Skip to main content

Auger Electron-Based Radionuclide Therapy

  • Chapter
  • First Online:
Radiopharmaceuticals for Therapy

Abstract

The focuses of this chapter are to describe the decay processes which result in Auger electron emission and the potential expected importance of therapy with targeted radiopharmaceutical agents radiolabeled with Auger-emitting radioisotopes. Although not yet matured to the point for accepted clinical utility, interest in the therapeutic application of radiopharmaceuticals radiolabeled with Auger-emitting radioisotopes has remained an important intellectual and experimental area because of the great potential utility of these radioisotopes. There are in fact only a few Auger-emitting radioisotopes which are expected—at least within our current understanding—to have any practical utility for clinical therapy. However, these radioisotopes are discussed because of their unique decay properties and potential usefulness. In addition, comments on the issues associated with the production and processing technology required to provide Auger emitters modeling approaches for Auger electron-emitting radioisotopes are also briefly described. Because of the very short path lengths in soft tissue, dosimetric issues are required to assess the usefulness of these radioisotopes for individual cell-targeted therapy for the treatment of cancer in subsequent radiolabeling and biological studies. It is important that sufficient levels of these radioisotopes can be produced and made available in sufficiently high specific activity and radiopurity for development of targeting agents to assess the biological effectiveness of such proposed therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelstein S, Kassis AI. Radiobiological implications of the macroscopic distribution of energy from radionuclides. Nucl Med Biol. 1987;14:165.

    CAS  Google Scholar 

  • Adelstein SJ, Kassis AI, Sastry KSR. Cellular vs. organ approaches to dose estimates. In: Schlafke-Stellson AT, Watson EE, editors. Proceedings of fourth international radiopharmaceutical dosimetry symposium. Springfield: NTS; 1986.

    Google Scholar 

  • American Cancer Society. 1996. http://www.cancer.org/.

  • Behr TM, Behe M, Lohr M, et al. Therapeutic advantages of Auger electron- over β-emitting radionuclides or radioiodine when conjugated to internalizing antibodies. Eur J Nucl Med. 2000;27:753–65.

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt P, Forssell-Aronsson E, Jacobsson L, et al. Low-energy electron emitters for targeted radiotherapy of small tumours. Acta Oncol. 2001;40(5):602–8.

    Article  PubMed  CAS  Google Scholar 

  • Cole A. Absorption of 20 eV to 50,000 eV electron beams in air and plastic. Radiat Res. 1969;38:7–33.

    Article  PubMed  CAS  Google Scholar 

  • Cullen DE. Program RELAX: a code designed to calculate atomic relaxation spectra of x-rays and electrons. UCRL-ID-110438. 1992.

    Google Scholar 

  • Cullen DE, Hubbell JH, Kissel L. EPDL97: the evaluated photon date library’97 version. UCRL-50400, vol. 6 (Rev. 5). 1997.

    Google Scholar 

  • Daghighian F, Barendswaard E, Welt S, et al. Enhancement of radiation dose to the nucleus by vesicular internalization of 125I-A33 Mab. J Nucl Med. 1996;37:1052.

    PubMed  CAS  Google Scholar 

  • de Jong M, Breeman WA, Bakker WH, et al. Comparison of 111In-labeled somatostatin analogues for tumor scintigraphy and radionuclide therapy. Cancer Res. 1998;58:437–41.

    PubMed  Google Scholar 

  • Dillman LT. EDISTR- A computer program to obtain a nuclear decay data base for radiation dosimetry. ORNL-TM-6689. 1980.

    Google Scholar 

  • Endo A, Yamaguchi Y, Eckerman KF. Development and assessment of new radioactive decay database used for dosimetry calculation. Radiat Prot Dosimetry. 2003;105(1-4):565–9.

    Article  PubMed  CAS  Google Scholar 

  • Epperson CE, Landolt RR, Kessler WV. Solvent-solvent extraction of rhodium-103m from ruthenium-103 employing a sulfate-carbon tetrachloride medium. Anal Chem. 1976;48(7):979–81.

    Article  CAS  Google Scholar 

  • Gaulden ME. Biological dosimetry of radionuclides and radiation hazards. J Nucl Med. 1983;24(2):160–4.

    Google Scholar 

  • Hendee WR. Particulate radiations emitted during electron capture and isomeric transitions. J Nucl Med. 1983;24(12):1192–3.

    PubMed  CAS  Google Scholar 

  • Hoeschele JD. Correlations of Physico-Chemical and Biological Properties with In Vivo Biodistribution Data for Platinum-195m-Labeled Chloroammineplatinum(II) Complexes. In: Martell AE, editor. Inorganic Chemistry in Biology and Medicine. ACS symposium series, vol. 140. American Chemical Society; 1980. p. 181–208.

    Google Scholar 

  • Hoeschele JD, Butler TA, Roberts JA. Microscale Synthesis and Biodistribution of Pt-195-Labeled Cis-Dichlorodiammineplatinum(II), Cis-DDP. In: Proceedings, Radiopharmaceuticals II: Second International Symposium on radiopharmaceuticals, Society of Nuclear Medicine. American Chemical Society; 1979. p. 173–82.

    Google Scholar 

  • Hoeschele JD, Butler TA, Roberts JA, Guyer CE. Analysis and refinement of the microsysnthesis of the 195mPt cis-DDP. Radiochim Acta. 1982;31:27.

    Google Scholar 

  • Hofer KG, van Loon N, Schneiderman MH, et al. The paradoxical nature of DNA damage and cell death induced by 125I decay. Radiat Res. 1992;130:121–4.

    Article  PubMed  CAS  Google Scholar 

  • Howell RW, Rao DV, Hou DY, et al. The question of relative biological effectiveness and quality factor for Auger emitters incorporated into proliferating mammalian cells. Radiat Res. 1991;128:282–92.

    Article  PubMed  CAS  Google Scholar 

  • Humm JL, Howell RW, Rao DV. Dosimetry of Auger-electron-emitting radionuclides: Report No. 3 of AAPM Nuclear Medicine Task Group No. 6. Med Phys. 1994;21:1901–15.

    Article  PubMed  CAS  Google Scholar 

  • ICRP. Radionuclide transformations, publication 38. International commission on radiological protection. Oxford: Pergamon; 1983.

    Google Scholar 

  • Kassis AI, Sastry KS, Adelstein SJ. Kinetics of uptake, retention, and radiotoxicity of 125IUdR in mammalian cells: implications of localized energy deposition by Auger processes. Radiat Res. 1987;109(1):78–89.

    Google Scholar 

  • Krenning EP, Kooij PP, Pauwels S, et al. Somatostatin receptor: scintigraphy and radionuclide therapy. Digestion. 1996;57(Suppl 1):57–61.

    Google Scholar 

  • Makrigiorgos GM, Adelstein SJ, Kassis AI. Cellular radiation dosimetry and its implications for estimation of radiation risks. Illustrative results with technetium 99m-labeled microspheres and macroaggregates. JAMA. 1990a;264:592–5.

    Article  PubMed  CAS  Google Scholar 

  • Makrigiorgos G, Adelstein SJ, Kassis AI. Auger electron emitters: insights gained from in vitro experiments. Radiat Environ Biophys. 1990b;29:75–91.

    Article  PubMed  CAS  Google Scholar 

  • Mariani G, Bodei L, Adelstein SJ, Kassis AI. Merging roles of radiometabolic therapy of tumors based on Auger electron emission. J Nucl Med. 2000;41:1519–21.

    PubMed  CAS  Google Scholar 

  • Mirzadeh S, Alexander CW, Knapp Jr FF. Evaluation of neutron inelastic scattering, [n, n′], for production of high spin 117mSn, 119mSn and 195mPt isotopes. Appl Radiat Isot. 1997;48:441–6.

    Article  CAS  Google Scholar 

  • Narra VR, Howell RW, Sastry KSR, et al. Auger electron emitters as tools for elucidating the location of the primary radiosensitive targets. Radiat Prot Dosimetry. 1994;52:229–32.

    CAS  Google Scholar 

  • Paretzke HG. Quantitative mathematical models in radiation biology. In: Freeman GR, editor. Kinetics of inhomogeneous processes. New York: Wiley; 1987. p. 89–170.

    Google Scholar 

  • Pomplun E, Boox J, Dydejczyk A, Feinendegen LE. A microdosimetric interpretation of the radiobiological effectiveness of I-125 and the problem of quality factor. Radiat Environ Biophys. 1987;26:181–8.

    Article  PubMed  CAS  Google Scholar 

  • Rao DV, Govelitz GF, Sastry KSR. Radiotoxicity of thallium-201 in mouse testes: Inadequacy of conventional dosimetry. J Nucl Med. 1983;24:145–53.

    PubMed  CAS  Google Scholar 

  • Rao DV, Narra VR, Howell RW, Sastry KSR. Biological consequence of nuclear versus cytoplasmic decay of I-125: cysteamine as a radioprotector against Auger cascades in vivo. Radiat Res. 1990;124:188–93.

    Article  PubMed  CAS  Google Scholar 

  • Sastry KSR. Biological effects of the Auger emitter 125I: A review. Report No. 1 of AAPM Nuclear Medicine Committee Task Group No. 6. Med Phys. 1992;19:1361–70.

    Article  PubMed  CAS  Google Scholar 

  • Sastry KSR, Howell RW, Rao DV, et al. Dosimetry of Auger-emitters: physical and phenomenological approaches. In: Baverstock KF, Charlton DE, editors. DNA damage by Auger emitters. London: Taylor and Francis; 1988. p. 27–8.

    Google Scholar 

  • Skarnemark G, Odegaard-Jensen A, Nilsson J, et al. Production of 103mRh for cancer therapy. J Radioanal Nucl Chem. 2009;280(2):371–3.

    Article  CAS  Google Scholar 

  • SNM 2000 Annual Meeting: fusion is the theme as nuclear medicine enters the new century. J Nucl Med. 2000;41:13N–15N. Society of Nuclear Medicine: http://www.snmmi.org/.

  • Szucs Z, van Rooyen J, Zeevaart JR. Recoil effect on beta-decaying in vivo generators, interpreted for 103Pd/103mRh. Appl Radiat Isot. 2009;67(7-8):1401–4.

    Article  PubMed  CAS  Google Scholar 

  • Terriisol M, Patau JP, Eudaldo T. Application a la microddosimetrie et a la radiobiologie de la simulation due transport des electron de basse energie dans l’easu a l’etat liqide. In: Boox J, Ebert HG, Smith BGR, editors. Proceeding 6th symposium on microdosimetry. London: Harwood Academic; 1978. p. 179–81.

    Google Scholar 

  • US Department of Human Health Services. 2000. US cancer death info: https://nccd.cdc.gov/uscs/.

  • Uusijärvi H, Bernhardt P, Rösch F, et al. Electron- and positron-emitting radiolanthanides for therapy: aspects of dosimetry and production. J Nucl Med. 2006;47(5):807–14.

    PubMed  Google Scholar 

  • van Rooyen J, Szucs Z, Rijn Zeevaart J. A possible in vivo generator 103Pd/103mRh-recoil considerations. Appl Radiat Isot. 2008;66(10):1346–9.

    Article  PubMed  CAS  Google Scholar 

  • Weber DA, Eckerman KF, Dillman LT, Ryman JC. MIRD: radionuclide data and decay schemes. New York: Society of Nuclear Medicine; 1989.

    Google Scholar 

  • Wenzel M, Wu YF. Separation of [Rh-103m]-rhodocene derivatives from the parent [103Ru]ruthenocene derivatives and their organ distribution. Int J Rad Appl Instrum A. 1987;38(1):67–9 (German).

    Article  PubMed  CAS  Google Scholar 

  • Willins JD, Sgouros G. Modeling analysis of platinum-195m for targeting individual blood-borne cells in adjuvant radiotherapy. J Nucl Med. 1995;36:315–9.

    Google Scholar 

  • Wright HA, Hamm RN, Turner JE, et al. Calculation of physical and chemical reactions with DNA in aqueous solution from Auger cascades. Radiat Prot Dosimetry. 1990;31:59–62.

    CAS  Google Scholar 

  • Yasui LS, Hofer KG. Role of mitochondrial DNA in cell death induced by I-125 decay. Int J Radiat Biol. 1986;49:601–10.

    Article  CAS  Google Scholar 

  • Yasui LS, Hofer KG, Warters RL. Inhomogeneity of the nucleus to 124IUdR cytotoxicity. Radiat Res. 1985;102:109–18.

    Article  Google Scholar 

  • Zaider M, Brenner DJ, Wilson WE. Application of track structure calculations to radiobiology, 1. Monte Carlo simulation of proton tracks. Radiat Res. 1983;95:231–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Knapp, F.F.(., Dash, A. (2016). Auger Electron-Based Radionuclide Therapy. In: Radiopharmaceuticals for Therapy . Springer, New Delhi. https://doi.org/10.1007/978-81-322-2607-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2607-9_4

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2606-2

  • Online ISBN: 978-81-322-2607-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics