Therapeutic Radiopharmaceuticals for Bone Pain Palliation

  • F. F. (Russ) Knapp
  • Ashutosh Dash


Primary tumors often metastasize when tumor cells migrate via the blood supply or lymphatics to seed other sites for tumor progression. Particularly in prostate, breast, and lung cancer, metastases to the skeleton are often encountered in later stages of the disease process. Although bone metastases are often encountered in end-stage disease, multi-year survival is not uncommon, and palliation of the pain usually associated with the skeletal metastases can greatly improve quality of life and movement. A variety of palliative strategies are available, and depending on the anatomical location and number of metastases and other personalized factors, the use of therapeutic radioisotopes is particularly appealing since these agents for treatment of multi-foci are easy to administer, often on an outpatient basis, and provide palliation which last several months and can be repeated. This chapter discusses the development and use of radiolabeled palliative agents used in nuclear medicine practice.


Bone Metastasis Phosphonic Acid Skeletal Metastasis Bone Uptake CRPC Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen BJ, Raja C, Rizvi S, et al. Targeted alpha therapy for cancer. Phys Med Biol. 2004;49:3703–12.PubMedCrossRefGoogle Scholar
  2. Alyafei S, Tomiyoshi K, Sarwar M, et al. Biodistribution studies of 186Re complexes of 3-amino-1-hydroxypropyliene-1,1-bisphosphonic acid in mice. Nucl Med Commun. 1999;20:551–7.PubMedCrossRefGoogle Scholar
  3. Ando A, Ando I, Tonami N, et al. 177Lu-EDTMP: a potential therapeutic bone agent. Nucl Med Commun. 1998;19(6):587–91.PubMedCrossRefGoogle Scholar
  4. Arteaga de Murphy C, Ferro-Flores G, Pedraza-Lopez M, et al. Labelling of Re-ABP with 188Re for bone pain palliation. Appl Raiat Isot. 2001;54:435–42.CrossRefGoogle Scholar
  5. Atkins HL, Mausner LF, Srivastava SC, et al. Biodistribution of Sn-117m(4+)DTPA for palliative therapy of painful osseous metastases. Radiology. 1993;186:279–83.PubMedCrossRefGoogle Scholar
  6. Atkins HL, Mausner LF, Srivastava SC, et al. Tin-117m(4+)-DTPA for palliation of pain from osseous metastases: a pilot study. J Nucl Med. 1995;36:725–9.PubMedGoogle Scholar
  7. Autio KA, Pandit-Taskar N, Carrasquillo JA, et al. Repetitively dosed docetaxel and 153samarium-EDTMP as an antitumor strategy for metastatic castration-resistant prostate cancer. Cancer. 2013;119(17):3186–94.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baker GR, Levin J. Transient thrombocytopenia produced by administration of macrophage colony-stimulating factor: investigations of the mechanism. Blood. 1998;91:89–99.PubMedGoogle Scholar
  9. Banerjee S, Pillai MRA, Knapp Jr FF. Lutetium-177 therapeutic radiopharmaceuticals – linking chemistry, radiochemistry and practical applications. Chem Rev. 2015;115:2934–74.PubMedCrossRefGoogle Scholar
  10. Bauman G, Charette M, Reid R, Sathya J. Radiopharmaceuticals for the palliation of painful bone metastasis-a systemic review. Radiother Oncol. 2005;75(3):258–70.PubMedCrossRefGoogle Scholar
  11. Bellmunt J. Tackling the bone with alpha emitters in metastatic castration- resistant prostate cancer patients. Eur Urol. 2013;63(2):198–200.PubMedCrossRefGoogle Scholar
  12. Biersack HJ, Palmedo H, Andris A, et al. Repeated Re-188 HEDP therapy of hormone refractory bone metastases in prostate cancer. J Nucl Med. 2011;52:1721–6.PubMedCrossRefGoogle Scholar
  13. Bisunadan MM, Blower PJ, Clarke SEM, et al. Synthesis and characterization of [186]Rhenium(V)dimercaptosuccinic acid: a possible tumour radiotherapy agent. Appl Radiat Isot. 1991;42:167–71.CrossRefGoogle Scholar
  14. Blower PJ, Prakash S. The chemistry of rhenium in nuclear medicine. In: Perspectives on bioinorganic chemistry. Connecticut: JAI Press, Inc; 1999. p. 91–143.Google Scholar
  15. Blower PJ, Lam ASK, O’Doherty MJ, et al. Biodistribution and dosimetry of pentavlaent Rhenium-188-dimercaptosuccinic acid in patients with disseminated bone metastasis. Eur J Nucl Med. 1998;25:613–21.PubMedCrossRefGoogle Scholar
  16. Blower PJ, Kettle AG, O’Doherty MJO. 99mTc(V)DMSA quantitatively predicts 188Re(V)DMSA distribution in patients with prostate cancer metastatic to bone. Eur J Nucl Med. 2000a;27:1405–9.CrossRefGoogle Scholar
  17. Blower PJ, Kettle AG, O’Doherty MJ, et al. 99mTc(V)DMSA quantitatively predicts 188Re(V)DMSA distribution. In: 28th annual meeting, British Nuclear Medicine Society, Brighton, 10–12 Apr 2000b.Google Scholar
  18. Blower PJ, Kettle AG, O’Doherty MJ, Knapp Jr FF. Quantitative prediction of 188Re(V)DMSA distribution from 99mTc(V)DMSA scans for targeted radiotherapy planning. J Nucl Med. 2000c;41(Suppl):274P.Google Scholar
  19. Bordoloi JK, Berry D, Khan IU, et al. Technetium-99m and rhenium-188 complexes with one and two pendant bisphosphonate groups for imaging arterial calcification. Dalton Trans. 2015;44(11):4963–75.PubMedCrossRefGoogle Scholar
  20. Bouchet LG, Bolch WE, Goddu SM, et al. Considerations in the selection of radiopharmaceuticals for palliation. J Nucl Med. 2000;41(4):682–7.PubMedGoogle Scholar
  21. Brady D, Parker CC, O'Sullivan JM. Bone-targeting radiopharmaceuticals including radium-223. Cancer J. 2013;19(1):71–8.PubMedCrossRefGoogle Scholar
  22. Bruland OS, Skretting A, Solheim OP, Aas M. Targeted radiotherapy of osteosarcoma using 153Sm-EDTMP. A new promising approach. Acta Oncol. 1996;35:381–4.PubMedCrossRefGoogle Scholar
  23. Bruland Ø, Nilsson S, Fisher DR, Larson RH. High-linear energy transfer irradiation targeted to skeletal metastases by the α-emitter 223Ra: adjuvant or alternative to conventional modalities? Clin Cancer Res. 2006;12(20 Suppl):6250s–7.PubMedCrossRefGoogle Scholar
  24. Bruland OS, Jonasdottir TJ, Fisher DR, Larsen RH. Radium-223: from radiochemical development to clinical applications in targeted cancer therapy. Curr Radiopharm. 2008;1:103–208.CrossRefGoogle Scholar
  25. Chopra A. 177Lu-labeled methylene diphosphonate. Molecular imaging and contrast agent database (MICAD) [internet]. Bethesda: National Center for Biotechnology Information (US); 2011. p. 2004–13.Google Scholar
  26. D’angelo G, Sciuto R, Salvatori M, et al. Targeted “bone-seeking” radiopharmaceuticals for palliative treatment of bone metastases: a systematic review and meta-analysis. Q J Nucl Med Mol Imaging. 2012;56(6):538–43.PubMedGoogle Scholar
  27. Das T, Chakraborthy S, Sarma HD, et al. 170Tm-EDTMP: a potential cost-effective alternative to 89SrCl2 for bone pain palliation. Nucl Med Biol. 2009;36:561–8.PubMedCrossRefGoogle Scholar
  28. Dash A, Knapp Jr FF. An overview of radioisotope separation technologies for development of 188W/188Re radionuclide generators providing 188Re to meet future research and clinical demands. RSC Adv. 2015;5:39012–3903.CrossRefGoogle Scholar
  29. Dash A, Pillai MRA, Knapp FF. Production of 177Lu for targeted radionuclide therapy: available options. Nucl Med Mol Imaging. 2015;49:85–107.PubMedCrossRefGoogle Scholar
  30. Davis J, Cook ND, Pither RJ. Biologic mechanisms of 89SrCl2 incorporation into type I collagen during bone mineralization. J Nucl Med. 2000;41:183–8.PubMedGoogle Scholar
  31. De Klerk JM, van het Schip AD, Zonnenberg BA, et al. Phase 1 study of Rhenium-186-HEDP in patients with bone metastases originating from breast cancer. J Nucl Med. 1996;37:244–9.PubMedGoogle Scholar
  32. De Rosales RTM, Finucane C, Foster J, et al. 188Re(CO)-dipicolylamine-alendronate: a new bisphosphonate conjugate for the radiotherapy of bone metastases. Bioconj Chem. 2010;21:811–5.CrossRefGoogle Scholar
  33. Den RB, Doyle LA, Knudsen KE. Practical guide to the use of radium 223 dichloride. Can J Urol. 2014;21(2 Suppl 1):70–6.PubMedGoogle Scholar
  34. Eisenhut M. Iodine-131-labeled diphosphonates for the palliative treatment of bone metastases: I. Organ distribution and kinetics of I-131 BDP3 in rats. J Nucl Med. 1984;25(12):1356–61.PubMedGoogle Scholar
  35. Eisenhut M, Beberich R, Kimming B, et al. Iodine-131-labeled diphosphonates for the palliative treatment of bone metastases: II. Preliminary clinical results with iodine-131 BDP3. J Nucl Med. 1986a;27(8):1255–61.PubMedGoogle Scholar
  36. Eisenhut M, Fritz P, Kimmig B, et al. Iodine-131-labeled diphosphonates for the palliative treatment of bone metastases: III. Considerations of interaction. Binding and adsorbed dose. Int J Rad Appl Instrum A. 1986b;37(8):741–7.PubMedCrossRefGoogle Scholar
  37. Eisenhut M, Barber J, Taylor DM. Iodine-131-labeled diphosphonates for the palliative treatment of bone metastases: IV. Syntheses of benzylidenephosphonates and their distribution in rats. Int J Rad App Instrumen A. 1987;38(7):535–40.CrossRefGoogle Scholar
  38. Elder RC, Yuan J, Helmer B, et al. Studies of the structure and composition of rhenium-1,1-hydroxyethylidenediphosphonate (HEDP) analogues of the radiotherapeutic agent (186)ReHEDP. Inorg Chem. 1997;36(14):3055–63.PubMedCrossRefGoogle Scholar
  39. Ermolaev SV, Zhuikov BL, Kokhanyuk VM, et al. Production yields of 117mSn from natural antimony target in proton energy range 145–35 MeV. J Label Compd Radiopharm. 2007;50:611–2.CrossRefGoogle Scholar
  40. Ermolaev SV, Zhuikov BL, Kokhanyuk AA. Production of no-carrier added tin-117m from proton irradiated antimony. J Radioanal Nucl Chem. 2009;280:319–24.CrossRefGoogle Scholar
  41. Fellner M, Baum R, Kubicek V, et al. 177Lu-BPAMD – from bone imaging to therapy with a macrocycle-bisphosphonate ligand. J Nucl Med. 2010;51 Suppl 2:1164.Google Scholar
  42. Fettich J, Nair G, Padhy AK, et al. Phosphorus-32 for bone pain palliation due to bone metastases, its safety and efficacy in patients with advanced cancer. Vienna: IAEA-TECDOC-1228; 2001. p. 193–8.Google Scholar
  43. Fettich J, Padhy A, Nair N, et al. Comparative clinical efficacy and safety of phosphorus-32 and strontium-89 in the palliative treatment of metastatic bone pain: results of an IAEA coordinated research project. World J Nucl Med. 2003;2:226–31.Google Scholar
  44. Finlay IG, Mason MD, Shelley M. Radioisotopes for palliation of metastatic bone cancer: a systematic review. Lancet Oncol. 2005;6:392–400.PubMedCrossRefGoogle Scholar
  45. Fukushima S, Hayashi S, Kume S, et al. The production of high specific activities of Tin. Bull Chem Soc Jpn. 1963;36(10):1225–8.CrossRefGoogle Scholar
  46. Fuster D, Herranz R, Vidal-Sicart S, et al. Usefulness of strontium-89 for bone pain palliation in metastatic breast cancer patients. Nucl Med Commun. 2000;21:623–62.PubMedCrossRefGoogle Scholar
  47. Gough N, Miah AB, Linch M. Nonsurgical oncological management of cancer pain. Curr Opin Support Palliat Care. 2014;8(2):102–11.PubMedCrossRefGoogle Scholar
  48. Guhlke S, Scheithauer S, Oetjen K, et al. 188Re(V)-DMSA: in-vitro and in-vivo studies on the individual stereo isomers. Radiochim Acta. 2009;92:277–83.CrossRefGoogle Scholar
  49. Harrison MR, Wong TZ, Armstrong AJ, George DJ. Radium-223 chloride: a potential new treatment for castration-resistant prostate cancer patients with metastatic bone disease. Cancer Manag Res. 2013;5:1–14.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hassfjell SP, Bruland ØS, Hoff P. 212Bi-DOTMP–an α particle emitting bone seeking agent for targeted radiotherapy. Nucl Med Biol. 1997;24:231–7.PubMedCrossRefGoogle Scholar
  51. Henriksen G, Fisher DR, Roeske JC, et al. Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice. J Nucl Med. 2003;44:252–9.PubMedGoogle Scholar
  52. Henriksen G, Bruland OS, Larsen RH. Thorium and actinium polyphosphonate compounds as bone-seeking alpha particle-emitting agents. Anticancer Res. 2004;24(1):101–5.PubMedGoogle Scholar
  53. Hoskin P, Sartor O, O'Sullivan JM, et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: a pre-specified subgroup analysis from the randomized, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol. 2014;15(12):1397–406.PubMedCrossRefGoogle Scholar
  54. Howell RW, Goddu SM, Narra VR, et al. Radiotoxicity of gadolinium-148 and radium-223 in mouse testes: relative biological effectiveness of alpha-particle emitters in vivo. Radiat Res. 1997;147:342–8.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hsieh B-T, Callahan AP, Beets AL, et al. Ascorbic acid/saline eluant increases 188Re yields after “wet” storage of 188W/188Re generators. Appl Radiat Isot. 1996;47:23–6.CrossRefGoogle Scholar
  56. Jadvar H, Quinn DI. Targeted alpha-particle therapy of bone metastases in prostate cancer. Clin Nucl Med. 2013;38:966–71.PubMedGoogle Scholar
  57. Jansen DR, Krijger GC, Kolar ZI, et al. Targeted radiotherapy of bone malignancies. Curr Drug Discov Technol. 2010;7(4):233–46.PubMedCrossRefGoogle Scholar
  58. Jeong JM, Chung JK. Update: therapy with 188Re-labeled radiopharmaceuticals: an overview of promising results from initial clinical studies. Can Biother Radiopharm. 2003;18:707–18.CrossRefGoogle Scholar
  59. Kasalický J, Kraská V. The effect of repeated strontium-89 chloride therapy in bone pain palliation in patients with skeletal cancer metastases. Eur J Nucl Med. 1998;25:1362–7.PubMedCrossRefGoogle Scholar
  60. Knapp Jr FF. Rhenium-188 – a generator-derived radioisotope for cancer therapy. Cancer Biother Radiopharm. 1998;13:337–49.PubMedCrossRefGoogle Scholar
  61. Knapp Jr FF. Baum RP. Radionuclide generators – a new renaissance in the development of technologies to provide diagnostic and therapeutic radioisotopes for clinical applications. Curr Radiopharm. 2012;5(3):175–7.Google Scholar
  62. Knapp Jr FF, Callahan AP, Beets AL, et al. Processing of reactor-produced 188W for fabrication of clinical scale alumina-based 188W/188Re generators. Appl Radiat Isot. 1994;45:1123–8.CrossRefGoogle Scholar
  63. Knapp Jr FF, Beets AL, Guhlke S, et al. Availability of rhenium-188 from the alumina-based Tungsten-188/rhenium-188 generator for preparation of rhenium-188-labeled radiopharmaceuticals for cancer treatment. Anticancer Res. 1997;17:1783–95.PubMedGoogle Scholar
  64. Knapp FF, Mirzadeh S, Beets AL, et al. Reactor-produced radioisotopes from ORNL for bone pain palliation. Appl Radiat Isot. 1998;49(4):309–15.PubMedCrossRefGoogle Scholar
  65. Knapp Jr FF, Mirzadeh S, Beets AL. Tungsten-188/rhenium-188 generators using tungsten-188 reactor-produced from irradiation of natural tungsten targets. J Nucl Med. 2000;41(Suppl):149.Google Scholar
  66. Knapp Jr FF, Turner JH, Padhy AK. Issues associated with the use of the Tungsten-188/Rhenium-188 generator and concentrator system and preparation of Re-188 HDD: A report. World J Nucl Med. 2004;3:137–43.Google Scholar
  67. Kyu KD, Abramov AA, Volkova SV, et al. Extraction of Tin-117m from an antimonic target irradiated by protons. Theor Found Chem Eng. 2010;44:600–3.CrossRefGoogle Scholar
  68. Lam AS, Kettle AG, O’Doherty MJ, et al. Pentavalent 99mTc-DMSA imaging in patients with bone metastases. Nucl Med Commun. 1997;18:907–14.PubMedCrossRefGoogle Scholar
  69. Lam MGEH, de Klerk JMH, van Rijk PP. 186Re-HEDP for metastatic bone pain in breast cancer patients. In: Bombardieri E, Gianni L, Bonadonna G, editors. Breast cancer. Berlin/Heidelberg: Springer; 2008. p. 257–70.Google Scholar
  70. Lambert B, de Klerk JM. Clinical applications of 188Re-labelled radiopharmaceuticals for radionuclide therapy. Nucl Med Commun. 2006;27(3):223–9.PubMedCrossRefGoogle Scholar
  71. Lange R, de Klerk JM, Bloemendal HJ, et al. Drug composition matters: the influence of carrier concentration on the radiochemical purity, hydroxyapatite affinity and in-vivo bone accumulation of the therapeutic radiopharmaceutical (188) Rhenium-HEDP. Nucl Med Biol. 2015;42(5):465–9.PubMedCrossRefGoogle Scholar
  72. Lewington VJ. Targeted radionuclide therapy for bone metastases. Eur J Nucl Med. 1993;20(1):66–74.PubMedCrossRefGoogle Scholar
  73. Lewington VJ. Bone-seeking radionuclides for therapy. J Nucl Med. 2005;46 Suppl 1:38S–47.PubMedGoogle Scholar
  74. Lewington VJ, McEwan AJ, Ackery DM, et al. A prospective, randomized double-blind crossover study to examine the efficacy of strontium-89 in pain palliation in patients with advanced prostate cancer metastatic to bone. Eur J Cancer. 1991;27:954–8.PubMedCrossRefGoogle Scholar
  75. Li Y, Russell PJ, Allen BJ. Targeted alpha-therapy for control of micrometastatic prostate cancer. Expert Rev Anticancer Ther. 2004;4:459–68.PubMedCrossRefGoogle Scholar
  76. Liepe K, Kropp J, Knapp Jr FF, et al. Rhenium-188 in comparison to rhenium-186 and strontium-89 in the treatment of bone metastases. Eur J Nucl Med. 1998;25:861.Google Scholar
  77. Liepe K, Hiliscs R, Runge R, et al. Dose calculation and clinical efficacy of rhenium-188-HEDP in bone metastases, European Association of Nuclear Medicine Congress, Barcelona, Spain, Oct. 9–13, 1999. Eur J Nucl Med. 1999a;26:1052.Google Scholar
  78. Liepe K, Kropp J, Knapp Jr FF, et al. Kinetics and therapeutic effect of rhenium-188 in palliative treatment of metastatic bone pain, annual meeting, Society of Nuclear Medicine, Los Angeles, CA, June 6–10, 1999. J Nucl Med. 1999b;40:219P.Google Scholar
  79. Liepe K, Hilscs R, Kropp J, et al. Rhenium-188-HEDP for the palliative therapy of osseous metastases. In: German Nuclear Medicine meeting, Ulm, April 1999c (German).Google Scholar
  80. Liepe K, Hliscs R, Kropp J, et al. Rhenium-188-HEDP in the palliative treatment of bone metastases. Cancer Biother Radiopharm. 2000a;15(3):261–5.PubMedCrossRefGoogle Scholar
  81. Liepe K, Franke WG, Kropp J, et al. Comparison of Rhenium-188 and Strontium-89 in palliation of painful bone metastases. Nuklearmedizin. 2000b;39:146–51 (German).PubMedGoogle Scholar
  82. Liepe JK, Kropp J, Hlisc R, et al. Radiation dose of 188Re in bone metastases. J Nucl Med. 2000c;41(Suppl):266.Google Scholar
  83. Liepe K, Hliscs R, Kropp J, et al. Radiation adsorbed dose pf Rhenium-188-HEDP in bone metastases, bone marrow and bone surface. In: EANM Congress, Naples, 24–29 Aug 2001.Google Scholar
  84. Liepe K, Hliscs R, Runge R, Kropp J. Which is the favorable time for the post-therapeutic scan in dosimetry after 188Re HEDP application. J Nucl Med. 2002;43:358P.Google Scholar
  85. Liepe K, Hliscs R, Kropp J, et al. Dosimetry of 188Re-hydroxyethylidene diphosphonate in human prostate cancer skeletal metastases. J Nucl Med. 2003a;44(6):953–60.PubMedGoogle Scholar
  86. Liepe K, Kropp J, Runge R, et al. Therapeutic efficiency of rhenium-188-HEDP in human prostate cancer skeletal metastases. Br J Cancer. 2003b;18:625–9.CrossRefGoogle Scholar
  87. Liepe K, Kropp J, Runge R, et al. Therapeutic efficacy of rhenium-188-HEDP in human prostate cancer skeletal metastases. Br J Cancer. 2003c;89:625–9.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Liepe K, Kropp J, Hliscs R, et al. Radiation dosimetry of Rhenium-188-HEDP in human prostate cancer skeletal metastases. J Nucl Med. 2003d;44:953–60.PubMedGoogle Scholar
  89. Liepe K, Kropp J, Hliscs R, et al. Rhenium-188 HEDP dosimetry in bone pain induced by prostate cancer. In: Proceedings of the 11th mediterranean symposium on nuclear medicine and radiopharmaceuticals, Athens, Greece, 28–30 May. Athens: Mediterrea Pub.; 2003e. p. 69–82. ISBN 960-86437-2-4.Google Scholar
  90. Liepe K, Runge R, Kotzerke J. Systemic radionuclide therapy of pain palliation. Am J Hosp Palliat Care. 2005a;22:457–64.PubMedCrossRefGoogle Scholar
  91. Liepe K, Runge R, Kotzerke J. The benefit of bone-seeking radiopharmaceuticals in the treatment of metastatic bone pain. J Can Res Clin Oncol. 2005b;131:60–6.CrossRefGoogle Scholar
  92. Liepe K, Geidel HH, Bergmann R, et al. Autoradiographic studies of Rhenium-188-hydroxyethylidene diphosphonate and osteoblastic bone metastases in a Rat model of metastatic prostate cancer. Nucl Med Commun. 2009;30:693–9.PubMedCrossRefGoogle Scholar
  93. Lin WY, Lin CP, Yeh SJ, et al. Rhenium-188 hydroxyethylidene diphosphonate: a new generator-produced radiotherapeutic drug of potential value for the treatment of bone metastases. Eur J Nucl Med. 1997;24(6):590–5.PubMedGoogle Scholar
  94. Majkowska A, Neves M, Antunes I, Bilewicz A. Complexes of low energy beta emitters 47Sc and 177Lu with zoledronic acid for bone pain therapy. Appl Radiat Isotopes. 2009;67:11–3.CrossRefGoogle Scholar
  95. Mantyh PW. Bone cancer pain: from mechanism to therapy. Curr Opin Support Palliat Care. 2014;8(2):83–90.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Marques F, Gano L, Paula Campello M, et al. 13- and 14-membered macrocyclic ligands containing methylcarboxyate or methylphosphonate pendate arms: chemical and biological evaluation of their 153Sm and 166Ho complexes as potential agents for therapy or bone pain palliation. J Inorg Biochem. 2006;100:270–80.PubMedCrossRefGoogle Scholar
  97. Maslov BD, Ya G, Starodub GY, et al. Production of 117mSn with high specific activity by cyclotron. Appl Radiat Isot. 2011;69:965–8.PubMedCrossRefGoogle Scholar
  98. Mathew B, Chakraborty S, Das T, Sarma HD, Banerjee S, Samuel G, Venkatesh M, Pillai MR. 175Yb labeled polyaminophosphonates as potential agents for bone pain palliation. Appl Radiat Isot. 2004;60:635–42.PubMedCrossRefGoogle Scholar
  99. Mausner LF, Mirzadeh S, Srivastava SC. Improved specific activity of reactor produced 117mSn with the Szilard-Chalmers process. Int J Radiat Appl Instrum Appl Radiat Isot. 1992;43:1117–22.CrossRefGoogle Scholar
  100. Maxon III HR, Schroder LE, Hertzberg VS, et al. Rhenium-186(Sn)HEDP for treatment of painful osseous metastases: results of a double-blind crossover comparison with placebo. J Nucl Med. 1991;32:1877–81.PubMedGoogle Scholar
  101. Maxon HR, Schroder LE, Washburn LC, et al. Rhenium-188 (Sn)HEDP for treatment of osseous metastases. J Nucl Med. 1998;39:659.PubMedGoogle Scholar
  102. McGann S, Horton ER. Radium-223 dichloride: a novel treatment option for castration-resistant prostate cancer patients with symptomatic bone metastases. Ann Pharmacother. 2015;49(4):469–76.PubMedCrossRefGoogle Scholar
  103. Mirzadeh S. Generator-produced alpha-emitters. Appl Radiat Isot. 1998;49:345–9.CrossRefGoogle Scholar
  104. Mirzadeh S, Knapp Jr FF, Alexander CW, Mausner LF. Evaluation of neutron inelastic scattering for radioisotope production. Appl Radiat Isot. 1997;48:441–6.CrossRefGoogle Scholar
  105. Mirzadeh S, Mausner LF, Garland MA. Reactor-produced medical radionuclides. In: Vértes A, Nagy S, Klencsár Z, Lovas RG, Rösch F, editors. Handbook of nuclear chemistry. Dordrecht, USA: Springer Science Business Media B.V.; 2011. p. 1857–902.CrossRefGoogle Scholar
  106. Mitterhauser M, Togel S, Wadsak W, et al. Binding studies of [(18)F]-fluoride and polyphosphonates radiolabeled with [(111)In], [(153)Sm], and [(188)Re] on bone compartments: a new model for the pre in vivo evaluation of bone seekers. Bone. 2004a;34:835–44.PubMedCrossRefGoogle Scholar
  107. Mitterhauser M, Wadsak W, Eidherr H, et al. Labeling of EDTMP (multibone®) with [111In], [99mTc], and [188Re] using different carriers for “cross complexation. Appl Radiat Isot. 2004b;60:653–8.PubMedCrossRefGoogle Scholar
  108. Morris MJ, Scher HI. Clinical approaches to osseous metastases in prostate cancer. Oncologist. 2003;8(2):161–73.PubMedCrossRefGoogle Scholar
  109. Nilsson S, Larsen RH, Fosså SD, et al. First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res. 2005;11(12):4451–9.PubMedCrossRefGoogle Scholar
  110. Nilsson S, Franzen L, Parker C, et al. Bone targeted radium-223 in symptomatic, hormone refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol. 2007;8:587–94.PubMedCrossRefGoogle Scholar
  111. Ogawa K. Development of radiopharmaceuticals for diagnosis and therapy of metastatic bone cancer. Yakugaku Zasshi. 2012;132:1151–7.Google Scholar
  112. Ogawa K, Washiyama K. Bone target radiotracers for palliative therapy of bone metastases. Curr Med Chem. 2012;19:3290–300.PubMedCrossRefGoogle Scholar
  113. Ogawa K, Mukai T, Arano Y, Ueda M, et al. Design of a radiopharmaceutical for the palliation of painful bone metastases: rhenium-186-labeled bisphosphonate derivative. J Label Compd Radiopharm. 2004;47:753–61.CrossRefGoogle Scholar
  114. Ogawa K, Mukai T, Arano Y, et al. Development of a rhenium-186-labeled MAG3-conjugated bisphosphonate for the palliation of metastatic bone pain based on the concept of bifunctional radiopharmaceuticals. Bioconjug Chem. 2005;16:751–7.PubMedCrossRefGoogle Scholar
  115. Ogawa K, Mukai T, Arano Y, et al. Rhemium-186-monoaminemonoamidedithiol-conjugated bisphosphonate derivatives for bone pain palliation. Nucl Med Biol. 2006;33:513–52.PubMedCrossRefGoogle Scholar
  116. Ogawa K, Kawashima H, Shiba K, et al. Development of 90Y-DOTA-conjugated bisphosphonates for treatment of painful bone metastases. Nucl Med Biol. 2009;36:129–35.PubMedCrossRefGoogle Scholar
  117. Oh SJ, Won KS, Moon DH, et al. Preparation and biological evaluation of 188Re-ethylenediammine-N, N, N’, N’-tetrakis(methylenephosphonic acid) as a potential agent for bone pain palliation. Nucl Med Commun. 2002;23:75–81.PubMedCrossRefGoogle Scholar
  118. Orsini F, Guidoccio F, Mazzarri S, Mariani G. Palliation and survival after repeated 188Re-HEDP therapy of hormone-refractory bone metastases of prostate cancer: a retrospective analysis. J Nucl Med. 2012;53(8):1330–1.PubMedCrossRefGoogle Scholar
  119. Oster ZH, Som P, Srivastava SC, et al. The development and in-vivo behavior of tin containing radiopharmaceuticals II. Autoradiographic and scintigraphic studies in normal animals and in animal models of disease. Int J Nucl Med Biol. 1995;12:175–84.CrossRefGoogle Scholar
  120. Paes FM, Serafini AN. Systemic metabolic radiopharmaceutical therapy in the treatment of metastatic bone pain. Semin Nucl Med. 2010;40:891–904.CrossRefGoogle Scholar
  121. Paes FM, Ernani V, Hosein P, Serafini AN. Radiopharmaceuticals: when and how to use them to treat metastatic bone pain. J Support Oncol. 2011;9:197–205.Google Scholar
  122. Palmedo H, Guhlke S, Beets AL, et al. Rhenium-188-HEDP for pain palliation of bone metastases: first clinical results. European Nuclear Medicine Congress, Glasgow, Scotland, August 23–27, 1997. Eur J Nucl Med. 1997;24:962.Google Scholar
  123. Palmedo H, Guhlke S, Bender H, et al. Rhenium-188 HEDP for multiple metastases – a dose escalation study. Nuklearmedizin. 1998a;37:A30 (German).Google Scholar
  124. Palmedo H, Guhlke S, Bender H, et al. Rhenium-188 HEDP for palliation of multiple bone metastases – a dose escalation study. Eur J Nucl Med. 1998b;25:1047.CrossRefGoogle Scholar
  125. Palmedo H, Guhlke S, Schoencich G, et al. Pain therapy with Rhenium-188-HEDP of the bone metastases from prostate carcinoma. In: German Nuclear Medicine meeting, Ulm, Apr 1999a (German).Google Scholar
  126. Palmedo H, Guhlke S, Bender H, et al. Dose escalation study with Re-188-HEDP in prostate cancer patients with osseous metastases, annual meeting, Society of Nuclear Medicine, Los Angeles, CA, June 6–10. J Nucl Med. 1999b;40:218P.Google Scholar
  127. Palmedo H, Guhlke S, Bender H, et al. Dose escalation study with rhenium-188-HEDP in prostate cancer patients with osseous metastases. Eur J Nucl Med. 2000;27:123–30.PubMedCrossRefGoogle Scholar
  128. Palmedo H, Albers P, Guhlke S, et al. 188Re-HEDP in the treatment of bone metastases generating from prostate cancer. J Nucl Med. 2002;43:160P.Google Scholar
  129. Palmedo H, Manka-Waluch A, Albers P, et al. Repeated bone targeted therapy for hormone-refractory prostate carcinoma: randomized phase II trial with the new, high-energy radiopharmaceutical rhenium-188-HEDP. J Clin Oncol. 2003a;21:2869–75.PubMedCrossRefGoogle Scholar
  130. Palmedo H, Manka-Waluch A, Albers P, et al. Repeated bone targeted therapy for hormone-refractory prostate carcinoma: randomized phase II trial with the new, high energy radiopharmaceutical rheium-188-HEDP. J Nucl Med. 2003b;44:174P.Google Scholar
  131. Pandit-Taskar N, Batraki M, Divgi CR. Radiopharmaceutical therapy for palliation of bone pain from osseous metastases. J Nucl Med. 2004;45(8):1358–65.PubMedGoogle Scholar
  132. Parker C, Nilsson S, Heinrich D, et al.; the ALSYMPCA Investigators. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–23.Google Scholar
  133. Pecher C. Biological investigations with radioactive calcium and strontium: preliminary report on the use of radioactive strontium in the treatment of bone cancer. Univ Calif Publ Pharm. 1942;11:117–49.Google Scholar
  134. Pillai AM, Knapp Jr FF. Evolving important role of Lutetium-177 for therapeutic nuclear medicine. Curr Radiopharm. 2015;8:78–85.Google Scholar
  135. Pillai MR, Dash A, Knapp FF. Rhenium-188: availability from the 188W/188Re generator and status of current applications. Curr Radiopharm. 2012;5:​228–43.PubMedCrossRefGoogle Scholar
  136. Pirmettis I, Limouris GS, Bouziotis P, et al. Pentavalent rhenium-188 dimercaptosuccinic acid: a New Kit formulation and its initial evaluation in mice. Radiochim Acta. 2001;89:115–8.CrossRefGoogle Scholar
  137. Polig E, Jee WS, Kruglikov IL. Hit rates and radiation doses to nuclei of bone lining cells from alpha-particle-emitting radionuclides. Radiat Res. 1992;131:133–42.PubMedCrossRefGoogle Scholar
  138. Ponsard B, Srivastava SC, Mausner LF, et al. Production of Sn-117m in the BR2 high-flux reactor. Appl Radiat Isot. 2009;67(7–8):1158–61.PubMedCrossRefGoogle Scholar
  139. Quilty PM, Kirk D, Bolger JJ, et al. A comparison of the palliative effects of strontium-89 and external beam therapy radiotherapy in metastatic prostate cancer. Radiother Oncol. 1994;31:33–40.PubMedCrossRefGoogle Scholar
  140. Rasheed R, Lodhi NA, Khalid M, et al. Radio-synthesis, and in-vivo skeletal localization of 177Lu- zoledronic acid as novel bone seeking therapeutic radiopharmaceutical. J Anesth Clin Res. 2015;6:516.CrossRefGoogle Scholar
  141. Robinson RG. Radionuclides for the alleviation of bone pain in advanced malignancy. Clin Oncol. 1986;5:39–49.Google Scholar
  142. Robinson RG, Spicer JA, Preston DF, Baxter KG. Treatment of metastatic bone pain with strontium-89. Nucl Med Biol. 1987;14:219–22.Google Scholar
  143. Safarzadeh L. (175)Yb-TTHMP as a good candidate for bone pain palliation and substitute of other radiopharmaceuticals. Indian J Nucl Med. 2014;29:135–9.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Sartor O. Overview of samarium Sm-153 lexidronam in the treatment of painful metastatic bone disease. Rev Urol. 2004;6 Suppl 10:S3–12.PubMedPubMedCentralGoogle Scholar
  145. Savio E, Gaudiano J, Robles AM, et al. Re-HEDP: pharmacokinetic characterization, clinical and dosimetric evaluation in osseous metastatic patients with two levels of radiopharmaceutical dose. BMC Nucl Med. 2001;1(1):2.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Scheffler J, Derejko M, Bandurski T, Romanowicz G. Application of rhenium-188 HEDP in bone metastases therapy. Nucl Med Rev Cent East Eur. 2003;6(1):55–7.PubMedGoogle Scholar
  147. Schmaljohan J, Guhlke S, Dudczak R, Biersack HJ. Kit preparation of 188Re-HEDP: comparison of three different formulations. J Nucl Med. 2000;41(Suppl):255P.Google Scholar
  148. Sciuto R, Festa A, Rea S, et al. Effects of low-dose cisplatin on 89-Sr therapy for painful bone metastases from prostate cancer: a randomized clinical trial. J Nucl Med. 2002;43:79–86.PubMedGoogle Scholar
  149. Shirvani-Arani S, Bahrami-Samani A, Meftahi M, et al. Production, quality control and biodistribution studies of thulium-170-labeled ethylenediamine (tetramethylene phosphonic acid.). Radiochim Acta. 2013;101:37–44.CrossRefGoogle Scholar
  150. Silberstein EB. The treatment of painful osseous metastases with phosphorus-32-labeled phosphates. Semin Oncol. 1993;20:10–21.PubMedGoogle Scholar
  151. Silberstein EB. Teletherapy and radiopharmaceutical therapy of painful bone metastases. Semin Nucl Med. 2005;35(2):152–8.PubMedCrossRefGoogle Scholar
  152. Singh A, Holmes RA, Farhangi M, et al. Human Pharmacokinetics of Samarium-153 EDTMP in Metastatic Cancer. J Nucl Med. 1989;30:1814–8.PubMedGoogle Scholar
  153. Singh J, Powel AK, Clarke SEM, Blower PJ. Crystal structure and isomerism of a tumour targeting radiopharmaceutical: [ReO(dmsa)2]. Chem Soc Chem Commun. 1991;16:1115–7.CrossRefGoogle Scholar
  154. Singh J, Reghebi K, Lazarus CR, et al. Studies on the preparation and isomeric composition of [186Re]- and [188Re]- pentavalent rhenium dimercaptosuccinic acid complex. Nucl Med Commun. 1993;14:197–203.PubMedCrossRefGoogle Scholar
  155. Sinzinger H, Palumbo B, Özker K. The Vienna protocol and perspectives in radionuclide therapy. Q J Nucl Med Mol Imaging. 2011;55:420–30.PubMedGoogle Scholar
  156. Soderquist CZ, McNamara BK, Fisher DR. Production of high-purity radium-223 from legacy actinium-beryllium neutron sources. Curr Radiopharm. 2012;5:244–25.PubMedCrossRefGoogle Scholar
  157. Srivastava SC. Bone-seeking therapeutic radiopharmaceuticals. Braz Arch Biol Technol. 2002;45:45–55.CrossRefGoogle Scholar
  158. Srivastava SC, Meinken GE, Richards P, et al. The development and in vivo behavior of Tin containing radiopharmaceuticals I. Chemistry, preparation and Biodistribution in small animals. Int J Nucl Med Biol. 1985;12:167–74.PubMedCrossRefGoogle Scholar
  159. Srivastava SC, Atkins HL, Krishnamurthy GT, et al. Treatment of metastatic bone pain with Tin-117m stannic diethylenetriamine- pentaacetic acid: a phase I/II clinical study. Clin Cancer Res. 1998;4:61–8.PubMedGoogle Scholar
  160. Srivastava SC, Gonzales GR, Howell RW, et al. Dosimetry implant for treating restenosis and hyperplasia. WO. 2009;2009014806:A2.Google Scholar
  161. Stanik R, Svelik J, Benkovsky I. DMSA and its complexes with radioisotopes: review. J Radioanal Nucl Chem. 2012;293:545–54.CrossRefGoogle Scholar
  162. ter Heine R, Lange R, Breukels OB, et al. Bench to bedside development of GMP grade Rhenium-188-HEDP, a radiopharmaceutical for targeted treatment of painful bone metastases. Int J Pharm. 2014;465(1–2): 317–24.PubMedCrossRefGoogle Scholar
  163. Toporov YG, Andreyev OI, Akhetov FZ, et al. Reactor production of high specific activity Tin-117m at RIAR. In: Proceeding of 5th conference on isotopes, Brussels, 25–29 Apr 2005. p. 47–53.Google Scholar
  164. Tu SM, Delpass ES, Jones D. Strontium-89 combined with doxorubicin in the treatment of patients with androgen independent prostate cancer. Urol Oncol. 1997;2:191–7.CrossRefGoogle Scholar
  165. Tu SM, Millikan RE, Mengistu B, et al. Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomized phase II trial. Lancet. 2001;357:336–41.PubMedCrossRefGoogle Scholar
  166. Turner PG, O’Sullivan J. Radium-223 dichloride for the treatment of metastatic prostate cancer. Expert Opin Pharmacother. 2014;15(14):2105–11.PubMedCrossRefGoogle Scholar
  167. Turner JH, Martindale AA, Sorby P, et al. Samarium-153 EDTMP therapy of disseminated skeletal metastasis. Eur J Nucl Med. 1989;15:784–95.PubMedCrossRefGoogle Scholar
  168. Uehara T, Jin ZL, Ogawa K, et al. Assessment of 186Re chelate-conjugated bisphosphonate for the development of new radiopharmaceuticals for bones. Nucl Med Biol. 2007;34:79–87.PubMedCrossRefGoogle Scholar
  169. Verdera ES, Gaudiano, J, Leon A, et al. Rhenium-188-HEDP-kit formulation/quality control. In: American Chemical Society annual meeting, Orlando, 25–29 Aug 1996.Google Scholar
  170. Verdera ES, Gaudiano J, Leon A, et al. Rhenium-188-HEDP: kit formulation and quality control. Radiochim Acta. 1997a;77:113–8.Google Scholar
  171. Verdera S, Gaudiano J, Leon A, et al. Rhenium-188-HEDP-kit formulation and quality control. Radiochim Acta. 1997b;70:113–7.Google Scholar
  172. Washiyama K, Amano R, Sasaki J, et al. 227Th-EDTMP: a potential therapeutic agent for bone metastasis. Nucl Med Biol. 2004;7:901–8.CrossRefGoogle Scholar
  173. Yano Y, Chu P, Anger HO. Tin—117m: production, chemistry and evaluation as a bone scanning agent. Int J Radiat Appl Instrum Appl Radiat Isot. 1973;24:319–25.CrossRefGoogle Scholar
  174. Yousefnia H, Zolghadri S, Shanehsazzadeh S. Estimated human absorbed dose of 177Lu-BPAMD based on mice data: comparison with 177Lu-EDTMP. Appl Radiat Isot. 2015;104:128–35.PubMedCrossRefGoogle Scholar
  175. Zeevart JR, Jarvis NV, Louw WK, Jacksom GE. Metal-Ion speciation in blood plasma incorporating the tetraphosphonate, N, N-dimethylenephosphonate-1-hydroxy-4-aminopropylidenediphosphonate (APDDMP), in therapeutic radiopharmaceuticals. J Inorg Biochem. 2001;83:57–65.CrossRefGoogle Scholar
  176. Zhang H, Tian M, Li S, et al. Rhenium-188-HEDP therapy for the palliation of pain due to ossesous metastases in lung cancer patients. Can Biother Radiopharm. 2003;18:719–26.CrossRefGoogle Scholar
  177. Zolghadri S, Yousefnia H, Jalilian AR, et al. Production, biodistribution assessment and dosimetric evaluation of 177Lu-TTHMP as an agent for bone pain palliation. Asia Oceania J Nucl Med Biol. 2015;3(1):35–42.Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • F. F. (Russ) Knapp
    • 1
  • Ashutosh Dash
    • 2
  1. 1.Nuclear Security and Isotope DivisionOak Ridge National LaboratoryOAK RIDGEUSA
  2. 2.Isotope Production and Applications DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations