Skip to main content

Translation of Radiopharmaceuticals from Bench to Bedside: Regulatory and Manufacturing Issues

  • Chapter
  • First Online:

Abstract

Radiopharmaceuticals (RPhs) are unique pharmaceuticals which contain radioisotopes which emit ionizing radiation. Depending on the nature of the radioisotope and application, radiopharmaceuticals are used for diagnostic applications, using radioisotopes which emit photons which can be detected externally for diagnostic purposes. The second group of RPhs contains particle-emitting radioisotopes which are used as therapeutic tools for treating various diseases. In some case, the radionuclide can be administered in an ionic form directly, such as using 123I for thyroid imaging, 131I for thyroid therapy, and 89Sr+ for treatment of bone pain, as described in Chap. 12. Generally, however, radioisotopes are directly attached to pharmaceutical targeting agents which are then administered for various applications, as described in earlier chapters. In every case, RPhs must be manufactured, handled, dispensed, and administered under controlled conditions, which are regulated by the appropriate government agencies. RPhs are either manufactured or distributed in a ready-to-use form from a central commercial manufacturer or from a central radiopharmacy dispensing site or prepared locally in a hospital-based radiopharmacy from “cold kits” and often using radioisotopes available from radionuclide generators. In some cases, hospitals synthesize the necessary ligands (targeting compound) at the hospital radiopharmacy and also formulate the radiopharmaceuticals. In all cases, RPhs are required to be prepared in conformance with a legal framework that is suited for conventional drugs similar to those manufactured by large drug commercial companies. Regulatory procedures necessary to control the production, dispensing, and use of radiopharmaceuticals are primarily focused on production methods. Preparation and handling of RPhs involve adherence to regulations on radiation protection and are regulated by a number of generally federal/regional directives, regulations, and rules to ensure safety. Radiopharmaceuticals are thus prepared in hospital radiopharmacies, centralized radiopharmacies, nuclear centers and institutes, or by industrial manufacturers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bacher K, Thierens HM. Accurate dosimetry: an essential step towards good clinical practice in nuclear medicine. Nucl Med Commun. 2005;26(7):581–6.

    Article  PubMed  Google Scholar 

  • Belanger AP, Byrne JF, Paolino JM, DeGrado TR. Use of pressure-hold test for sterilizing filter membrane integrity in radiopharmaceutical manufacturing. Nucl Med Biol. 2009;36(8):955–9.

    Article  PubMed  CAS  Google Scholar 

  • Brown S, Baker MH. The sterility testing of dispensed radiopharmaceuticals. Nucl Med Commun. 1996;7(5):327–36.

    Article  Google Scholar 

  • Butler D. Translational research: crossing the valley of death. Nature. 2008;453:840–2.

    Article  PubMed  CAS  Google Scholar 

  • Callahan RJ, Chilton HM, Ponto JA, Swanson DP, Royal HD, Bruce AD. Procedure guideline for the use of radiopharmaceuticals. J Nucl Med Technol. 2007;35(4):272–5.

    Article  PubMed  Google Scholar 

  • Castronovo Jr FP. Audits of radiopharmaceutical formulations. Am J Hosp Pharm. 1992;49(3):584–90.

    PubMed  Google Scholar 

  • Cervera-Padrell AE, Skovby T, Kiil S, Gani R, Gernaey KV. Active pharmaceutical ingredient (API) production involving continuous processes – a process system engineering (PSE)-assisted design framework. Eur J Pharm Biopharm. 2012;82(2):437–56.

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Rhodes BA, Larson SM, Wagner Jr HN. Sterility testing of radiopharmaceuticals. J Nucl Med. 1974;15(12):1142–4.

    PubMed  CAS  Google Scholar 

  • Cohen Y. Views on quality tests of radiopharmaceuticals. J Radioanal Chem. 1975;26(2):317–25.

    Article  CAS  Google Scholar 

  • Cox JA, Hesslewood SR, Palmer AM. A mechanism for professional and organizational audit of radiopharmacy departments. Nucl Med Commun. 1994;15(11):890–8.

    Article  PubMed  CAS  Google Scholar 

  • De Vos FJ, De Decker M, Dierckx RA. The good laboratory practice and good clinical practice requirements for the production of radiopharmaceuticals in clinical research. Nucl Med Commun. 2006;26(7):575–9.

    Article  Google Scholar 

  • Decristoforo C, Peñuelas I. Towards a harmonized radiopharmaceutical regulatory framework in Europe? Q J Nucl Med Mol Imaging. 2009;53(4):394–401.

    PubMed  CAS  Google Scholar 

  • Decristoforo C, Elsing P, Faivre-Chauvet A, Farstad B, Meyer G, Mikolajczak R, Penuelas I, Unak P, Wester G. The specific case of radiopharmaceuticals and GMP – activities of the Radiopharmacy Committee. Eur J Nucl Med Mol Imaging. 2008;35(7):1400–1.

    Article  PubMed  CAS  Google Scholar 

  • Dickson M, Gagnon JP. Key factors in the rising cost of new drug discovery and development. Nat Rev Drug Discov. 2004;3:417.

    Article  PubMed  CAS  Google Scholar 

  • DiMasi JA, Grabowski HG. Economics of new oncology drug development. J Clin Oncol. 2007;25:209.

    Article  PubMed  Google Scholar 

  • DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ. 2003;22(2):151–85.

    Article  PubMed  Google Scholar 

  • Duatti A, Bhonsle U. Strengthening radiopharmacy practice in IAEA Member States. Semin Nucl Med. 2013;43(3):188–94.

    Article  PubMed  Google Scholar 

  • Eberlein U, Bröer JH, Vandevoorde C, Santos P, Bardiès M, Bacher K, Nosske D, Lassmann M. Biokinetics and dosimetry of commonly used radiopharmaceuticals in diagnostic nuclear medicine – a review. Eur J Nucl Med Mol Imaging. 2011;38:2269–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elliot AT, Hilditch TE, Murray T, McNutty H. The design and construction of a central radiopharmacy. Nucl Med Comm. 1993;14:328–34.

    Article  Google Scholar 

  • Elsinga P, Todde S, Penuelas I, Meyer G, Farstad B, Faivre-Chauvet A, Mikolajczak R, Westera G, Gmeiner-Stopar T, Decristoforo C. Guidance on current good radiopharmacy practice (cGRPP) for the small-scale preparation of radiopharmaceuticals. Eur J Nucl Med Mol Imaging. 2010;37(5):1049–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Freudenberg LS, Beyer T. Subjective perception of radiation risk. J Nucl Med. 2011;52:29S–35.

    Article  PubMed  Google Scholar 

  • Gnau TR, Maynard CD. Reducing the cost of nuclear medicine: sharing radiopharmaceuticals. Radiology. 1973;108(3):641–5.

    Article  PubMed  CAS  Google Scholar 

  • Gouveia BG, Rijo P, Gonçalo TS, Reis CP. Good manufacturing practices for medicinal products for human use. J Pharm Bioall Sci. 2015;7:87–96.

    Google Scholar 

  • Hall JE. The promise of translational physiology. Am J Physiol. 2002;283(2):E193–4.

    CAS  Google Scholar 

  • Harapanhalli RS. Food and Drug Administration requirements for testing and approval of new radiopharmaceuticals. Semin Nucl Med. 2010;40(5):364–84.

    Article  PubMed  Google Scholar 

  • Hayashi K, Douhara K, Kashino G. Evaluation of the bubble point test of a 0.22-μm membrane filter used for the sterilizing filtration of PET radiopharmaceuticals. Ann Nucl Med. 2014;28(6):586–92.

    Article  PubMed  CAS  Google Scholar 

  • Heller SL. Radiation safety in the central radiopharmacy. Semin Nucl Med. 1996;26(2):107–18.

    Article  PubMed  CAS  Google Scholar 

  • Herrling P. Patent sense. Nature. 2007;449:174–5.

    Article  PubMed  CAS  Google Scholar 

  • Jornitz MW. Integrity testing. Adv Biochem Eng Biotechnol. 2001;98:143–80.

    Article  CAS  Google Scholar 

  • Khurshid SJ, Sadiq MZ. Quality assurance in nuclear medicine-biological quality control of radiopharmaceuticals. Pak J Pharm Sci. 1996;9(1):43–54.

    PubMed  CAS  Google Scholar 

  • Kowalsky RJ. A basic overview of radiopharmaceuticals and their relationship to nuclear pharmacy practice. J Pharm Pract. 1989;2(3):139–47.

    Article  Google Scholar 

  • Kumar V, Sunder N, Potdar A. Critical factors in developing pharmaceutical formulations–an overview. Part 2. Pharm Technol. 1992;16:86–8.

    Google Scholar 

  • Lass P, Scheffler J. Undergraduate teaching of nuclear medicine in European universities. Eur J Nucl Med Mol Imaging. 2003;30(7):1018–23.

    Article  PubMed  Google Scholar 

  • Lipsky MS, Sharp LK. From idea to market: the drug approval process. J Am Board Fam Pract. 2001;14(5):362–7.

    PubMed  CAS  Google Scholar 

  • Norenberg JP, Petry NA, Schwarz S. Operation of a radiopharmacy for a clinical trial. Semin Nucl Med. 2010;40(5):347–56.

    Article  PubMed  Google Scholar 

  • Nunn AD. The cost of developing imaging agents for routine clinical use. Invest Radiol. 2006;41(3):206–12.

    Article  PubMed  Google Scholar 

  • Nunn AD. The cost of bringing a radiopharmaceutical to the patient’s bedside. J Nucl Med. 2007;48:169.

    PubMed  Google Scholar 

  • Otte A, Maier-Lenz Dierckx RA. Good clinical practice: historical background and key aspects. Nucl Med Commun. 2005;26(7):563–741.

    Article  PubMed  Google Scholar 

  • Ramírez de Arellano I, Piera C, Pavia J, Setoain J. Experiences in setting up the first centralized radiopharmacy in Spain. Nucl Med Commun. 1999;20(3):279–85.

    Article  PubMed  Google Scholar 

  • Reichert JM. Trends in development and approval times for new therapeutics in the United States. Nat Rev Drug Discov. 2003;2:695.

    Article  PubMed  CAS  Google Scholar 

  • Schelbert HR. Nuclear medicine at a crossroad. J Nucl Med. 2011;52:10S–5.

    Article  PubMed  Google Scholar 

  • Seddon BM, Workman P. The role of functional and molecular imaging in cancer drug discovery and development. Br J Radiol. 2003;76(Spec No 2):S128.

    Article  PubMed  CAS  Google Scholar 

  • Wang SC. Nuclear medicine training in china. Eur J Nucl Med. 1996;10:1405–7.

    Article  Google Scholar 

  • Woldring MG. Radiopharmaceuticals and good radiopharmacy practice. Pharm Weekblad Sci Ed. 1999;3(1):1285–301.

    Google Scholar 

  • Zigler SS. Instrumentation and radiopharmaceutical validation. Q J Nucl Med Mol Imaging. 2009;53(4):402–10.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Knapp, F.F.(., Dash, A. (2016). Translation of Radiopharmaceuticals from Bench to Bedside: Regulatory and Manufacturing Issues. In: Radiopharmaceuticals for Therapy . Springer, New Delhi. https://doi.org/10.1007/978-81-322-2607-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2607-9_17

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2606-2

  • Online ISBN: 978-81-322-2607-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics