Therapeutic Radionuclides Decay with Particle Emission for Therapeutic Applications

  • F. F. (Russ) Knapp
  • Ashutosh Dash


The use of radiation for treatment of cancer and for therapy of many other chronic conditions has a long history and involves the use of radiation from X-ray and gamma photon-generating devices, as well as particle-generating devices which provide protons and neutrons. In addition, reusable sealed sources are used in radiation oncology for brachytherapy, and unsealed radioactive sources (radiopharmaceuticals) are used for patient administration in nuclear medicine. The use of unsealed sources for therapy has traditionally focused primarily on the use of beta-particle (β)-emitting radioisotopes, because of their availability. More recently, alpha-emitting (α) radioisotopes have been introduced for biological research and clinical applications, and the potential use of Auger-emitting radioisotopes continues to be discussed. This chapter focuses on a general overview of radioisotopes which are used as unsealed sources and provides an overview of the types of particle emissions which are used in therapeutic applications and their general characteristics and general production requirements.


Auger Electron Target Material Particle Emission Linear Energy Transfer Radionuclide Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akabani G, Carlin S, Welsh P, Zalutsky MR. In vitro cytotoxicity of 211At-labeled trastuzumab in human breast cancer cell lines: effect of specific activity and HER2 receptor heterogeneity on survival fraction. Nucl Med Biol. 2006;33(3):333–47.Google Scholar
  2. Allen BJ. Clinical trials of targeted alpha therapy for cancer. Rev Rec Clin Trials. 2008;3:185–91.Google Scholar
  3. Brechbiel MW. Targeted alpha-therapy: past, present, future? Dalton Trans. 2007;43:4918–28.PubMedCrossRefGoogle Scholar
  4. Britton KE. Towards the goal of cancer-specific imaging and therapy. Nucl Med Commun. 1997;18(11):992–1007.Google Scholar
  5. Buchegger F, Perillo-Adamer F, Dupertuis YM, et al. Auger radiation targeted into DNA: a therapy perspective. Eur J Nucl Med Mol Imaging. 2006;33(11):1352–63.PubMedCrossRefGoogle Scholar
  6. Chatal J-F, Hoefnagel CA. Radionuclide therapy. Lancet. 1999;354:931–5.PubMedCrossRefGoogle Scholar
  7. Cuaron JJ, Hirsch JA, Medich DC, et al. A proposed methodology to select radioisotopes for use in radionuclide therapy. AJNR Am J Neuroradiol. 2009;10:1824–9.CrossRefGoogle Scholar
  8. Cutler CS, Hennkens HM, Sisay N, et al. Radiometals for combined imaging and therapy. Chem Rev. 2013;113:858–83.PubMedCrossRefGoogle Scholar
  9. Das T, Pillai MRA. Options to meet the future global demand of radionuclides for radionuclide therapy. Nucl Med Biol. 2013;40(1):23–32.PubMedCrossRefGoogle Scholar
  10. Ehrhardt GJ, Ketring AR, Ayers LM. Reactor-produced radionuclides at the University of Missouri Research Reactor. Appl Radiat Isot. 1998;49:295–7.PubMedCrossRefGoogle Scholar
  11. Ercan MT, Caglar M. Therapeutic radiopharmaceuticals. Curr Pharm Des. 2000;6:1085–121.PubMedCrossRefGoogle Scholar
  12. Hall EJ. Radiobiology for the radiologist. 4th ed. Philadelphia: JB Lippincott Company; 1994.Google Scholar
  13. Heeg MJ, Jurisson S. The role of inorganic chemistry in the development of radiometal agents for cancer therapy. Acc Chem Res. 1999;32:1053–60.CrossRefGoogle Scholar
  14. Hoefnagel CA. Radionuclide therapy revisited. Eur J Nucl Med. 1991;18:408.PubMedCrossRefGoogle Scholar
  15. Huclier-Markai S, Alliot C, Varmenot N, et al. Alpha-emitters for immuno-therapy: a review of recent developments from chemistry to clinics. Curr Top Med Chem. 2012;12(23):2642–54.PubMedCrossRefGoogle Scholar
  16. International Atomic Energy Agency (IAEA). Cyclotron produced radionuclides: physical characteristics and production methods. Technical report series 468. Vienna: IAEA; 2009.Google Scholar
  17. International Atomic Energy Agency (IAEA). Nuclear data for production of therapeutic radionuclides. Technical report series 473. Vienna: IAEA; 2012.Google Scholar
  18. Joensuu H, Tenhunen M. Physical and biological targeting of radiotherapy. Acta Oncol Suppl. 1999;13:75–83.Google Scholar
  19. Karelin YA, Efimov VN, Filimonov VT, et al. Radionuclide production using a fast flux reactor. Appl Radiat Isot. 2000;53:825–7.PubMedCrossRefGoogle Scholar
  20. Karenlin YA, Toporov YG. RIAR reactor produced radionuclides. Appl Radiat Isot. 1998;49:299–304.CrossRefGoogle Scholar
  21. Kim YS, Brechbiel M. An overview of targeted alpha therapy. Tumour Biol. 2012;33(3):573–90.PubMedCrossRefGoogle Scholar
  22. Knapp Jr FF (R), Mirzadeh S, Beets AL. Reactor-produced radioisotopes from ORNL for bone pain palliation. Appl Radiat Isot. 1998;49:309–15.PubMedCrossRefGoogle Scholar
  23. Lindegren S, Frost SH. Pretargeted radioimmunotherapy with α-particle emitting radionuclides. Curr Radiopharm. 2011;4(3):248–60.PubMedCrossRefGoogle Scholar
  24. Mausner LF, Srivastava SC. Selection of radionuclides for radioimmuno- therapy. Med Phys. 1993;20:503–9.PubMedCrossRefGoogle Scholar
  25. Mausner LF, Kolsky KL, Joshi V, et al. Radionuclide development at BNL for nuclear medicine therapy. Appl Radiat Isot. 1988;49:285–94.CrossRefGoogle Scholar
  26. McDevitt MR, Sgouros G, Finn RD, et al. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med. 1998;25:1341–51.PubMedCrossRefGoogle Scholar
  27. McDougall IR. Systemic radiation therapy with unsealed radionuclides. Semin Radiat Oncol. 2000;10(2):94–102.PubMedCrossRefGoogle Scholar
  28. McEwan AJB. Unsealed source therapy of painful bone metastases: an update. Semin Nucl Med. 1997;27:165–82.PubMedCrossRefGoogle Scholar
  29. Mirzadeh S. Generator-produced alpha-emitters. Appl Radiat Isot. 1998;49:345–9.CrossRefGoogle Scholar
  30. Mulford DA, Scheinberg DA, Jurcic JG. The promise of targeted {alpha}-particle therapy. J Nucl Med. 2005;46:199S–204.PubMedGoogle Scholar
  31. Neves M, Kling A, Lambrecht RM. Radionuclide production for therapeutic radiopharmaceuticals. Appl Radiat Isot. 2002;57:657–64.PubMedCrossRefGoogle Scholar
  32. Neves M, Kling A, Oliveira A. Radionuclides used for therapy and suggestion for new candidates. J Radioanal Nucl Chem. 2005;266(3):377–84.CrossRefGoogle Scholar
  33. Nilsson S, Larsen RH, Fossa SD et al. First clinical experience with α-emitting radium-223 in the treatment of skeletal metastases, Clin Cancer Res 2005;11: 4451–59Google Scholar
  34. O’Donoghue JA, Bardibs M, Wheldon TE. Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med. 1995;36:1902–9.PubMedGoogle Scholar
  35. Pohlman B, Sweetenham J, Macklis RM. Review of clinical radioimmunotherapy. Expert Rev Antican. Ther. 2006;6(3):445–61.Google Scholar
  36. Qaim SM. The present and future of medical radionuclide production. Radiochim Acta. 2012;100:635–51.CrossRefGoogle Scholar
  37. Qaim SM, Coenen HH. Produktion pharmazeutisch relevanter. Radionuk Pharm Unser Zeit. 2005;34:460–6 (German).CrossRefGoogle Scholar
  38. Ruth TJ. Accelerator production of medical radionuclides: a review. Nucl Phys News. 2013;23:30–3.CrossRefGoogle Scholar
  39. Ruth TJ, Pate BD, Robertson D, et al. Radionuclide production for biosciences. Nucl Med Biol. 1989;16:323–36.Google Scholar
  40. Serafini AN. Current status of systemic intravenous radiopharmaceuticals for the treatment of painful metastatic bone diseases. Int J Radiat Oncol Biol Phys. 1994;30:1187–94.PubMedCrossRefGoogle Scholar
  41. Spencer RP, Seevers RH, Friedman AM, editors. Radionuclides in therapy. Boca Raton: CRC Press; 1987.Google Scholar
  42. Srivastava SC. Therapeutic radionuclides: making the right choice. In: Mather SJ, editor. Current directions in radiopharmaceutical research and development. Dordrecht: Kluwer Academic Publishers; 1996a. p. 63–79.CrossRefGoogle Scholar
  43. Srivastava SC. Criteria for the selection of radionuclides for targeting nuclear antigens for cancer radioimmunotherapy. Cancer Biother Radiopharm. 1996b;11:43–50.PubMedCrossRefGoogle Scholar
  44. Srivastava SC, Dadachova E. Recent advances in radionuclide therapy. Semin Nucl Med. 2001;31(4):330–41.PubMedCrossRefGoogle Scholar
  45. Stanciu AE. Radionuclide targeted therapy of cancer. Rev Roum Chim. 2012;57(1):5–13.Google Scholar
  46. Stöcklin G, Qaim SM, Rösch F. The impact of radioactivity on medicine. Radiochim Acta. 1995;70/71:249.Google Scholar
  47. Tolmachev V, Carlsson J, Lundqvist H. A limiting factor for the progress of radionuclide-based cancer diagnostics and therapy – availability of suitable radionuclides. Acta Oncol. 2004;43(3):264–7.PubMedCrossRefGoogle Scholar
  48. Troutner DE. Chemical and physical properties of radionuclides. Int J Radiat Appl Instrum B Nucl Med Biol. 1987;14(3):171–6.CrossRefGoogle Scholar
  49. Unak P, Enginar H, Biber FZ, Lambrecht FY, Aslani MA, Ozkilic H. A correlative study between 99mTc-ESTCPTA and 99mTc-MIBI in rats. Appl Radiat Isot. 2002;57(5):733-42.Google Scholar
  50. Vaidyanathan G, Zalutsky MR. Applications of 211At and 223Ra in targeted alpha-particle radiotherapy. Curr Radiopharm. 2011;4:283–94.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Volkert WA, Hoffman TJ. Therapeutic radiopharmaceuticals. Chem Rev. 1999;99:2269–92.PubMedCrossRefGoogle Scholar
  52. Volkert WA, Goeckeler WF, Ehrhardt GJ, et al. Therapeutic radionuclides: production and decay property considerations. J NucI Med. 1991;32:174–85.Google Scholar
  53. Yeong C-H, Cheng M-H, Ng K-H. Therapeutic radionuclides in nuclear medicine: current and future prospects. J Zhejiang Univ Sci B. 2014;15(10):845–63.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Zhuikov BL. Production of medical radionuclides in Russia: status and future—a review. Appl Radiat Isot. 2014;84:48–56.PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • F. F. (Russ) Knapp
    • 1
  • Ashutosh Dash
    • 2
  1. 1.Nuclear Security and Isotope DivisionOak Ridge National LaboratoryOAK RIDGEUSA
  2. 2.Isotope Production and Applications DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations