharm. 2013;28:423–8.PubMedCrossRefGoogle Scholar
  295. Vimalnath KV, Shetty P, Rajeswari PA, et al. Reactor production of 32 P for medical applications: an assessment of 32S(n, p)32 P and 31P(n, γ)32P methods. J Radioanal Nucl Chem. 2014a;301:555–65.CrossRefGoogle Scholar
  296. Vimalnath KV, Shetty P, Lohar SP, et al. Aspects of yield and specific activity of (n, γ) produced 177Lu used in targeted radionuclide therapy. J Radioanal Nucl Chem. 2014b;302:809–12.CrossRefGoogle Scholar
  297. Vucina J, Han R. Production and therapeutic use of rhenium-186,188-the future of radionuclides. Med Pregl. 2003;56(7–8):362–5.PubMedCrossRefGoogle Scholar
  298. Walker LA. Radioactive yttrium-90; a review of its properties, biological behaviour and clinical uses. Acta Radiol Ther Phys Biol. 1964;2:302–14.PubMedCrossRefGoogle Scholar
  299. Wojdowska W. Studies on separation and purification of 99Mo from nat-U, 131Iand 103Ru. Nucl Med Biol. 2010;37:715.Google Scholar
  300. Weigert O, Illidge T, Hiddemann W, Dreyling M. Recommendations for the use of yttrium-90 ibritumomab tiuxetan in malignant lymphoma. Cancer. 2006;107:686–95.PubMedCrossRefGoogle Scholar
  301. Wester DW, Steele RT, Rinehart DE, DesChane JR, Carson KJ, Rapko BM, Tenforde TS. Large-scale purification of 90Sr from nuclear waste materials for production of 90Y, a therapeutic medical radioisotope. Appl Radiat Isot. 2003;59:35–41. Google Scholar
  302. Winfield J, Gumpel JM. An evaluation of repeat intra-articular injections of yttrium-90 colloids in persistent synovitis of the knee. Ann Rheum Dis. 1979;38:145–7.PubMedPubMedCentralCrossRefGoogle Scholar
  303. Wong YK, Ketring AR, Lo JM, Troutner DE. Production of 105Rh by the szilard-chalmers process with ruthenium acetylacetonate. J Label Compd Radiopharm. 1989;26(1–12):179–81.Google Scholar
  304. Yano Y, Chu P, Anger HO. Tin—117m: production, chemistry and evaluation as a bone scanning agent. Int J Radiat Appl Instrum Appl Radiat Isot. 1973;24:319–25.CrossRefGoogle Scholar
  305. Yeh H. Preparation of carrier free phosphorus by neutron irradiation. Ho Tzu K’o Hsueh (Taiwan). 1962;3:33–7.Google Scholar
  306. Yu DC, Meister JD, Abalin SS, Ball RM, Grigoriev GY, Khvostionov VE, Markovskij DV, Nordyke HW, Pavshook VA. An interleaved approach to production of 99Mo and 89Sr medical radioisotopes. J Radioanal Nucl Chem. 2003;257:59–63.Google Scholar
  307. Yu DC, Khvostionov VE, Markovskij DV, Pavshook VA, Ponomarev-Stepnoy NN, Udovenko AN, Shatrov AV, Vereschagin YI, Rice J, Tome LA. Production of 89Sr in solution reactor. Appl Radiat Isot. 2007;65:1087–94.Google Scholar
  308. Zaknun JJ, Bodei L, Mueller-Brand J, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy(PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40:800–16.PubMedPubMedCentralCrossRefGoogle Scholar
  309. Zhang Z, Wang X, Wu Y, et al. Preparation of 186Re and 188Re with high specific activity by the Szilard–Chalmers effect. J Label Compd Radiopharm. 2000;43:55–64.Google Scholar
  310. Zeisler SK, Weber K. Szilard-Chalmers effect in holmium complexes. J Radioanal Nucl Chem. 1998;227:105–9.CrossRefGoogle Scholar
  311. Zhernosekov KP, Perego RC, Dvorakova Z, et al. Target burn-up corrected specific activity of 177Lu produced via 176Lu(n, gamma) 177Lu nuclear reactions. Appl Radiat Isot. 2008;66(9):1218–20.PubMedCrossRefGoogle Scholar
  312. Zhu J, Koken MH, Quignon F, et al. Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc Natl Acad Sci U S A. 1997;94:3978–83.PubMedPubMedCentralCrossRefGoogle Scholar
  313. Zinzani PL, d’Amore F, Bombardieri E, et al. Consensus conference: implementing treatment recommendations on yttrium-90 immunotherapy in clinical practice – report of a European workshop. Eur J Cancer. 2008;44:366–73.PubMedCrossRefGoogle Scholar
  314. Zvonarev AV, Matveenko IP, Pavlovich VB. 89Sr production in fast reactors. Atomic Energy. 1997;82:394–7.CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • F. F. (Russ) Knapp
    • 1
  • Ashutosh Dash
    • 2
  1. 1.Nuclear Security and Isotope DivisionOak Ridge National LaboratoryOAK RIDGEUSA
  2. 2.Isotope Production and Applications DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations