Skip to main content

Inhibition of Arterial Restenosis Following Balloon Angioplasty

  • Chapter
  • First Online:
Radiopharmaceuticals for Therapy

Abstract

The availability of effective methods to treat and manage the restenotic phenomena which usually occur over time following arterial balloon angioplasty is a continual goal of interventional cardiology and radiology. Many technologies have been evaluated and many are still under investigation. The use of appropriately anatomically focused doses of ionizing radiation from intra-arterial sources is an effective strategy for inhibition of the smooth muscle cell proliferation which characterizes the restenotic milieu. Use of solid radioactive source is practiced in radiation oncology/interventional cardiology, while the use of unsealed radioactive sources (i.e., radiopharmaceuticals) has traditionally represented a partnership between nuclear medicine and interventional cardiology. This technology involves the use of radioactive liquid-filled balloons for radiation dose delivery to the vessel wall post angioplasty and has been referred to as intravascular radiation therapy (IVRT). In addition, stents coated with radioisotope agents have been evaluated, but the most effective approach has been the post-balloon angioplasty use of angioplasty balloons filled with beta-emitting radioactive liquid sources which was pioneered with the 188Re. Although this technology has worked very well in the coronary vessels, the introduction and current wide use of alternative nonradiation-based technologies with drug-eluting stents (DES) has overshadowed the use of radioisotopes for this application. However, the introduction of 188Re-liquid-filled balloons for restenosis therapy following angioplasty of the peripheral vessels represents a recent rejuvenation of this technology. This chapter reviews the basic concepts using radioactive liquid-filled balloons for arterial restenosis therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bonvini R, Baumgartner I, Do DD, et al. Late acute thrombotic occlusion after endovascular brachytherapy and stenting of femoropopliteal arteries. J Am Coll Cardiol. 2003;41:409–12.

    Article  PubMed  Google Scholar 

  • Cervinka P, St'ásek J, Costa MA, et al. The “edge effect” after implantation of beta-emitting (55Co) stents with high initial activity. Acta Medica (Hradec Kralove). 2004;47(1):37–42.

    Google Scholar 

  • Chakroborthy S, Unni PR, Banerjee S, et al. Potential 166Ho radiopharmaceuticals for intravascular radiation therapy (IVRT)-1: [166Ho] holmium labeled ethylene dicysteine. Bucl Med Biol. 2001;28(3):309–17.

    Article  Google Scholar 

  • Cheneau E, Wu Z, Leborgne L, Ajani AE, et al. Additional stenting promotes intimal proliferation and compromises the results of intravascular radiation therapy: an intravascular ultrasound study. Am Heart J. 2003;146(1):142–5.

    Article  PubMed  Google Scholar 

  • Das T, Banerjee S, Samuel G, et al. 188Re-ethylene dicysteine: a novel agent for possible use in endovascular radiation therapy. Nucl Med Commun. 2000;21(10):939–45.

    Article  PubMed  CAS  Google Scholar 

  • Das T, Banerjee S, Samuel G, et al. [186,188Re]-Rhenium ethylene dicysteine (Re-EC): preparation and evaluation for possible use in endovascular brachytherapy. Nucl Med Biol. 2001;27:189–97.

    Article  Google Scholar 

  • Dilcher C, Satler LF, Pichard AD. Intracoronary radiation therapy using a novel beta emitter for in-stent restenosis Tungsten WRIST. Cardiovasc Revasc Med. 2005;6(2):52–7.

    Article  PubMed  Google Scholar 

  • Dinkelborg LM, Tepe G, Noll B, et al. 186Re-labeled stents for prophylaxis of restenosis: first animal results. J Nucl Med. 2000;41(Suppl):7P.

    Google Scholar 

  • Eigler N, Whiting J, Chernomorsky A, et al. RADIANTTM liquid isotope intravascular radiation therapy system. In: Proceedings, second annual symposium on radiotherapy to reduce restenosis. Sponsored by Scripps Clinic and Research Foundation, La Jolla, January 16–17, 1998.

    Google Scholar 

  • Grise MA, Massullo V, Jani S, et al. Five-year clinical follow-up after intracoronary radiation. Circulation. 2002;105:2737–40.

    Article  PubMed  Google Scholar 

  • Hang CL, Fu M, Hsieh BT, et al. Intracoronary beta-irradiation with liquid rhenium-188 to prevent restenosis following pure balloon angioplasty: results from the TRIPPER-1 study. Chang Gung Med J. 2003a;26:98–106.

    PubMed  Google Scholar 

  • Hang CL, Fu M, Hsieh BT, et al. Intracoronary beta-irradiation with liquid rhenium-188: results of the Taiwan radiation in prevention of post-pure balloon angioplasty restenosis study. Chest. 2003b;124:1284–93.

    Article  PubMed  Google Scholar 

  • Hausleiter J, Li A, Knapp R, Eigler N, Whiting J. Low body exposure in cases of radioactive balloon leakage – a biodistribution and elimination study of rhenium-188 in pigs. J Amer Coll Cardiol. 1999;33(Suppl. A):4A.

    Google Scholar 

  • Hausleiter J, Li A, Makkar R, Berman D, et al. Leakage of a liquid 188Re-filled balloon system during intracoronary brachytherapy. A case report. Cardiovasc Radiat Med. 2001;2:7–10.

    Article  PubMed  Google Scholar 

  • Herlein C, Kovacs A, Wolf GK, et al. A novel balloon angioplasty catheter impregnated with beta-particle emitting radioisotopes for vascular brachytherapy to prevent restenosis. Eur Heart J. 2000;21:2056–62.

    Article  Google Scholar 

  • Hoher M, Wohrle J, Wohlfrom M, et al. Intracoronary beta-irradiation with rhenium-188-filled balloon catheter: a randomized trial in patients with de novo and restenotic lesions. Circulation. 2003;107:3022–7.

    Article  PubMed  Google Scholar 

  • Hong MK, Park SW, Moon DH, et al. Extra-stent vascular remodeling in in-stent restenosis after 188Re-MAG3 radiation therapy. Int J Cardiol. 2003a;92:187–91.

    Article  PubMed  Google Scholar 

  • Hong MK, Park SW, Moon DH, et al. Intravascular ultrasound analysis of nonstented adjacent segments in diffuse in-stent restenosis treated with radiation therapy with a rhenium-188-filled balloon. Cather Cardiovasc Interven. 2003b;58:428–33.

    Article  Google Scholar 

  • Kim KI, Bae J, Kang HJ, et al. Three-year clinical follow-up results of intracoronary radiation therapy using a rhenium-188 DTPA-filled balloon system. Circ J. 2004;68:532–7.

    Article  PubMed  Google Scholar 

  • Kim K, Bae J, Koo BK, et al. Long-term clinical outcomes of dissections after intracoronary beta-radiation with rhenium-188-diethylenetraimminepentaacetic acid-filled balloon system. Int J Cardiol. 2005;104:190–6.

    Article  PubMed  Google Scholar 

  • Kim JH, Shin JH, Song H-Y, et al. Liquid 188Re-filled balloon dilation for the treatment of refractory benign airway strictures: preliminary experience. J Vasc Radiol. 2008;19:406–11.

    Article  CAS  Google Scholar 

  • Knapp FF Jr, Guhlke S, Beets AL, et al. Rhenium-188 – attractive properties for intravascular brachytherapy for inhibition of coronary restenosis after PTCA. J Nucl Cardiol. 1997a;4:S-118.

    Google Scholar 

  • Knapp Jr FF, Guhlke S, Beets AL, et al. Intraarterial irradiation with rhenium-188 for inhibition of restenosis after PTCA – strategy and evaluation of species for rapid urinary excretion. J Nucl Med. 1997b;38:124P.

    Google Scholar 

  • Knapp Jr FF. Rhenium-188 – a generator-derived radioisotope for cancer therapy. Can Biother Radiopharm. 1998;13:337–49.

    Google Scholar 

  • Knapp FF Jr, Beets AL, Guhlke S, et al. Rhenium-188 liquid-filled balloons effectively inhibit restenosis in a swine coronary overstretch model – a simple new method bridging nuclear medicine and interventional cardiology. J Nucl Med. 1998b;39:48P.

    Google Scholar 

  • Knapp FF Jr, Beets AL, Mirzadeh S, Guhlke S. Use of a new tandem cation/anion exchange system with clinical-scale generators provides high specific volume solutions of technetium-99m and rhenium-188. In: Proceedings, international trends in radiopharmaceuticals for diagnosis and therapy, Lisbon, Portugal, March 30–April 3, 1998; 1998b.

    Google Scholar 

  • Knapp Jr FF, Guhlke S, Beets AL, et al. Endovascular beta irradiation for prevention of restenosis using solution radioisotopes: pharmacologic and dosimetric properties of rhenium-188 compounds. Cardiovasc Rad Med. 1999;1:86–97.

    Article  Google Scholar 

  • Knapp FF Jr, Spencer RH, Stabin M. Use of rhenium-188 liquid-filled balloons for inhibition of coronary restenosis after PTCA – a new opportunity for nuclear medicine. In: Radionuclides for myocardium - current status and future aspects. Mediterra-Publishers, Athens, Greece; 1999b. p. 61–72 (ISBN 960-85227-9-X).

    Google Scholar 

  • Knapp Jr FF, Spencer R, Kropp J. Intravascular radiation therapy with radioactive liquid-filled balloons for inhibition of restenosis after angioplasty – a new opportunity for nuclear medicine. J Nucl Med. 2001;42:1384–7.

    PubMed  CAS  Google Scholar 

  • Kotzerke J, Gabelmann J, Hanke H. Recurrent renal artery stenosis – endovascular brachytherapy with a rhenium-188 filled balloon catheter. Rofo Fortschr Geg Rontgentr Neuen Bildgeb Verfahr. 2002;174:1176–178 (German).

    Google Scholar 

  • Krötz F, Schiele TM, Zahler S, et al. Sustained platelet activation following intracoronary beta irradiation. Am J Cardiol. 2002;90:1381–4.

    Article  PubMed  Google Scholar 

  • Leissner GG, Wengenmair H, Sciuk J, et al. Endovascular brachytherapy (EVBT) with Rhenium-188 for restenosis prophylaxis after angioplasty of infrainguinal lesions: early experience. Rofo. 2011;183(8):735–42 (in German).

    Article  PubMed  CAS  Google Scholar 

  • Lewis DM, Dollimore LA, Powell N, et al. Apparatus and methods for radiotherapy. US Patent 7011619; 2006.

    Google Scholar 

  • Liermann D, Bottcher HD, Kollath J, et al. Prophylactic endovascular radiotherapy to prevent intimal hyperplasia after stent implantation in femoropopliteal arteries. Cardiovasc Intervent Radiol. 1994;17:12–6.

    Article  PubMed  CAS  Google Scholar 

  • Lin WY, Tsai SC, Hsieh BT, et al. Evaluation of three rhenium-188 candidates for intravascular radiation therapy with liquid-filled balloons to prevent restenosis. J Nucl Cardiol. 2000a;7(1):37–42.

    Article  PubMed  CAS  Google Scholar 

  • Lin WY, Hsieh JF, Tsai SC, et al. A comprehensive study of thyroid and gastric uptake of 188Re-perrhenate in endovascular irradiation using liquid-filled balloons to prevent restenosis. Nucl Med Biol. 2000b;27:83–7.

    Article  PubMed  CAS  Google Scholar 

  • McGoron AJ, Kassing WM, Thomas SR, et al. Intravascular irradiation using Re-186 liquid-filled balloon catheters: correlation between experimental and theoretical studies. Cardiovasc Radiat Med. 1999;1(4):368–75.

    Article  PubMed  CAS  Google Scholar 

  • Moura A, Yamada A, Hauer D, et al. Samarium-153 for intravascular irradiation therapy with liquid-filled balloons to prevent restenosis: acute and long term results in hypercholesterolemic rabbit restenosis model. Cardiovasc Radiat Med. 2001;2(2):69–74.

    Article  PubMed  CAS  Google Scholar 

  • Nowak B, Meyer JMA, Goergen T, et al. Dosimetry of a 188Rhenium-labeled self-expanding stent for endovascular brachytherapy in peripheral arteries. Cardiovasc Rad Med. 2001;2:246–53.

    Article  CAS  Google Scholar 

  • Pokrajac B, Kirisits C, Schmid R, et al. Beta endovascular brachytherapy using CO2-filled centering catheter for treatment of recurrent superficial femoropopliteal artery disease. Cardiovasc Revasc Med. 2009;10(3):162–5.

    Article  PubMed  Google Scholar 

  • Reynen K, Kockeritz U, Kropp J, et al. Intracoronary radiotherapy with a Re-188 liquid-filled PTCA balloon system in in-stent restenosis: acute and long-term angiographic results, as well as 1-year clinical follow-up. Int J Cardiol. 2004;95:29–34.

    Article  PubMed  Google Scholar 

  • Reynen K, Kropp J, Koeckerits U, et al. Intracoronary radiotherapy with a 188Rhenium liquid-filled angioplasty balloon system in In-stent restenosis: a single-center, prospective, randomized, placebo-controlled, double-blind evaluation. Coron Artery Dis. 2006;17:371–7.

    Article  PubMed  Google Scholar 

  • Schaart DR, Bos AJ, Winkelman AJ, Clarijs MC. The radial depth-dose distribution of a 188W/188Re beta line source measured with novel, ultra-thin TLDs in a PMMA phantom: comparison with Monte Carlo simulations. Phys Med Biol. 2002;47:3605–27.

    Article  PubMed  CAS  Google Scholar 

  • Schopohl B, Liermann D, Jülling L, et al. Ir-192 endovascular brachytherapy for avoidance of intimal hyperplasia after percutaneous transluminal angioplasty and stent implantation in peripheral vessels: 6 years of experience. Int J Radiation Oncology Biol Phys. 1996;36:835–40.

    Article  CAS  Google Scholar 

  • Stabin MG, Konijnenberg M, Knapp Jr FF, Spencer RH. Monte Carlo modeling of radiation dose distributions in intravascular radiation therapy. Med Phys. 2000;27:1088–92.

    Article  Google Scholar 

  • Stoll H-P, Hutchins GD, Winkle WL, Nguyen AT, Hou D, Appledorn CR, Romeike B, March KL. Liquid-filled balloon brachytherapy with 68Ga is effective and safe because of the short 60-minute half-life. Circulation. 2001a;103:1793–8.

    Article  PubMed  CAS  Google Scholar 

  • Stoll HP, Hutchins GD, Winkle WL, et al. Advantages of short-lived positron-emitting radioisotopes for intracoronary radiation therapy with liquid-filled balloons to prevent restenosis. J Nucl Med. 2001b;42(9):1375–82.

    PubMed  CAS  Google Scholar 

  • Waksman R, Bhargava B, Saucedo JF, et al. Yttrium-90 delivered via a centering catheter and afterloader, given both before and after stent implantation, inhibits neointima formation in porcine coronary arteries. Cardiovasc Radiat Med. 2000;2(1):11–7.

    Article  PubMed  CAS  Google Scholar 

  • Waksman R, Ajani AE, White RL, et al. Two-year follow-up after beta and gamma intracoronary radiation therapy for patients with diffuse in-stent restenosis. Am J Cardiol. 2001;88:425–8.

    Article  PubMed  CAS  Google Scholar 

  • Waksman R, McEwan PE, Moore TI, et al. PhotoPoint photodynamic therapy promotes stabilization of atherosclerotic plaques and inhibits plaque progression. J Am Coll Cardiol. 2008;52(12):1024–32.

    Article  PubMed  CAS  Google Scholar 

  • Walichiewicz S, Petelenz B, Wilczek K, et al. 32P liquid sources – comparison of the effectiveness of postangioplasty versus poststenting intravascular brachytherapy in hypercholesterolemic rabbits. Adjunctly implanted titanium stent does not attenuate the effect of endovascular irradiation. Cardiovasc Radiat Med. 2003;4(2):64–8.

    Article  PubMed  Google Scholar 

  • Walichiewicz S, Wilczek K, Petelenz B, et al. Post-dilation intravascular brachytherapy trials on hypercholesterolemic rabbits using 32P-phosphate solution in angioplasty balloons. Cardiovasc Intervent Radiol. 2004;27(1):42–50.

    Article  PubMed  Google Scholar 

  • Weinberger J, Knapp Jr FF. Use of liquid-filled balloons for coronary irradiation, Chapter 45. In: Waksman R, editor. Vascular brachytherapy. 2nd ed. Armonk: Futura Publishing Co., Inc.; 1999. p. 521–35. ISBN 0-87993-4131.

    Google Scholar 

  • Weinberger J, Knapp Jr FF. Use of liquid-filled balloons for coronary irradiation. In: Waksman R, editor. Vascular brachytherapy. 3rd ed. Armonk: Futura Publishing Co., Inc.; 2002. p. 753–90.

    Google Scholar 

  • Weinberger J, Giedd KN, Simon AD, et al. Radioactive beta-emitting solution-filled balloon treatment prevents porcine coronary restenosis. Cardiovasc Rad Med. 1999;1:252–6.

    Article  CAS  Google Scholar 

  • Wilczek K, Walichiewicz S, Petelenz B, et al. Post-stenting intravascular brachytherapy trials on hypercholesterolemic rabbits using 32P liquid sources: implications for prevention of in-stent restenosis. Cardiovasc Intervent Radiol. 2002;25(4):307–13.

    Article  PubMed  Google Scholar 

  • Wohlgemuth WA, Leissner G, Wegenmair H, et al. Endovascular brachytherapy in the femoropopliteal segment using 192Ir and 188Re. Cardiovasc Intervent Radiol. 2008;31:698–708.

    Article  PubMed  Google Scholar 

  • Wohlgemuth WA, Leissner G, Wengenmair H, et al. Endovascular brachytherapy with (192)Ir and (188)Re to treat de novo and recurrent infrainguinal restenoses. J Cardiovasc Surg (Torino). 2010;51(4):573–8.

    CAS  Google Scholar 

  • Wuu CA, Schiff PB, Marylanski M, et al. 3D Dosimetry study of 188Re liquid balloon for intravascular brachytherapy using bang polymer gel dosimeters. Radiat Prot Dosimetry. 2002;99:397–400.

    Article  PubMed  CAS  Google Scholar 

  • Wuu CS, Schiff P, Maryanski MJ, et al. Dosimetry study of Re-188 liquid-filled balloon for intravascular brachytherapy using polymer gel dosimeters and laser-beam optical CT scanner. Med Phys. 2003;30:132–7.

    Article  PubMed  CAS  Google Scholar 

  • Zamora PO, Osaki S, Som P, et al. Radiolabeling brachytherapy sources with Re-188 through chelating microfilms: stents. J Biomed Mater Res. 2000;53(3):244–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Knapp, F.F.(., Dash, A. (2016). Inhibition of Arterial Restenosis Following Balloon Angioplasty. In: Radiopharmaceuticals for Therapy . Springer, New Delhi. https://doi.org/10.1007/978-81-322-2607-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2607-9_15

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2606-2

  • Online ISBN: 978-81-322-2607-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics