Therapeutic Radiopharmaceuticals for Treatment of Primary and Metastatic Hepatic Cancer

  • F. F. (Russ) Knapp
  • Ashutosh Dash


Hepatocellular carcinoma (HCC) is a common malignant tumor of the liver hepatocytes encountered worldwide which may present as either primary liver cancer or secondary liver tumors (malignancies). These tumors are often diagnosed until later stages of the advanced disease and also often present with underlying liver disease (cirrhosis, fatty liver, etc.). Especially in case of non-resectable multi-loci, difficult often unsuccessful therapies include various feeding arterial embolization approaches, including in combination with chemotherapy (TART = transarterial chemoembolization). Interventional approaches by embolization of chemically retained beta-emitting radioisotopes often offer a palliative approach which can greatly improve quality of life. In this, the approaches using commercially available 131I- 90Y-labeled preparations and experimental use of 166Ho and 188Re-labeled vehicles are discussed.


Hepatic Artery Portal Vein Thrombosis Glass Microsphere Metastatic Liver Tumor Sodium Gluconate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abrams RA, Pajak TF, Haulk TL, et al. Survival results among patients with alpha-fetoprotein-positive, unresectable hepatocellular carcinoma: analysis of three sequential treatments of the RTOG and Johns Hopkins Oncology Center. Cancer J Sci A. 1998;4:178–84.Google Scholar
  2. Ackerman NB, Lien WM, Kondi ES, et al. The blood supply of experimental liver metastases. I: the distribution of hepatic artery and portal vein blood to “small” and “large” tumors. Surgery. 1970;66:1067–72.Google Scholar
  3. Andreana L, Isgrò G, Marelli L, et al. Treatment of hepatocellular carcinoma (HCC) by intra-arterial infusion of radio-emitter compounds: trans-arterial radio-embolisation of HCC. Cancer Treat Rev. 2012;38(6):641–64.PubMedCrossRefGoogle Scholar
  4. Becker S, Laffont S, Vitry F, et al. Dosimetric evaluation and therapeutic response to internal radiation therapy of hepatocarcinomas using iodine-131-labelled lipiodol. Nucl Med Commun. 2008;29:815–25.PubMedCrossRefGoogle Scholar
  5. Bernal P, Raoul JL, Vidmar G, et al. Intra-arterial rhenium-188 lipiodol in the treatment of inoperable hepatocellular carcinoma: results of an IAEA-sponsored multination study. Int J Radiat Oncol Biol Phys. 2007;69(5):1448–55.PubMedCrossRefGoogle Scholar
  6. Bernal P, Raoul JL, Stare J, et al. International Atomic Energy Agency-sponsored multination study of intra-arterial rhenium-188-labeled lipiodol in the treatment of inoperable hepatocellular carcinoma: results with special emphasis on prognostic value of dosimetric study. Semin Nucl Med. 2008;38(2):S40–5.PubMedCrossRefGoogle Scholar
  7. Bhattacharya S, Novell JR, Dusheiko GM, et al. Epirubicin-Lipiodol chemotherapy versus 131iodine-Lipiodol radiotherapy in the treatment of unresectable hepatocellular carcinoma. Cancer. 1995;76(11):2202–10.Google Scholar
  8. Bismuth H, Majno PE. Hepatobiliary surgery. J Hepatol. 2000;32 Suppl 1:208–24.PubMedCrossRefGoogle Scholar
  9. Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology. 2004;127:S5–16.PubMedCrossRefGoogle Scholar
  10. Boschi A, Uccelli L, Duatti A, et al. A kit formulation for the preparation of 188Re-lipiodol: preclinical studies and preliminary therapeutic evaluation in patients with unresectable hepatocellular carcinoma. Nucl Med Commun. 2004;25(7):691–9.PubMedCrossRefGoogle Scholar
  11. Boucher E, Corbinais S, Rolland Y, et al. Adjuvant intra-arterial injection of iodine-131-labeled lipiodol after resection of hepatocellular carcinoma. Hepatology. 2003;38(5):1237–41.PubMedCrossRefGoogle Scholar
  12. Boucher E, Garin E, Guylligomarc'h A, et al. Intra-arterial injection of iodine-131-labeled lipiodol for treatment of hepatocellular carcinoma. Radiother Oncol. 2007;82(1):76–82.PubMedCrossRefGoogle Scholar
  13. Bretagne JF, Raoul JL, Bourguet P, Duvauferrier R, Deugnier Y, et al. Hepatic artery injection of I-131-labelled lipiodol – part 2. Radiology. 1998;168: 547–50.CrossRefGoogle Scholar
  14. Burrill J, Hafeli U, Liu DM. Advances in radioembolization – embolics and isotopes. J Nucl Med Radiat Ther. 2011;2(1):107.Google Scholar
  15. Burton MA, Gray BN, Klemp PF, et al. Selective internal radiation therapy: distribution of radiation in the liver. Eur J Cancer Clin Oncol. 1998;25:1487–91.CrossRefGoogle Scholar
  16. Cabibbo G, Enea M, Attanasio M, et al. A meta-analysis of survival rates of untreated patients in randomized clinical trials of hepatocellular carcinoma. Hepatology. 2010;51(4):1274–83.PubMedCrossRefGoogle Scholar
  17. Cammà C, Schepis F, Orlando A, et al. Transarterial chemoembolization for unresectable hepatocellular carcinoma. Metall Anal. 2002;224:47–54.Google Scholar
  18. Chang MC, Lin W-Y. The effect of intratumoral injection of 188Re-microspheres on the hematologic, hepatic and renal functions in the treatment of VX2 hepatic tumor: an animal study. Ann Nucl Med Sc. 2007;20:187–92.Google Scholar
  19. Chen ZN, Mi L, Xu J, Song F, Zhang Q, Zhang Z, et al. Targeting radioimmunotherapy of hepatocellular carcinoma with iodine (131I)metuximab injection: clinical phase I/II trials. Int J Radiat Oncol Biol Phys. 2006;65(2):435–44.PubMedCrossRefGoogle Scholar
  20. Chua TC, Chu F, Butler SP, et al. Intra-arterial iodine-131-lipiodol for unresectable hepatocellular carcinoma. Cancer. 2010;116(17):4069–77.PubMedCrossRefGoogle Scholar
  21. Dawson LA, McGinn CJ, Normolle D. Escalated focal liver radiation and concurrent hepatic artery fluorodeoxyuridine for unresectable intrahepatic malignancies. J Clin Oncol. 2000;18:2210–8.PubMedGoogle Scholar
  22. Deleporte A, Flamen P, Hendlisz A. State of the art: radiolabeled microspheres treatment for liver malignancies. Expert Opin Pharmacother. 2010;11(4):579–86.PubMedCrossRefGoogle Scholar
  23. Deuffic S, Poynard T, Buffat L, Valleron AJ. Trends in primary liver cancer. Lancet. 1998;351:214–5.PubMedCrossRefGoogle Scholar
  24. Ehrhardt GJ, Day DE. Therapeutic use of 90Y microspheres. Nucl Med Biol. 1987;14:233–42.Google Scholar
  25. El-Serag HB, Davila JA, Petersen NJ, et al. The continuing increase in the incidence of hepatocellular carcinoma in the United States: an update. Ann Intern Med. 1992;139(10):817–23.CrossRefGoogle Scholar
  26. Fan Z, Tang Z, Liu K, Zhou D, Lu J, Yuan A, et al. Radioiodinated anti-hepatocellular carcinoma (HCC) ferritin. J Cancer Res Clin Oncol. 1992;118:371–6.PubMedCrossRefGoogle Scholar
  27. Garin E, Denizot B, Noiret N, et al. Re 188-SSS lipiodol: radiolabelling and biodistribution following injection into the hepatic artery of rats bearing hepatoma. Nucl Med Commun. 2004;10:1007–13.CrossRefGoogle Scholar
  28. Geschwind JF. Chemoembolization for hepatocellular carcinoma: where does the truth lie? J Vasc Interv Radiol. 2002;13(10):991–4.PubMedCrossRefGoogle Scholar
  29. Goh AS, Chung AY, Lo RH, et al. A novel approach to brachytherapy in hepatocellular carcinoma using a phosphorous32 (32P) brachytherapy delivery device-a first-in man study. Int J Radiat Oncol Biol Phys. 2007;67:786–92.PubMedCrossRefGoogle Scholar
  30. Harbert JC. In: Harbert JC, Eckelman WC, Neumann RD, editors. Nuclear medicine: diagnosis and therapy. New York: Thieme Medical Publishers, Inc.; 1996. p. 1141–55.Google Scholar
  31. Hendlisz A, Van den Eynde M, Peeters M, et al. Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol. 2010;28:3687–94.PubMedCrossRefGoogle Scholar
  32. Ho S, Lau WY, Leung TWT, et al. Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer. Eur J Nucl Med. 1997;24:293–8.PubMedGoogle Scholar
  33. Ho S, Lau WY, Leung TWT, Johnson PJ. Internal radiation therapy for patients with primary or metastatic hepatic cancer. Cancer. 1998;83:1894–907.PubMedCrossRefGoogle Scholar
  34. Iñarrairaegui M, Thurston KG, Bilbao JI, et al. Radioembolization with use of yttrium-90 resin microspheres in patients with hepatocellular carcinoma and portal vein thrombosis. J Vasc Interv Radiol. 2010;21:1205–21.PubMedCrossRefGoogle Scholar
  35. Jay M, Khare SS, Mumper RS, Ryo UY. Microencapsulation of activable radiotherapeutic agents. Biol Syn Mem. 1998;292:293–300.Google Scholar
  36. Kanhere HA, Leopardi LN, Fischer L, et al. Treatment of unresectable hepatocellular carcinoma with radiolabelled lipiodol. ANZ J Surg. 2008;78(5):371–6.PubMedCrossRefGoogle Scholar
  37. Kao YH, Hock TAE, Burgmans MC, et al. Image-guided personalized predictive dosimetry by artery-specific SPECT/CT partition modeling for safe and effective 90Yradioembolization. J Nucl Med. 2012;53(4):559–66.PubMedCrossRefGoogle Scholar
  38. Kennedy AS, Sangro B. Nonsurgical treatment for localized hepatocellular carcinoma. Curr Oncol Rep. 2014;16(3):373.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kennedy A, Nag S, Salem R, et al. Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. Int J Radiat Oncol Biol Phys. 2007;68(1):13–23.PubMedCrossRefGoogle Scholar
  40. Kennedy A, Coldwell D, Sangro B, et al. Radioembolization for the treatment of liver tumors: general principles. Am J Clin Oncol. 2012;35(1):91–9.PubMedCrossRefGoogle Scholar
  41. Kim JK, Han KH, Lee JT, et al. Long-term clinical outcome of phase IIb clinical trial of percutaneous injection with holmium-166/chitosan complex (Milican) for the treatment of small hepatocellular carcinoma. Clin Cancer Res. 2006;12(2):543–8.PubMedCrossRefGoogle Scholar
  42. Kooijman H, Nijsen JFW, Spek AL, van het Schip AD. Diaquatris(pentane-2,4-dionato-O, O’)holmium(III) monohydrate and diaquatris(pentane-2,4-dionato-O, O’)-holmium(III) 4-hydroxypentan-2-one solvate dihydrate. Acta Crystallogr. 2000;C56:156–8.Google Scholar
  43. Kumar A, Srivastava DN, Chau TT, et al. Inoperable hepatocellular carcinoma: transarterial 188Re HDD-labeled iodized oil for treatment – prospective multicenter clinical trial. Radiology. 2007;243(2):509–19.PubMedCrossRefGoogle Scholar
  44. Lambert B, Bacher K, Defreyne L. Rhenium-188 based radiopharmaceuticals for treatment of liver tumours. Q J Nucl Med Mol Imaging. 2004;53(3):305–10.Google Scholar
  45. Lambert B, Bacher K, De Keukeleire K, et al. 188Re-HDD/lipiodol for treatment of hepatocellular carcinoma: a feasibility study in patients with advanced cirrhosis. J Nucl Med. 2005;46(8):1326–32.PubMedGoogle Scholar
  46. Lau WY, Leung WT, Ho S, et al. Treatment of inoperable hepatocellular carcinoma with intrahepatic arterial yttrium-90 microspheres: a phase I and II study. Br J Cancer. 1994;70:994–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Lau WY, Ho SK, Yu SC, et al. Salvage surgery following downstaging of unresectable hepatocellular carcinoma. Ann Surg. 2004;240:299–305.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lee IJ, Seong J. The optimal selection of radiotherapy treatment for hepatocellular carcinoma. Gut Liver. 2012;6(2):139–48.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lee IK, Seong J, Koom WS, et al. Selection of the optimal radiotherapy technique for locally advanced hepatocellular carcinoma. Jpn J Clin Oncol. 2011;41(7):882–9.PubMedCrossRefGoogle Scholar
  50. Lepareur N, Mévellec F, Noiret N, et al. Syntheses and reactivity of ‘sulfur rich’ Re(III) and Tc(III) complexes containing trithioperoxybenzoate, dithiobenzoate and dithiocarbamate ligands. Dalton Trans. 2005;17:2866–75.PubMedCrossRefGoogle Scholar
  51. Lepareur N, Ardisson V, Noiret N, et al. Automation of labelling of Lipiodol with high-activity generator-produced Re 188. Appl Radiat Isot. 2011;69(2):426–30.PubMedCrossRefGoogle Scholar
  52. Leung WT, Lau WY, Ho S, et al. Selective internal radiation therapy with intra-arterial iodine-131-Lipiodol in inoperable hepatocellular carcinoma. J Nucl Med. 1994;35(8):1313–8.PubMedGoogle Scholar
  53. Liepe K, Brogsitter C, Leonhard J, et al. Feasibility of high activity rhenium-188-microsphere in hepatic radioembolization. Jpn J Clin Oncol. 2007;37(12):942–50.PubMedCrossRefGoogle Scholar
  54. Liu KD, Tang ZY, Bao Y, et al. Radioimmunotherapy for hepatocellular carcinoma (HCC) using I-131-anti HCC isoferritin IgG: preliminary results of experimental and clinical studies. Int J Radiat Oncol Bioi Phys. 1989;16:319–23.CrossRefGoogle Scholar
  55. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362:1907–17.PubMedCrossRefGoogle Scholar
  56. Mumper RJ, Jay M. Poly(L-lactic acid) microspheres containing neutron-activatable holmium-165: a study of the physical characteristics of microspheres before and after irradiation in a nuclear reactor. Pharm Res. 1999;9:149–54.CrossRefGoogle Scholar
  57. Mumper RJ, Ryo UY, Jay M. Neutron activated holmium-166-Poly(L-lactic acid) microspheres: a potential agent for the internal radiation therapy of hepatic tumours. J Nucl Med. 1991;32:2139–43.PubMedGoogle Scholar
  58. Murthy R, Xiong H, Nunez R, et al. Yttrium 90 resin microspheres for the treatment of unresectable colorectal hepatic metastases after failure of multiple chemotherapy regimens: preliminary results. J Vasc Interv Radiol. 2005;16:937–45.PubMedCrossRefGoogle Scholar
  59. Nijsen JFW, Zonnenberg BA, Woittiez JRW, et al. Holmium-166 poly lactic acid microspheres applicable for intra-arterial radionuclide therapy of hepatic malignancies: effects of preparation and neutron activation techniques. Eur J Nucl Med. 1999;26:699–704.PubMedCrossRefGoogle Scholar
  60. O’Donnell PB, McGinity JW. Preparation of microspheres by solvent evaporation technique. Adv Drug Deliv Rev. 1997;28:25–42.PubMedCrossRefGoogle Scholar
  61. Order SE, Stillwagon GB, Klein JL, et al. Iodine-131 antiferritin, a new treatment modality in hepatoma: a radiation therapeutic oncology group study. J Clin Oncol. 1985;3:1573–82.PubMedGoogle Scholar
  62. Order SE, Klein JL, Leichner PK, et al. 90-Yttrium antiferritin: a new therapeutic radiolabelled antibody. Int J Radiat Oncol Biol Phys. 1986;12:277–81.PubMedCrossRefGoogle Scholar
  63. Order S, Pajak T, Leibel S, et al. A randomized prospective trial comparing full dose chemotherapy to 131I Antiferritin: an RTOG study. Int J Radiat Oncol Biol Phys. 1991;20:953–63.PubMedCrossRefGoogle Scholar
  64. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.PubMedCrossRefGoogle Scholar
  65. Raoul JL, Guyader D, Bretagne JF, et al. Randomized controlled trial for hepatocellular carcinoma with portal vein thrombosis: intra-arterial iodine-131-iodized oil versus medical support. J Nucl Med. 1994;35(11):1782–7.PubMedGoogle Scholar
  66. Raoul JL, Boucher E, Roland V, Garin E. 131-iodine Lipiodol therapy in hepatocellular carcinoma. Q J Nucl Med Mol Imaging. 2009;53(3):348–55.PubMedGoogle Scholar
  67. Risse JH, Grunwald F, Kersjes W, et al. Intraarterial HCC therapy with I-131-Lipiodol. Cancer Biother Radiopharm. 2000;15(1):65–70.PubMedCrossRefGoogle Scholar
  68. Risse JH, Rabe C, Pauleit D, et al. Therapy of hepatocellular carcinoma with iodine-131-lipiodol. Results in a large German cohort. Nuklearmedizin. 2006;45(4):185–92.PubMedGoogle Scholar
  69. Saatchi K, Hafeli UO. Radiolabeling of biodegradable polymeric microspheres with [99mTc(CO)3]+ and in ViWo biodistribution evaluation using MicroSPECT/CT imaging. Bioconjugate Chem. 2009;20:1209–17.CrossRefGoogle Scholar
  70. Salem R, Thurston KG. Radioembolization with 90Y microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1: technical and methodological considerations. J Vasc Interv Radiol. 2006;17:1251–78.PubMedCrossRefGoogle Scholar
  71. Schubiger PA, Beer H-F, Geiger L, et al. 90Y-resin particles-animal experiments on pigs with regard to the introduction of superselective embolization therapy. Nucl Med Biol. 1991;18:305–11.Google Scholar
  72. Smits ML, Nijsen JF, van den Bosch MA, Lam MG, Vente MA, et al. Holmium-166 radioembolization for the treatment of patients with liver metastases: design of the phase I HEPAR trial. J Exp Clin Cancer Res. 2010;29:70.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Sohn JH, Choi HJ, Lee JT, et al. Phase II study of transarterial holmium-166-chitosan complex treatment in patients with a single, large hepatocellular carcinoma. Oncol. 2009;76:1–9.CrossRefGoogle Scholar
  74. Sundram F, Chau TC, Onkhuudai P, et al. Preliminary results of transarterial rhenium-188 HDD lipiodol in the treatment of inoperable primary hepatocellular carcinoma. Eur J Nucl Med Mol Imaging. 2004;31(2):250–7.PubMedCrossRefGoogle Scholar
  75. Tang ZY, Liu KD, Bao YM, et al. Radioimmunotherapy in the multimodality treatment of hepatocellular carcinoma with reference to second-look resection. Cancer. 1990;65:211–5.PubMedCrossRefGoogle Scholar
  76. Tian JH, Xu BX, Zhang JM, et al. Ultrasound-guided internal radiotherapy using yttrium-90-glass microspheres for liver malignancies. J Nucl Med. 1996;37:958–63.PubMedGoogle Scholar
  77. Tisato F, Porchia M, Bolzati C, et al. The preparation of substitution-inert 99Tc metal-fragments: promising candidates for the design of new 99mTc radiopharmaceuticals. Coord Chem Rev. 2006;250:2034–45.CrossRefGoogle Scholar
  78. Toubeau M, Touzery C, Berriolo-Riedinger A, et al. 131I thyroid uptake in patients treated with 131I-Lipiodol for hepatocellular carcinoma. Eur J Nucl Med. 2001;28(5):669–70.PubMedCrossRefGoogle Scholar
  79. Turner JH, Claringbold PG, Klemp PFB, et al. 166Ho-microsphere liver radiotherapy: a preclinical SPECT dosimetry study in the pig. Nucl Med Commun. 1994;15:545–55.PubMedCrossRefGoogle Scholar
  80. Uthappa MC, Ravikumar R, Gupta A. Selective internal radiation therapy: 90Y (yttrium) labeled microspheres for liver malignancies (primary and metastatic). Indian J Cancer. 2011;48(1):18–23.PubMedCrossRefGoogle Scholar
  81. Vassiliou I, Arkadopoulos N, Theodosopoulos T, et al. Surgical approaches of resectable synchronous colorectal liver metastases: timing considerations. World J Gastroenterol. 2007;13:1431–4.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Vente MA, de Wit TC, van den Bosch MA, et al. Holmium-166 poly(L: -lactic acid) microsphere radioembolisation of the liver: technical aspects studied in a large animal model. Eur Radiol. 2009;20:862–9.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Wang S-J, Lin WY, Chen MN, et al. Intratumoral injection of rhenium-188 microspheres into an animal model of hepatoma. J Nucl Med. 1998;39:1752–7.PubMedGoogle Scholar
  84. Wang SC, Bester L, Burnes JP, et al. Clinical care and technical recommendations for 90Yttrium microsphere treatment of liver cancer. J Med Imaging Radiat Oncol. 2010;54(3):178–87.PubMedCrossRefGoogle Scholar
  85. Watanabe N, Oriuchi N, Endo K, et al. Yttrium- 90-labeled human macroaggregated albumin for internal radiotherapy: combined use with DTPA. Nuc Med Biol. 1999;26:847–51.CrossRefGoogle Scholar
  86. Wunderlich G, Drews A, Kotzerke J. A kit for labeling of [188Re] human serum albumin microspheres for therapeutic use in nuclear medicine. Appl Radiat Isot. 2005;62(6):915–8.PubMedCrossRefGoogle Scholar
  87. Zeng ZC, Tang ZY, Yang BH, et al. Comparison between radioimmunotherapy and external beam radiation therapy for patients with hepatocellular carcinoma. Eur J Nucl Med Mol Imaging. 2002;29(12):1657–68.PubMedCrossRefGoogle Scholar
  88. Zhang Z, Bian H, Feng Q, Mi L, et al. Biodistribution and localization of iodine-131-labeled metuximab in patients with hepatocellular carcinoma. Cancer Biol Ther. 2006;5(3):318–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • F. F. (Russ) Knapp
    • 1
  • Ashutosh Dash
    • 2
  1. 1.Nuclear Security and Isotope DivisionOak Ridge National LaboratoryOAK RIDGEUSA
  2. 2.Isotope Production and Applications DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations