Skip to main content

Moving Forward: Expected Opportunities for the Development of New Therapeutic Agents Based on Nanotechnologies

  • Chapter
  • First Online:
Book cover Radiopharmaceuticals for Therapy

Abstract

This chapter provides a detailed overview of the explosive, exponential growth in the use of nanomaterials as carriers for therapeutic radioisotopes using a variety of new unique concepts for radioisotope attachment and targeted delivery. These very small targeting agents for the applications discussed in this chapter are essentially platforms to which therapeutic radioisotopes can be stably attached for transport to the target sites, which are generally tumor cells. Because of their very small size—i.e., at least 100 nm in one dimension—they must be small enough for transit through the small capillaries. As discussed in this chapter, these nanocarriers can be composed of a large variety of materials to which specific targeting moieties and radioisotopes can be attached by many different strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albanell J, Baselga J. Trastuzumab. A humanized anti-HER2 monoclonal antibody, for the treatment of breast cancer. Drugs Today. 1999;35:931–46.

    PubMed  CAS  Google Scholar 

  • Alexis F, Basto P, Levy-Nissenbaum E, et al. HER-2-targeted nanoparticle–affibody bioconjugates for cancer therapy. Chem Med Chem. 2008;3:1839–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer. 2002;2:750–63.

    Article  PubMed  CAS  Google Scholar 

  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303:1818–22.

    Article  PubMed  CAS  Google Scholar 

  • Allen TM, Hansen C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta. 1991;1068:133–41.

    Article  PubMed  CAS  Google Scholar 

  • Alloatti D, Giannini G, Vesci L, et al. Camptothecins in tumor homing via an RGD sequence mimetic. Bioorg Med Chem Lett. 2012;22(20):6509–12.

    Article  PubMed  CAS  Google Scholar 

  • André S, Frisch B, Kaltner H, Desouza D, et al. Lectin-mediated drug targeting: selection of valency, sugar type (Gal/Lac), and spacer length for cluster glycosides as parameters to distinguish ligand binding to C-type asialoglycoprotein receptors and galectins. Pharm Res. 2000;17:985–90.

    Article  PubMed  Google Scholar 

  • Astolfo A, Schültke E, Menk RH, et al. In vivo visualization of gold-loaded cells in mice using x-ray computed tomography. Nanomedicine. 2013;9(2):284–92.

    Article  PubMed  CAS  Google Scholar 

  • Bae YH. Drug targeting and tumor heterogeneity. J Control Release. 2009;133:2–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Controlled Release. 2011;153:198–205.

    Article  CAS  Google Scholar 

  • Bai S, Thomas C, Rawat A, Ahsan F. Recent progress in dendrimer-based nanocarriers. Crit Rev Ther Drug Carrier Syst. 2006;23:437–95.

    Article  PubMed  CAS  Google Scholar 

  • Bao A, Goins B, Klipper R, et al. Re-186-liposome labeling using Re-186-SNS/S complexes: in vitro stability, imaging, and biodistribution in rats. J Nucl Med. 2003;44:1992–9.

    PubMed  CAS  Google Scholar 

  • Barua S, Yoo JW, Kolhar P, Wakankar A, Gokarn YR, Mitragotri S, et al. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci. 2013;110(9):3270–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bayraktar H, You C-C, Rotello VM, Knapp MJ. Facial control of nanoparticle binding to cytochrome c. J Am Chem Soc. 2007;129:2732–3.

    Article  PubMed  CAS  Google Scholar 

  • Bhang SH, Won N, Lee T, et al. Hyaluronic acid-quantum dot conjugates for in vivo lymphatic vessel imaging. ACS Nano. 2009;3:1389–98.

    Article  PubMed  CAS  Google Scholar 

  • Brahmachari S, Ghosh M, Dutta S, Das PK. Biotinylated amphiphile-single walled carbon nanotube conjugate for target-specific delivery to cancer cells. J Mater Chem. 2014;B2:1160–73.

    Article  CAS  Google Scholar 

  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2012;54:631–51.

    Article  Google Scholar 

  • Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60:1615–26.

    Article  PubMed  CAS  Google Scholar 

  • Cai W, Shin DW, Chen K, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 2006;6:669–76.

    Article  PubMed  CAS  Google Scholar 

  • Capone PM, Papsidero LD, Chu TM. Relationship between antigen density and immunotherapeutic response elicited by monoclonal antibodies against solid tumors. J Natl Cancer Inst. 1984;72:673–7.

    PubMed  CAS  Google Scholar 

  • Carlson B. Aptamers: the new frontier in drug development? Biotechnol Health Care. 2007;4:32–6.

    Google Scholar 

  • Chen Y, Chen HR, Shi JL. In vivo biosafety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater. 2013;25:3144–76.

    Article  PubMed  CAS  Google Scholar 

  • Cho CS, Park IK, Cho CS. Galactosylated Poly(ethylene gly-col)-Chitosan – graft- Polyethylenimine as a gene carrier for hepatocyte-targeting. J Control Release. 2008;131:150–7.

    Article  PubMed  CAS  Google Scholar 

  • Colcher D, Pavlinkova G, Beresford G, et al. Pharmacokinetics and biodistribution of genetically engineered antibodies. Q J Nucl Med. 1998;42:225–41.

    PubMed  CAS  Google Scholar 

  • Daniels TR, Bernabeu E, Rodriguez JA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta. 2012;1820:291–317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dill K, Lin M, Poteras C, Fraser C, et al. Antibody-antigen binding constants determined in solution-phase with the threshold membrane-capture system-binding constants for antifluorescein, anti-saxitoxin, and anti-ricin antibodies. Anal Biochem. 1994;217:128–38.

    Article  PubMed  CAS  Google Scholar 

  • Doi KT, Akaike H, Horie Y, et al. Excessive production of nitric oxide in rat solid tumor and its implication in rapid tumor growth. Cancer. 1996;77:1598–604.

    Article  PubMed  CAS  Google Scholar 

  • Dreher MR, Liu W, Michelich CR, et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst. 2006;98:335–44.

    Article  PubMed  CAS  Google Scholar 

  • Drolet DW, Nelson J, Tucker CE, et al. Pharmacokinetics and safety of an anti-vascular endothelial growth factor aptamer (NX1838) following injection into the vitreous humor of rhesus monkeys. Pharm Res. 2000;17:1503–10.

    Article  PubMed  CAS  Google Scholar 

  • Duncan R, Vincent MJ, Greco F, et al. Polymer–drug conjugates: towards a novel approach for the treatment of endocrine-related cancer. Endocrinol Relat Cancer. 2005;12:S189–S19.

    Article  CAS  Google Scholar 

  • Ellington AD, Ebright J, Chu T, Levy M. Using aptamers for cell-specific labeling and delivery. In: American Association for Cancer Research education book. Philadelphia: American Association for Cancer Research; 2007. p. 51–5.

    Google Scholar 

  • Fahmy TM, Samstein RM, Harness CC, Saltzman WM. Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting. Biomaterials. 2005;26:5727–36.

    Article  PubMed  CAS  Google Scholar 

  • Fang C, Bhattarai N, Sun C, Zhang M. Functionalized nanoparticles with long-term stability in biological media. Small. 2009;5:1637–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faraji A, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem. 2004;17:2950–62.

    Article  CAS  Google Scholar 

  • Farokhzad OC, Jon S, Khademhosseini A, et al. Nanoparticle–aptamer bioconjugates. A new approach for targeting prostate cancer cells. Cancer Res. 2004;64:7668–72.

    Article  PubMed  CAS  Google Scholar 

  • Farokhzad OC, Karp JM, Langer R. Nanoparticle–aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv. 2006;3:311–24.

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N. VEGF as a therapeutic target in cancer. Oncology. 2005;69:11–6.

    Article  PubMed  CAS  Google Scholar 

  • Figuerola A, Di Corato R, Manna L, Pellegrino T. From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res. 2010;62:126–43.

    Article  PubMed  CAS  Google Scholar 

  • Fischer MJ. Amine coupling through EDC/NHS: a practical approach. In: Nico NJ, Fisher MJE, editors. Surface Plasmon Reson. New York: Humana Press: 2010:55–73. ISBN 978-1-60761-670-2.

    Google Scholar 

  • Foraker AB, Khantwal CM, Swaan PW. Current perspectives on the cellular uptake and trafficking of riboflavin. Adv Drug Deliv Rev. 2003;55:1467–83.

    Article  PubMed  CAS  Google Scholar 

  • Galow TH, Boal AK, Rotello VM. “Building block” approach to mixed-colloid systems through electrostatic self-organization. Adv Mater. 2000;12:576–9.

    Article  CAS  Google Scholar 

  • Gao XH, Cui YY, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22:969–76.

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Feng SS, Guo Y. Antibody engineering promotes nanomedicine for cancer treatment. Nanomedicine. 2010;5:1141–5.

    Article  PubMed  CAS  Google Scholar 

  • Gao WL, Ji L, Li G, Cui K, Xu P, Tang B. Bifunctional combined Au-Fe2O3 nanoparticles for induction of cancer cell-specific apoptosis and real-time imaging. Biomaterials. 2012;33:710–3718.

    Google Scholar 

  • Gregory AE, Titball R, Williamson D. Vaccine delivery using nanoparticles. Front Cell Infect Microbiol. 2013;3:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gunthert U, Hofmann M, Rudy W, et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell. 1991;65:13–24.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA. Hall marks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  PubMed  CAS  Google Scholar 

  • Harrington KJ, Mohammadtaghi S, Uster PS, et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled PEGylated liposomes. Clin Cancer Res. 2001;7:243–54.

    PubMed  CAS  Google Scholar 

  • He QJ, Shi JL. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J Mater Chem. 2011;21:5845–55.

    Article  CAS  Google Scholar 

  • He C, Hu Y, Yin L, et al. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010a;31:3657–66.

    Article  PubMed  CAS  Google Scholar 

  • He QJ, Shi JL, Zhu M, Chen Y, Chen F. The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Micropor Mesopor Ma. 2010b;131:314–20.

    Article  CAS  Google Scholar 

  • Hicke BJ, Stephens AW. Escort aptamers: a delivery service for diagnosis and therapy. J Clin Invest. 2000;106:923–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hild W, Pollinger K, Caporale A, Cabrele C, Keller M, Pluym N, Buschauer A, Rachel R, Tessmar J, Breunig M, Goepferich A. G protein-coupled receptors function as logic gates for nanoparticle binding and cell uptake. Proc Natl Acad Sci USA. 2010;107:10667–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hilgenbrink AR, Low PS. Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci. 2005;94:2135–46.

    Article  PubMed  CAS  Google Scholar 

  • Ho JA, Hung CH. Using liposomal fluorescent biolabels to develop an immunoaffinity chromatographic biosensing system for biotin. Anal Chem. 2008;80:6405–9.

    Article  PubMed  CAS  Google Scholar 

  • Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A. 1998;95:4607–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoefnagel CA. Radionuclide cancer therapy. Ann Nucl Med. 1998;12:61–70.

    Article  PubMed  CAS  Google Scholar 

  • Hofheinz RD, al-Batran SE, Hartmann F, et al. Stromal antigen targeting by a humanized monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie. 2003;26:44–4.

    Article  PubMed  CAS  Google Scholar 

  • Holliger P, Hudson P. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23(9):1126–36.

    Article  PubMed  CAS  Google Scholar 

  • Holmberg RJ, Bolduc S, Beauchemin D, et al. Characteristics of colored passive layers on zirconium: morphology, optical properties, and corrosion resistance. ACS Appl Mater Interfaces. 2012;4:6487–98.

    Article  PubMed  CAS  Google Scholar 

  • Hong R, Fischer NO, Verma A, et al. Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. J Am Chem Soc. 2004;126:739–43.

    Article  PubMed  CAS  Google Scholar 

  • Hu FX, Neoh KG, Kang ET. Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles. Biomaterials. 2006;27:5725–33.

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Zhou Z, Srinivasan R, et al. Affinity manipulation of surface-conjugated RGD peptide to modulate binding of liposomes to activated platelets. Biomaterials. 2008;29(11):1676–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang YF, Lin YW, Lin Z-H, Chang HT. Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. J Nanopart Res. 2009;11:775–83.

    Article  CAS  Google Scholar 

  • Huang FY, Lee J, Kao TW, et al. Imaging, autoradiography, and biodistribution of Re- 188-labeled PEGylated nanoliposome in orthotopicglioma bearing rat model. Cancer Biother Radiopharm. 2011;26:717–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11:812–8.

    Article  PubMed  CAS  Google Scholar 

  • James JS, Dubs G. FDA approves new kind of lymphoma treatment. AIDS Treat News. 1997;284:2–3.

    Google Scholar 

  • Jenison RD, Gill SC, Pardi A, Polisky B. High-resolution molecular discrimination by RNA. Science. 1994;263(5152):1425–9.

    Article  PubMed  CAS  Google Scholar 

  • Jiang XZ, Housni A, Gody G, et al. Synthesis of biotinylated alpha-D-mannoside or N-acetyl beta-D-glucosaminoside decorated gold nanoparticles: study of their biomolecular recognition with Con A and WGA lectins. Bioconjug Chem. 2010;21:521–30.

    Article  PubMed  CAS  Google Scholar 

  • Kamaly N, Xiao Z, Valencia PM, et al. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012;41:2971–3010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47:113–31.

    Article  PubMed  CAS  Google Scholar 

  • Khosroshahi AG, Amanlou M, Sabzevari O, et al. A comparative study of two novel nanosized radiolabeled analogues of methionine for SPECT tumor imaging. Curr Med Chem. 2013;20:123–33.

    Article  PubMed  CAS  Google Scholar 

  • Kikkeri R, Lepenies B, Adibekian A, et al. In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots. J Am Chem Soc. 2009;131:2110–2.

    Article  PubMed  CAS  Google Scholar 

  • Kim EM, Jeong HJ, Moon MH. Asialoglycoprotein receptor targeted gene delivery using galactosylated polyethylenimine-graft -poly (ethylene glycol): in vitro and in vivo studies. J Control Release. 2005;108:557–67.

    Article  PubMed  CAS  Google Scholar 

  • Kocbek PN, Obermajer M, Cegnar J, et al. Targeting cancer cells using PLGA nanoparticles surfacemodifiedwith monoclonal antibody. J Control Release. 2007;120:18–26.

    Article  PubMed  CAS  Google Scholar 

  • Kostarelos K, Emfietzoglou D. Tissue dosimetry of liposome-radionuclide complexes for internal radiotherapy: toward liposome-targeted therapeutic radiopharmaceuticals. Anticancer Res. 2000;20:3339–45.

    PubMed  CAS  Google Scholar 

  • Kostarelos K, Emfietzoglou D, Stamatelou M. Liposome-mediated delivery of radionuclides to tumor models for cancer radiotherapy: a quantitative analysis. J Liposome Res. 1999;9:407–42.

    Article  CAS  Google Scholar 

  • Kresse M, Wagner S, Pfefferer D, et al. Targeting of ultra small super paramagnetic iron oxide(USPIO) particles to tumor cells in vivo by using transferring receptor pathways. Magn Reson Med. 1998;40:236–42.

    Article  PubMed  CAS  Google Scholar 

  • Kukowska-Latallo JF, Candido KA, Cao Z, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 2005;65:5317–24.

    Article  PubMed  CAS  Google Scholar 

  • Laverman P, Carstens MG, Boerman OC, et al. Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J Pharmacol Exp Ther. 2001;298:607–12.

    PubMed  CAS  Google Scholar 

  • Lee JF, Stovall GM, Ellington AD. Aptamer therapeutics advance. Curr Opin Chem Biol. 2006;10(3):282–9.

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Ankone M, Pieters E, et al. Circulation kinetics and biodistribution of dual-labeled polymersomes with modulated surface charge in tumor-bearing mice: comparison with stealth liposomes. J Control Release. 2011;155:282–8.

    Article  PubMed  CAS  Google Scholar 

  • Lee DE, Koo H, Sun IC, et al. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev. 2012;41:2656–72.

    Article  PubMed  CAS  Google Scholar 

  • Li YM, Hall WA. Targeted toxins in brain tumor therapy. Toxins. 2010;2:2645–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li LL, Xie M, Wang J, et al. Vitamin-responsive mesoporous nanocarrier with DNA aptamer-mediated cell targeting. Chem Commun. 2013;49:5823–5.

    Article  CAS  Google Scholar 

  • Liong M, Angelos S, Choi E, et al. Mesostructured multifunctional nanoparticles for imaging and drug delivery. J Mater Chem. 2009;19:6251–7.

    Article  CAS  Google Scholar 

  • Litzinger DC, Buiting AM, van Rooijen N, Huang L. Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim Biophys Acta. 1994;1190:99–107.

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Cai W, He L, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol. 2007;2:47–52.

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Li L, Teng X, et al. Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice. Biomaterials. 2011;32:1657–68.

    Article  PubMed  CAS  Google Scholar 

  • Love JC, Estroff LA, Kriebel JK, et al. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev. 2005;105:1103–70.

    Article  PubMed  CAS  Google Scholar 

  • Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res. 2008;41:120–9.

    Article  PubMed  CAS  Google Scholar 

  • Lupold SE, Hicke BJ, Lin Y, CoVey DS. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res. 2002;62:4029–33.

    PubMed  CAS  Google Scholar 

  • Maeda H. Polymer conjugated macromolecular drugs for tumor-specific targeting. In: Domb AJ, editor. Polymeric site-specific pharmacotherapy. New York: John Wiley & Sons; 1994. p. 95–116.

    Google Scholar 

  • Maeda H, Noguchi Y, Sato K, Akaike T. Enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor. Jpn J Cancer Res. 1994;85:331–4.

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Akaike T, Wu J, Noguchi Y, Sakata Y. Bradykinin and nitric oxide in infectious disease and cancer. Immunopharmacology. 1996;33:222–30.

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Fang F, Inuzuka T, et al. Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol. 2003;3:319–28.

    Article  PubMed  CAS  Google Scholar 

  • Manzano M, Vallet-Regí M. New developments in ordered mesoporous materials for drug delivery. J Mater Chem. 2010;20:5593–604.

    Article  CAS  Google Scholar 

  • Markert S, Lassmann S, Gabriel B, et al. Alpha-folate receptor expression in epithelial ovarian carcinoma and non-neoplastic ovarian tissue. Anticancer Res. 2008;28:3567–72.

    PubMed  Google Scholar 

  • Marrache S, Dhar S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Acad Sci U S A. 2012;109:16288–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 1986;46:6387–92.

    PubMed  CAS  Google Scholar 

  • McBain SC, Griesenbach U, Xenariou S, et al. Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays. Nanotechnology. 2008;19(40):405102.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin MF, Robertson D, Pevsner PH, Wall JS, Mirzadeh S, Kennel SJ. LnPO4 nanoparticles doped with Ac-225 and sequestered daughters for targeted alpha therapy. Cancer Biother Radiopharm. 2014;29(1):34–41.

    Article  PubMed  CAS  Google Scholar 

  • Mier W, Babich J, Haberkorn U. Is nano too big? Eur J Nucl Med Mol Imaging. 2014;41:4–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller RH, Wallis KH. Surface modification of i.v. injectable biodegradable nanoparticles with poloxamer polymers and poloxamine 908. Int J Pharm. 1993;89:25–31.

    Article  Google Scholar 

  • Nakanishi T, et al. Development of the polymer micelle carrier system for doxorubicin. J Control Release. 2001;74:295–302.

    Article  PubMed  CAS  Google Scholar 

  • Oda T, Maeda H. Binding to and internalization by cultured cells of neocarzinostatin and enhancement of its actions by conjugation with lipophilic styrene-maleic acid copolymer. Cancer Res. 1987;47:3206–11.

    PubMed  CAS  Google Scholar 

  • Oda T, Morinaga T, Maeda H. Stimulation of macrophage by polyanions and its conjugated proteins and effect on cell membrane. Proc Soc Exp Biol Med. 1986;181:9–17.

    Article  PubMed  CAS  Google Scholar 

  • Osborne MP, Richardson VJ, Jeyasingh K, Ryman BE. Radionuclide-labeled liposomes – a new lymph node imaging agent. Int J Nucl Med Biol. 1979;6:75–83.

    Article  PubMed  CAS  Google Scholar 

  • Pan W, Yang H, Zhang T, et al. Dual-targeted nanocarrier based on cell surface receptor and intracellular mRNA: an effective strategy for cancer cell imaging and therapy. Anal Chem. 2013;85:6930–5.

    Article  PubMed  CAS  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36:R167–81.

    Article  CAS  Google Scholar 

  • Papa A-L, Basu S, Sengupta P, et al. Mechanistic studies of Gemcitabine-loaded nanoplatforms in resistant pancreatic cancer cells. BMC Cancer. 2012;12:419–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park J, Mattessich T, Jay SM, et al. Enhancement of surface ligand display on PLGA nanoparticles with amphiphilic ligand conjugates. J Control Release. 2011;156:109–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parrott MC, Benhabbour SR, Saab C, et al. Synthesis, radiolabeling, and bio-imaging of high-generation polyester dendrimers. J Am Chem Soc. 2009;131:2906–16.

    Article  PubMed  CAS  Google Scholar 

  • Parvin S, Matsui J, Sato E, Miyashita T. Side-chain effect on Langmuir and Langmuir–Blodgett film properties of poly(n-alkylmethacrylamide)-coated magnetic nanoparticle. J Colloid Interface Sci. 2007;313:128–34.

    Article  PubMed  CAS  Google Scholar 

  • Patil YB, Toti US, Khdair A, Ma L, Panyam J. Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials. 2009;30:859–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng XH, Qian X, Mao H, et al. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine. 2008;3(3):311–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Platt VM, Szoka Jr FC. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm. 2008;5:474–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Potapova R, Mruk R, Prehl S, Mews A, et al. Semiconductor Nanocrystals with Multifunctional Polymer Ligands. J Am Chem Soc. 2003;125:320–1.

    Article  PubMed  CAS  Google Scholar 

  • Quan Q, Xie J, Gao H, et al. HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol Pharm. 2011;8:1669–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rana K, Reinhart-King CA, King MR. Inducing Apoptosis in Rolling Cancer Cells: A Combined Therapy with Aspirin and Immobilized TRAIL and E-Selectin. Mol Pharm. 2012;9:2219–27.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rojas JV, Woodward JD, Chen N, et al. Synthesis and characterization of lanthanum phosphate nanoparticles as carriers for 223Ra and 225Ra for targeted alpha therapy. Nucl Med Biol. 2015;42(7):614–20.

    Article  PubMed  CAS  Google Scholar 

  • Rosenholm JM, Peuhu E, Bate-Eya LT, et al. Cancer-cell-specific induction of apoptosis using mesoporous silica nanoparticles as drug-delivery vectors. Small. 2010;6:1234–41.

    Article  PubMed  CAS  Google Scholar 

  • Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today. 2003;8:1112–20.

    Article  PubMed  CAS  Google Scholar 

  • Satija J, Gupta U, Jain NK. Pharmaceutical and biomedical potential of surface engineered dendrimers. Crit Rev Ther Drug Carrier Syst. 2007;24:257–306.

    Article  PubMed  CAS  Google Scholar 

  • Schiffelers RM, Ansari A, Xu J, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 2004;32(19):e149.

    Article  PubMed  PubMed Central  Google Scholar 

  • Senior JH. Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst. 1987;3:123–93.

    PubMed  CAS  Google Scholar 

  • Shen Z, Wei W, Tanaka H, et al. A galactosamine-mediated drug delivery carrier for targeted liver cancer therapy. Pharmacol Res. 2011;64:410–9.

    Article  PubMed  CAS  Google Scholar 

  • Shenoi MM, Iltis I, Choi J, et al. Nanoparticle delivered vascular disrupting agents (VDAs): use of TNF-alpha conjugated gold nanoparticles for multimodal cancer therapy. Mol Pharm. 2013;10:1683–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi M, Lu J, Shoichet MS. Organic nanoscale drug carriers coupled with ligands for targeted drug delivery in cancer. J Mater Chem. 2009;19:5485–98.

    Article  CAS  Google Scholar 

  • Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res. 2011;44:123–34.

    Article  CAS  Google Scholar 

  • Shuai X, Ai H, Nasongkla N, Kim S, Gao J. Micellar carriers based on block copolymers of poly(epsilon-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release. 2004;98:415–26.

    Article  PubMed  CAS  Google Scholar 

  • Shubayev VI, Pisanic TR, Jin SH. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009;61:467–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86:215–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smiljanic N, Moreau V, Yockot D, et al. Supramolecular control of oligosaccharide–protein interactions: switchable and tunable ligands for concanavalin a based on β-cyclodextrin. Angew Chem Int Ed. 2006;45:5465–8.

    Article  CAS  Google Scholar 

  • Smith RAJ, Porteous CM, Gane AM, Murphy MP. Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A. 2003;100:5407–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soundararajan A, Bao A, Phillips WT, et al. [186Re]Liposomal doxorubicin (Doxil): in vitro stability, pharmacokinetics, imaging and biodistribution in a head and neck squamous cell carcinoma xenograft model. Nucl Med Biol. 2009;36:515–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun C, Lee JSH, Zhang MQ. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60:1252–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res. 2007;24:1029–46.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Akaike T, Wu SJ, et al. Modulation of tumor-selective vascular blood flow and extravasation by the stable prostaglandin I2 analogue beraprost sodium. J Drug Target. 2003;11:45–52.

    Article  PubMed  CAS  Google Scholar 

  • Tang FQ, Li LL, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24:1504–34.

    Article  PubMed  CAS  Google Scholar 

  • Teply BA, Rocha FG, Levy-Nissenbaum E, et al. Nanoparticle-aptamer bioconjugates for targeted antineoplastic drug delivery. Am J Drug Deliv. 2006;4:123–30.

    Article  CAS  Google Scholar 

  • Torchilin VP. PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv Drug Deliv Rev. 2002;54:235–52.

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya K, Nitta N, Sonoda A, et al. Evaluation of atherosclerotic lesions using dextran- and mannan-dextran-coated uspio: Mri analysis and pathological findings. Int J Nanomedicine. 2012;7:2271–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ulrich AS. Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep. 2002;22:129–50.

    Article  PubMed  CAS  Google Scholar 

  • Vallet-Regí M, Rámila A, del Real RP, Pérez-Pariente J. A new property of MCM-41: drug delivery system. Chem Mater. 2001;13:308–11.

    Article  CAS  Google Scholar 

  • Van Cutsem E, Köhne CH, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360:1408–17.

    Article  PubMed  Google Scholar 

  • Wang Z, Cuschieri A. Tumour cell labelling by magnetic nanoparticles with determination of intracellular iron content and spatial distribution of the intracellular iron. Int J Mol Sci. 2013;14:9111–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang AZ, Bagalkot V, Gu F, et al. Novel targeted aptamer–super paramagnetic iron oxide nanoparticle bioconjugates for combined prostate cancer imaging and therapy. Int J Rad Oncol Biol Phys. 2007;69 Suppl 1:S110–1.

    Article  Google Scholar 

  • Wang Y, Chen J, Irudayaraj J. Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer. ACS Nano. 2011;5:9718–25.

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Ma X, Ye S, et al. Protamine Functionalized Single-Walled Carbon Nanotubes for Stem Cell Labeling and In Vivo Raman/Magnetic Resonance/Photoacoustic Triple-Modal Imaging. Adv Funct Mater. 2012;22:2363–75.

    Article  CAS  Google Scholar 

  • Weber C, Reiss S, Langer K. Preparation of surface modified protein nanoparticles by introduction of sulfhydryl groups. Int J Pharm. 2000;211:67–78.

    Article  PubMed  CAS  Google Scholar 

  • Weissleder R, Kelly K, Sun EY, et al. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol. 2005;23:1418–23.

    Article  PubMed  CAS  Google Scholar 

  • White RR, Sullenger BA, Rusconi CP. Developing aptamers into therapeutics. J Clin Invest. 2000;106:929–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu J, Chu CC. Water insoluble cationic poly(ester amide)s: synthesis, characterization and applications. J Mater Chem. 2013;B1:353–60.

    Article  Google Scholar 

  • Wu J, Akaike T, Maeda H. Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger. Cancer Res. 1998;58:159–65.

    PubMed  CAS  Google Scholar 

  • Wu J, Akaike T, Hayashida K, Okamoto T, et al. Enhanced vascular permeability in solid tumor involving peroxynitrite and matrix metalloproteinase. Jpn J Cancer Res. 2001;92:439–51.

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Chen B, Cheng J, et al. Biocompatibility of Fe3O4/DNR magnetic nanoparticles in the treatment of hematologic malignancies. Int J Nanomedicine. 2010;5:1079–84.

    PubMed  PubMed Central  Google Scholar 

  • Wu H, Liu G, Zhang S, Shi J, Zhang L, et al. Biocompatibility, MR imaging and targeted drug delivery of a rattle-type magnetic mesoporous silica nanosphere system conjugated with PEG and cancer-cell-specific ligands. J Mater Chem. 2011;21:3037–45.

    Article  CAS  Google Scholar 

  • Xing Y, Zhao J, Conti PS, Chen K. Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics. 2014;4:290–306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu X, Zhang Y, Wang X, et al. Radiosynthesis, biodistribution and micro-SPECT imaging study of dendrimer-avidin conjugate. Bioorg Med Chem. 2011;19:1643–8.

    Article  PubMed  CAS  Google Scholar 

  • Yallapu MM, Othman SF, Curtis ET, et al. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials. 2011;32:1890–905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Y, Zhang Z, Chen L, et al. Galactosylated poly(2-(2-aminoethoxy)ethoxy)phosphazene/DNA complex nanoparticles: in vitro and in vivo evaluation for gene delivery. Biomacromolecules. 2010;11:927–33.

    Article  PubMed  CAS  Google Scholar 

  • Yang P, Gai S, Lin J. Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev. 2012;41:3679–98.

    Article  PubMed  CAS  Google Scholar 

  • Yao N, Xiao W, Wang X, et al. Discovery of targeting ligands for breast cancer cells using the one-bead one-compound combinatorial method. J Med Chem. 2009;52(1):126–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yaun F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995;55:3752–6.

    Google Scholar 

  • Ying X, Wen HE, Lu WL, et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release. 2010;141:183–92.

    Article  PubMed  CAS  Google Scholar 

  • Yumura K, Ui M, Doi H, et al. Mutations for decreasing the immunogenicity and maintaining the function of core streptavidin. Protein Sci. 2013;22:13–221.

    Article  CAS  Google Scholar 

  • Zhang L, Radovic-Moreno AF, Alexis F, et al. Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle–aptamer bioconjugates. ChemMedChem. 2007;2:1268–71.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Ma Y, Sun XL. Recent developments in carbohydrate-decorated targeted drug/gene delivery. Med Res Rev. 2010a;30:270–89.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Sun Y, Xu X, et al. Synthesis, biodistribution, and microsingle photon emission computed tomography (SPECT) imaging study of technetium-99m labeled PEGylated dendrimer poly(amidoamine) (PAMAM)-folic acid conjugates. J Med Chem. 2010b;53:3262–72.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Sun Y, Xu X, et al. Radiosynthesis and micro-SPECT imaging of 99mTc-dendrimer poly(amido)-amine folic acid conjugate. Bioorg Med Chem Lett. 2010c;20:927–31.

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Lees E, Amin F, et al. Polymer-coated nanoparticles: a universal tool for biolabelling experiments. Small. 2011;7:3113–27.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Neoh KG, Xu LQ, et al. Functionalized mesoporous silica nanoparticles with muco adhesive and sustained drug release properties for potential bladder cancer therapy. Langmuir. 2014;30:6151–61.

    Google Scholar 

  • Zhao F, Zhao Y, Liu Y, et al. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small. 2011;7:1322–37.

    Article  PubMed  CAS  Google Scholar 

  • Zweit J. Radionuclides and carrier molecules for therapy. Phys Med Biol. 1996;41:1905–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Knapp, F.F.(., Dash, A. (2016). Moving Forward: Expected Opportunities for the Development of New Therapeutic Agents Based on Nanotechnologies. In: Radiopharmaceuticals for Therapy . Springer, New Delhi. https://doi.org/10.1007/978-81-322-2607-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2607-9_16

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2606-2

  • Online ISBN: 978-81-322-2607-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics