Skip to main content

Peptide Receptor Radionuclide Therapy (PRRT)

  • Chapter
  • First Online:
  • 2389 Accesses

Abstract

There has been tremendous progress over recent years on the development of peptide receptor radionuclide therapy (PRRT) for the treatment of a variety of cancers. In this technology, peptides radiolabeled with therapeutic radionuclides are targeted to cell-surface receptors which are often overexpressed on the membrane surface of tumor cells. This targeting strategy localizes particle-emitting radioisotopes to tumors. The use of peptides radiolabeled with particle-emitting radionuclides is a relatively new and promising treatment modality which can provide effective and innovative solutions for unmet therapeutic needs. We describe in this chapter the concepts involved in targeting peptides to tumor-associated cell-surface receptors and the preparation of targeted peptides to which chemical-binding groups have been attached to bind a variety of therapeutic radionuclides for targeted therapeutic applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anthony LB, Woltering EA, Espanan GD, et al. Indium-111-pentetreotide prolongs survival in gastroenteropancreatic malignancies. Semin Nucl Med. 2002;32:123–32.

    Article  PubMed  Google Scholar 

  • Antonov AS, Kolodgie FD, Munn DH, et al. Regulation of macrophage foam cell formation by αvβ3 integrin: potential role in human atherosclerosis. Am J Pathol. 2004;165:247–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 2008;8:604–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bakker WH, Breeman WAP, van der Pluijm ME, et al. Iodine-131 labeled octreotide: not an option for somatostatin receptor therapy. Eur J Nucl Med. 1996;23:775.

    Article  PubMed  CAS  Google Scholar 

  • Behr TM, Behe MP. Cholecystokinin-B/Gastrin receptor-targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor-expressing malignancies. Semin Nucl Med. 2002;32:97–109.

    Article  PubMed  Google Scholar 

  • Bennett JS, Berger BW, Billings PC. The structure and function of platelet integrins. J Thromb Haemost. 2009;7 Suppl 1:200–5.

    Article  PubMed  CAS  Google Scholar 

  • Bernard BF, Béhé M, Breeman WAP, et al. Preclinical evaluation of minigastrin analogs for CCK-B receptor targeting. Cancer Biother Radiopharm. 2003;18:28.

    Google Scholar 

  • Bodei L, Cremonesi M, Grana C, et al. Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2004;31:1038–46.

    Article  PubMed  CAS  Google Scholar 

  • Brans B, Linden O, Giammarile F, Tennvall J, Punt C. Clinical applications of newer radionuclide therapies. Eur J Cancer. 2006;42:994–1003.

    Google Scholar 

  • Bunnett G. Gastrin-releasing peptide. In: Walsh JH, Dockray GJ, editors. Gut peptides: biochemistry and physiology. New York: Raven Press, Ltd; 1994. p. 423–45.

    Google Scholar 

  • Burke PA, DeNardo SJ. Antiangiogenic agents and their promising potential in combined therapy. Crit Rev Oncol Hematol. 2001;39:155–71.

    Article  PubMed  CAS  Google Scholar 

  • Bushnell Jr DL, O’Dorisio TM, O’Dorisio MS, et al. 90Y-edotreotide for metastatic carcinoid refractory to octreotide. J Clin Oncol. 2010;28:1652–9.

    Article  PubMed  CAS  Google Scholar 

  • Cai W, Niu G, Chen X. Imaging of integrins as biomarkers for tumor angiogenesis. Curr Pharm Des. 2008;14:2943–73.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Collen D. Transgenic mouse models in angiogenesis and cardiovascular disease. J Pathol. 2000;190(3):387–405.

    Article  PubMed  CAS  Google Scholar 

  • Caswell PT, Vadrevu S, Norman JC. Integrins: masters and slaves of endocytic transport. Nat Rev Mol Cell Biol. 2009;10:843–53.

    Article  PubMed  CAS  Google Scholar 

  • Chao JT, Meininger GA, Patterson JL, et al. Regulation of α7-integrin expression in vascular smooth muscle by injury-induced atherosclerosis. Am J Physiol Heart Circ Physiol. 2004;287:H381–9.

    Article  PubMed  CAS  Google Scholar 

  • Chen X. Multimodality imaging of tumor integrin αvβ3 expression. Mini Rev Med Chem. 2006;6:227–34.

    Article  PubMed  CAS  Google Scholar 

  • Chen JQ, Giblin MF, Wang N, et al. In vivo evaluation of 99mTc/188Re-labeled linear alpha-melanocyte stimulating hormone analogs for specific melanoma targeting. Nucl Med Biol. 1999;26:687–93.

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Zhang L, Graves E, et al. Small-animal PET of melanocortin 1 receptor expression using a 18F-labeled α-melanocyte-stimulating hormone analog. J Nucl Med. 2007;48:987–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chinol M, Bodei L, Cremonesi M, Paganelli G. Receptor-mediated radiotherapy with Y-DOTA-DPhe-Tyroctreotide: the experience of the European Institute of Oncology Group. Semin Nucl Med. 2002;32:141–7.

    Article  PubMed  Google Scholar 

  • Christ E, Wild D, Forrer F, et al. Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J Clin Endocrinol Metab. 2009;94:4398–405.

    Article  PubMed  CAS  Google Scholar 

  • Chung J, Yoon SO, Lipscomb EA, Mercurio AM. The Met receptor and α6β4 integrin can function independently to promote carcinoma invasion. J Biol Chem. 2004;279:32287–93.

    Article  PubMed  CAS  Google Scholar 

  • Cordier D, Forrer F, Bruchertseifer F, et al. Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi-DOTA-[Thi8, Met(O2)11]-substance P: a pilot trial. Eur J Nucl Med Mol Imaging. 2010;37:1335–44.

    Article  PubMed  CAS  Google Scholar 

  • de Herder WW, Hofland LJ, van der Lely AJ, Lamberts SW. Somatostatin receptors in gastroentero-pancreatic neuroendocrine tumours. Endocr Relat Cancer. 2003;10:451–8.

    Article  PubMed  Google Scholar 

  • de Jong M, Breeman WA, Bernard BF, et al. Tumour uptake of the radiolabelled somatostatin analogue [DOTA0, TYR3]octreotide is dependent on the peptide amount. Eur J Nucl Med. 1999;26:693–8.

    Article  PubMed  Google Scholar 

  • de Visser M, van Weerden WM, de Ridder CM, et al. Androgen-dependent expression of the gastrin-releasing peptide receptor in human prostate tumor xenografts. J Nucl Med. 2007;48:88–93.

    PubMed  Google Scholar 

  • Dijkgraaf I, Kruijtzer JA, Liu S, et al. Improved targeting of the αvβ3 integrin by multi-merisation of RGD peptides. Eur J Nucl Med Mol Imaging. 2007;34:267–73.

    Article  PubMed  CAS  Google Scholar 

  • Drucker DJ. Minireview the glucagon-like peptides. Endocrinology. 2001;142:521–7.

    Article  PubMed  CAS  Google Scholar 

  • Eble JA, Haier J. Integrins in cancer treatment. Curr Cancer Drug Targets. 2006;6:89–105.

    Article  PubMed  CAS  Google Scholar 

  • ENETS Consensus Guidelines. In: de Herder WW, O’Toole D, Rindi G, Wiedenmann B, editors. ENETS consensus guidelines for the diagnosis and treatment of neuroendocrine gastrointestinal tumors Part 2 – Midgut and Hindgut Tumors. Neuroendocrinology Special Issue, vol. 87. Basel: Karger Medical and Scientific Publishers; 2008, No. 1. ISBN: 978-3-8055-8459-3; e-ISBN: 978-3-8055-8460-9; DOI: 10.1159/isbn.978-3-8055-8460.

  • Francavilla C, Maddaluno L, Cavallaro U. The functional role of cell adhesion molecules in tumor angiogenesis. Semin Cancer Biol. 2009;19:298–309.

    Article  PubMed  CAS  Google Scholar 

  • Froberg AC, de Jong M, Nock BA, et al. Comparison of three radiolabelled peptide analogues for CCK-2 receptor scintigraphy in medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2009;36:1265–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furger KA, Allan AL, Wilson SM, et al. Beta(3) integrin expression increases breast carcinoma cell responsiveness to the malignancy-enhancing effects of osteopontin. Mol Cancer Res. 2003;1:810–9.

    PubMed  CAS  Google Scholar 

  • Gonzalez N, Moody TW, Igarashi H, et al. Bombesin-related peptides and their receptors: recent advances in their role in physiology and disease states. Curr Opin Endocrinol Diabetes Obes. 2008;15:58–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gottschalk KE, Kessler H. The structures of integrins and integrin-ligand complexes: Implications for drug design and signal transduction. Angew Chem Int Ed Engl. 2002;41:3767–74.

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Giancotti FG. Integrin signalling during tumour progression. Nat Rev Mol Cell Biol. 2004;5:816–26.

    Article  PubMed  CAS  Google Scholar 

  • Hassan M, Eskilsson A, Nilsson C, et al. In vivo dynamic distribution of 131I-glucagon-like peptide-1 (7-36) amide in the rat studied by gamma camera. Nucl Med Biol. 1999;26:413.

    Article  PubMed  CAS  Google Scholar 

  • Heppeler A, Froidevaux S, Eberle AN, Maecke HR. Receptor targeting for tumor localisation and therapy with radiopeptides. Curr Med Chem. 2000;7:971–94.

    Article  PubMed  CAS  Google Scholar 

  • Hessenius C, Bäder M, Meinhold H, et al. Vasoactive intestinal peptide receptor scintigraphy in patients with pancreatic adenocarcinomas or neuroendocrine tumors. Eur J Nucl Med. 2000;27:1684–93.

    Article  PubMed  CAS  Google Scholar 

  • Hilden TJ, Nurmi SM, Fagerholm SC, Gahmberg CG. Interfering with leukocyte integrin activation-a novel concept in the development of anti-inflammatory drugs. Ann Med. 2006;38:503–11.

    Article  PubMed  CAS  Google Scholar 

  • Hollenbeck ST, Itoh H, Louie O, et al. Type I collagen synergistically enhances PDGF-induced smooth muscle cell proliferation through pp60src-dependent crosstalk between the α2β1 integrin and PDGFβ receptor. Biochem Biophys Res Commun. 2004;325:328–37.

    Article  PubMed  CAS  Google Scholar 

  • Horton MA. Interactions of connective tissue cells with the extracellular matrix. Bone. 1995;17:51S–3.

    Article  PubMed  CAS  Google Scholar 

  • Hosotani R, Kawaguchi M, Masui T, et al. Expression of integrin alphaVbeta3 in pancreatic carcinoma: relation to MMP-2 activation and lymph node metastasis. Pancreas. 2002;25:e30–5.

    Article  PubMed  Google Scholar 

  • Hubalewska-Dydejczyk A, Sowa-Staszczak A, Mikolajczak R, et al. 99mTc labeled GLP-1 scintigraphy with the use of [Lys40-(Ahx-HYNIC/EDDA)NH2]-Exendin-4 in the insulinoma localization. J Nucl Med. 2011;52 Suppl 1:561.

    Google Scholar 

  • Igarashi H, Ito T, Mantey SA, Pradhan TK, et al. Development of simplified vasoactive intestinal peptide analogs with receptor selectivity and stability for human vasoactive intestinal pep-tide/pituitary adenylate cyclase-activating polypeptide receptors. J Pharmacol Exp Ther. 2005;315:370–81.

    Article  PubMed  CAS  Google Scholar 

  • Imhof A, Brunner P, Marincek N, et al. Response, survival, and long-term toxicity after therapy with the radio-labeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol. 2011;29:2416–23.

    Article  PubMed  CAS  Google Scholar 

  • Isberg RR, Van Nhieu GT. The mechanism of phagocytic uptake promoted by invasin-integrin interaction. Trends Cell Biol. 1995;5:120–4.

    Article  PubMed  CAS  Google Scholar 

  • Iten F, Muller B, Schindler C, et al. Response to [90Yttrium-DOTA]-TOC treatment is associated with long-term survival benefit in metastasized medullary thyroid cancer: a phase II clinical trial. Clin Cancer Res. 2007;13:6696–702.

    Article  PubMed  CAS  Google Scholar 

  • Jain R. Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987;47:3039–51.

    PubMed  CAS  Google Scholar 

  • Jong M, Valkema R, Jamar F, et al. Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings. Semin Nucl Med. 2002;32(2):133–40.

    Article  PubMed  Google Scholar 

  • Kaltsas GA, Papadogias D, Makras P, Grossman AB. Treatment of advanced neuroendocrine tumours with radiolabelled somatostatin analogues. Endocr Relat Cancer. 2005;2:683–99.

    Article  CAS  Google Scholar 

  • Korner M, Stockli M, Waser B, et al. GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med. 2007;48:736.

    Article  PubMed  CAS  Google Scholar 

  • Krenning EP, de Jong M, Kooij PP, et al. Radiolabelled somatostatin analogue(s) for peptide receptor scintigraphy and radionuclide therapy. Ann Oncol. 1999;10 Suppl 2:S23–9.

    Article  PubMed  Google Scholar 

  • Krenning EP, Valkema R, Kwekkeboom DJ, et al. Molecular imaging as in vivo molecular pathology for gastroenteropancreatic neuroendocrine tumors: implications for follow-up after therapy. J Nucl Med. 2005;46 Suppl 1:76S–82.

    PubMed  Google Scholar 

  • Kunikowska J, Krolicki L, Hubalewska-Dydejczyk A. Clinical results of radionuclide therapy of neuroendocrine tumours with (90)Y-DOTATATE and tandem (90)Y/(177)Lu-DOTATATE: which is a better therapy option? Eur J Nucl Med Mol Imaging. 2011;38(10):1788–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwekkeboom DJ, Teunissen JJ, Bakker WH, et al. Radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate in patients with endocrine gastroentero-pancreatic tumors. J Clin Oncol. 2005;23:2754–62.

    Article  PubMed  CAS  Google Scholar 

  • Kwekkeboom DJ, Teunissen JJ, Kam BL, Valkema R, de Herder WW, Krenning EP. Treatment of patients who have endocrine gastroenteropancreatic tumors with radiolabeled somatostatin analogues. Hematol Oncol Clin North Am. 2007;21:561–73.

    Google Scholar 

  • Lal H, Verma SK, Foster DM, et al. Integrins and proximal signaling mechanisms in cardiovascular disease. Front Biosci. 2009;14:2307–34.

    Article  CAS  Google Scholar 

  • Laverman P, Joosten L, Eek A, et al. Comparative biodistribution of 12 111In-labelled gastrin/CCK2 receptor-targeting peptides. Eur J Nucl Med Mol Imaging. 2011;38:1410–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin αvβ3 targeted radiotracers for tumor imaging. Mol Pharm. 2006;3:472–87.

    Article  PubMed  CAS  Google Scholar 

  • Liu S. Radiolabeled cyclic RGD peptides as integrin αvβ3-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjug Chem. 2009;20:2199–213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Z, Liu S, Wang F, Liu S, Chen X. Noninvasive imaging of tumor integrin expression using 18F-labeled RGD dimer peptide with PEG4 linkers. Eur J Nucl Med Mol Imaging. 2009;36:1296–307.

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Liu S, Niu G, Wang F, Liu S, Chen X. Optical imaging of integrin αvβ3 expression with near-infrared fluorescent RGD dimer with tetra(ethylene glycol) linkers. Mol Imaging. 2010;9:21–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  • MacDonald PE, El-Kholy W, Riedel MJ, et al. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes. 2002;51 Suppl 3:S434–42.

    Article  PubMed  CAS  Google Scholar 

  • Maddalena ME, Fox J, Chen J, et al. 177Lu-AMBA biodistribution, radiotherapeutic efficacy, imaging, and autoradiography in prostate cancer models with low GRP-R expression. J Nucl Med. 2009;50:2017–24.

    Article  PubMed  Google Scholar 

  • Mariani G, Erba PA, Signore A. Receptor-mediated tumor targeting with radiolabeled peptides: there is more to it than somatostatin analogs. J Nucl Med. 2006;47:1904–7.

    PubMed  CAS  Google Scholar 

  • Meier JJ, Nauck MA. Glucagon-like peptide 1 (GLP-1) in biology and pathology. Diabetes Metab Res Rev. 2005;21:91.

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Benwell K, Quinn TP. 99mTc- and 111In-labeled α-melanocyte-stimulating hormone peptides as imaging probes for primary and pulmonary metastatic melanoma detection. J Nucl Med. 2007;48:73–80.

    PubMed  CAS  Google Scholar 

  • Miller WH, Keenan RM, Willette RN, et al. Identification and in vivo efficacy of small-molecule antagonists of integrin αvβ3 (the vitronectin receptor). Drug Discov Today. 2000;5:397–408.

    Article  PubMed  CAS  Google Scholar 

  • Miyata S, Koshikawa N, Yasumitsu H, et al. Trypsin stimulates integrin α5β1-dependent adhesion to fibronectin and proliferation of human gastric carcinoma cells through activation of proteinase-activated receptor-2. J Biol Chem. 2000;275:4592–8.

    Article  PubMed  CAS  Google Scholar 

  • Modlin IM, Oberg K, Chung DC, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9:61–72.

    Article  PubMed  CAS  Google Scholar 

  • Nissinen L, Pentikäinen OT, Jouppila A, et al. A small-molecule inhibitor of integrin α2β1 introduces a new strategy for antithrombotic therapy. Thromb Haemost. 2010;103:387–97.

    Article  PubMed  CAS  Google Scholar 

  • Nock BA, Maina T, Behe M, et al. CCK-2/gastrin receptor-targeted tumor imaging with 99mTc-labeled minigastrin analogs. J Nucl Med. 2005;46:1727–3176.

    PubMed  CAS  Google Scholar 

  • Norenberg JP, Krenning BJ, Konings IRHM, et al. 213Bi-[DOTA0, Tyr3]octreotide peptide receptor radionuclide therapy of pancreatic tumors in a preclinical animal model. Clin Cancer Res. 2006;12:897–903.

    Article  PubMed  CAS  Google Scholar 

  • Oberg K. Carcinoid tumors: molecular genetics, tumor biology, and update of diagnosis and treatment. Curr Opin Oncol. 2002;14:38–45.

    Article  PubMed  CAS  Google Scholar 

  • Oberg K. Future aspects of somatostatin-receptor mediated therapy. Neuroendocrinology. 2004;80 Suppl 1:57–61.

    PubMed  Google Scholar 

  • Ohki-Hamazaki H, Iwabuchi M, Maekawa F. Development and function of bombesin-like peptides and their receptors. Int J Dev Biol. 2005;49:293–300.

    Article  PubMed  CAS  Google Scholar 

  • Okarvi SM. Peptide-based radiopharmaceuticals: future tools for diagnostic imaging of cancers and other diseases. Med Res Rev. 2004;24:357–97.

    Article  PubMed  CAS  Google Scholar 

  • Otte A, Mueller-Brand J, Dellas S, et al. Yttrium-90-labelled somatostatin-analogue for cancer treatment. Lancet. 1998;351:417.

    Article  PubMed  CAS  Google Scholar 

  • Otte A, Herrmann R, Heppeler A, Behe M, Jermann E, Powell P, Maecke HR, Muller J. Yttrium-90 DOTATOC: first clinical results. Eur J Nucl Med. 1999;26:1439–47.

    Google Scholar 

  • Pansky P, De Weerth A, Fasler-Kan E, et al. Gastrin releasing peptide-preferring bombesin receptors mediate growth of human renal cell carcinoma. J Am Soc Nephrol. 2000;11:1409–18.

    PubMed  CAS  Google Scholar 

  • Pattou F, Kerr-Conte J, Wild D. GLP-1-receptor scanning for imaging of human beta cells transplanted in muscle. N Engl J Med. 2010;363:1289–90.

    Article  PubMed  Google Scholar 

  • Prasanphanich AF, Nanda PK, Rold TL, et al. [64Cu-NOTA-8-Aoc-BBN(7-14)NH2] targeting vector for positron-emission tomography imaging of gastrin-releasing peptide receptor-expressing tissues. Proc Natl Acad Sci U S A. 2007;104:12462–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raderer M, Kurtaran A, Leimer M, et al. Value of peptide receptor scintigraphy using 123I-vasoactive intestinal peptide and 111In-DTPA-D-Phe1-octreotide in 194 carcinoid patients: Vienna University Experience, 1993 to 1998. J Clin Oncol. 2000;18:1331–6.

    PubMed  CAS  Google Scholar 

  • Reardon DA, Nabors LB, Stupp R. Cilengitide: an integrin-targeting arginine-glycine-aspartic acid peptide with promising activity for glioblastoma multiforme. Expert Opin Investig Drugs. 2008;17:1225–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reubi JC, Macke HR, Krenning EP. Candidates for peptide receptor radiotherapy today and in the future. J Nucl Med. 2005;46 Suppl 1:67S–75.

    PubMed  CAS  Google Scholar 

  • Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med. 2006;36:228–47.

    Google Scholar 

  • Sheldrak HM, Patterson LH. Function and antagonism of beta3 integrins in the development of cancer therapy. Curr Cancer Drug Targets. 2009;9:519–40.

    Article  Google Scholar 

  • Shi J, Wang L, Kim YS, et al. Improving tumor uptake and excretion kinetics of 99mTc-labeled cyclic arginine-glycine-aspartic (RGD) dimers with triglycine linkers. J Med Chem. 2008;51:7980–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi J, Kim YS, Zhai S, et al. Improving tumor uptake and pharmacokinetics of 64Cu-labeled cyclic RGD pep-tide dimers with Gly3 and PEG4 linkers. Bioconjug Chem. 2009;20:750–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh P, Reimer CL, Peters JH, et al. The spatial and temporal expression patterns of integrin α9β1 and one of its ligands, the EIIIA segment of fibronectin, in cutaneous wound healing. J Invest Dermatol. 2004;123:1176–81.

    Article  PubMed  CAS  Google Scholar 

  • Smith JW. Cilengitide Merck. Curr Opin Investig Drugs. 2003;4:741–5.

    PubMed  CAS  Google Scholar 

  • Smith CJ, Gali H, Sieckman GL, et al. Radiochemical investigations of 177Lu-DOTA-8-Aoc-BBN[7-14]NH2: an in vitro/in vivo assessment of the targeting ability of this new radio-pharmaceutical for PC-3 human prostate cancer cells. Nucl Med Biol. 2003;30:101–9.

    Article  PubMed  CAS  Google Scholar 

  • Sowa-Staszczak A, Stefanska A, Pach D, et al. First clinical application of 99mTc labelled long-acting agonist of GLP-1 (Exendin-4) in endocrine diagnosis. Eur J Nucl Med Mol Imaging. 2011;38 Suppl 2:S206.

    Google Scholar 

  • Stefanelli T, Malesci A, De La Rue SA, Danese S. Anti-adhesion molecule therapies in inflammatory bowel disease: touch and go. Autoimmun Rev. 2008;7:364–9.

    Article  PubMed  CAS  Google Scholar 

  • Switala-Jelen K, Dabrowska K, Opolski A, et al. The biological functions of beta3 integrins. Folia Biol (Praha). 2004;50:143–52.

    CAS  Google Scholar 

  • Takayama S, Ishii S, Ikeda T, et al. The relationship between bone metastasis from human breast cancer and integrin alpha(v)beta3 expression. Anticancer Res. 2005;25:79–83.

    PubMed  CAS  Google Scholar 

  • Tanaka K, Masu M, Nakanishi S. Structure and functional expression of the cloned rat neurotensin receptor. Neuron. 1990;4:847–54.

    Article  PubMed  CAS  Google Scholar 

  • Tang-Christensen M, Larsen PJ, Thulesen J, et al. The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat Med. 2000;6(7):802–7.

    Article  PubMed  CAS  Google Scholar 

  • Temming K, Schiffelers RM, Molema G, Kok RJ. RGD based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist Updat. 2005;8:381–402.

    Article  PubMed  CAS  Google Scholar 

  • Teunissen JJ, Kwekkeboom DJ, de Jong M, et al. Endocrine tumours of the gastrointestinal tract. Peptide receptor radionuclide therapy. Best Pract Res Clin Gastroenterol. 2005;9:595–616.

    Article  CAS  Google Scholar 

  • Tsuji T. Physiological and pathological roles of α3β1 integrin. J Membr Biol. 2004;200:115–32.

    Article  PubMed  CAS  Google Scholar 

  • Tucker GC. Integrins: molecular targets in cancer therapy. Curr Oncol Rep. 2006;8:96–103.

    Article  PubMed  CAS  Google Scholar 

  • Valkema R, de Jong M, Bakker WH, et al. Phase I study of peptide receptor radionuclide therapy with [111In-DTPA0]Octreotide: The Rotterdam experience. Semin Nucl Med. 2002;32:110–22.

    Article  PubMed  Google Scholar 

  • Valkema R, Pauwels SA, Kvols LK, et al. Long-term follow-up of renal function after peptide receptor radiation therapy with 90Y-DOTA0, Tyr3-octreotide and 177Lu-DOTA0, Tyr3-octreotate. J Nucl Med. 2005;46 Suppl 1:83S–91.

    PubMed  CAS  Google Scholar 

  • Valkema R, Pauwels S, Kvols LK, et al. Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0, Tyr3]octreotide in patients with advanced gastroentero-pancreatic neuroendocrine tumors. Semin Nucl Med. 2006;36:147–56.

    Article  PubMed  Google Scholar 

  • Van Den Bossche B, Van de Wiele C. Receptor imaging in oncology by means of nuclear medicine: current status. J Clin Oncol. 2004;22:3593–607.

    Article  CAS  Google Scholar 

  • van Essen M, Krenning EP, De Jong M, et al. Peptide receptor radionuclide therapy with radiolabelled somatostatin analogues in patients with somatostatin receptor positive tumours. Acta Oncol. 2007a;46:723–34.

    Article  PubMed  CAS  Google Scholar 

  • van Essen M, Krenning EP, Bakker WH, et al. Peptide receptor radionuclide therapy with 177Lu-octreotate in patients with foregut carcinoid tumours of bronchial, gastric and thymic origin. Eur J Nucl Med Mol Imaging. 2007b;34:1219–27.

    Article  PubMed  CAS  Google Scholar 

  • Vincent JP, Mazella J, Kitabgi P. Neurotensin and neurotensin receptors. Trends Pharmacol Sci. 1999;20:302–9.

    Article  PubMed  CAS  Google Scholar 

  • Virgolini I, Raderer M, Kurtaran A, et al. 123I-vasoactive intestinal peptide (VIP) receptor scanning: update of imaging results in patients with adenocarcinomas and endocrine tumors of the gastrointestinal tract. Nucl Med Biol. 1996;23:685–92.

    Article  PubMed  CAS  Google Scholar 

  • Waldherr C, Pless M, Maecke HR, et al. The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: a clinical phase II study. Ann Oncol. 2001;12:941–5.

    Article  PubMed  CAS  Google Scholar 

  • Waldherr C, Pless M, Maecke HR, et al. Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq 90Y-DOTATOC. J Nucl Med. 2002;43:610–6.

    PubMed  CAS  Google Scholar 

  • Walsh JH. Gastrointestinal hormones. In: Johnson LR, editor. Physiology of the gastrointestinal tract. 3rd ed. New York: Raven Press, Ltd; 1994. p. 1–128.

    Google Scholar 

  • Wang L, Shi J, Kim YS, et al. Improving tumor-targeting capability and pharmacokinetics of 99mTc-labeled cyclic RGD dimers with PEG4 linkers. Mol Pharm. 2009;6:231–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wegener KL, Campbell ID. Transmembrane and cytoplasmic domains in integrin activation and protein-protein interactions (review). Mol Membr Biol. 2008;25:76–87.

    Article  CAS  Google Scholar 

  • Wei L, Butcher C, Miao Y, et al. Synthesis and biologic evaluation of 64Cu-labeled rhenium-cyclized α-MSH peptide analog using a cross-bridged cyclam chelator. J Nucl Med. 2007a;48:64–72.

    PubMed  CAS  Google Scholar 

  • Wei L, Miao Y, Gallazzi F, et al. Gallium-68-labeled DOTA-rhenium-cyclized α-melanocyte-stimulating hormone analog for imaging of malignant melanoma. Nucl Med Biol. 2007b;34:945–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wicki A, Wild D, Storch D, et al. [Lys40(Ahx-DTPA-111In)NH2]-Exendin-4 is a highly efficient radiotherapeutic for glucagon-like peptide-1 receptor-targeted therapy for insulinoma. Clin Cancer Res. 2007;13:3696–705.

    Article  PubMed  CAS  Google Scholar 

  • Wild D, Macke H, Christ E, et al. Glucagon-like peptide 1-receptor scans to localize occult insulinomas. N Engl J Med. 2008;359:766–8.

    Article  PubMed  CAS  Google Scholar 

  • Wild D, Christ E, Caplin ME, et al. Glucagon-like peptide-1 versus somatostatin receptor targeting reveals 2 distinct forms of malignant insulinomas. J Nucl Med. 2011;52:1073–8.

    Article  PubMed  Google Scholar 

  • Yoshimoto M, Ogawa K, Washiyama K, et al. αvβ3 Integrin-targeting radionuclide therapy and imaging with monomeric RGD peptide. Int J Cancer. 2008;123:709–71.

    Article  PubMed  CAS  Google Scholar 

  • Yusta B, Huang L, Munroe D, et al. Enteroendocrine localization of GLP-2 receptor expression in humans and rodents. Gastroenterology. 2000;119(3):744–55.

    Article  PubMed  CAS  Google Scholar 

  • Zecchinon L, Fett T, Baise E, Desmecht D. Characterization of the caprine (Capra hircus) beta-2 integrin CD18-encoding cDNA and identification of mutations potentially responsible for the ruminantspecific virulence of Mannheimia haemolytica. Mol Membr Biol. 2004;21:289–95.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Chen J, Waldherr C, et al. Synthesis and evaluation of bombesin derivatives on the basis of pan-bombesin peptides labeled with indium-111, lutetium-177, and yttrium-90 for targeting bombesin receptor-expressing tumors. Cancer Res. 2004;64:6707–15.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Schuhmacher J, Waser B, et al. DOTA-PESIN, a DOTA-conjugated bombesin derivative designed for the imaging and targeted radionuclide treatment of bombesin receptor-positive tumours. Eur J Nucl Med Mol Imaging. 2007;34:1198–208.

    Article  PubMed  Google Scholar 

  • Zheng DQ, Woodard AS, Fornaro M, et al. Prostatic carcinoma cell migration via αvβ3 integrin is modulated by a focal adhesion kinase pathway. Cancer Res. 1999;59:655–1664.

    Google Scholar 

  • Zhou X, Murphy FR, Gehdu N. Engagement of αvβ3 integrin regulates proliferation and apoptosis of hepatic stellate cells. J Biol Chem. 2004;20279:23996–4006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Knapp, F.F.(., Dash, A. (2016). Peptide Receptor Radionuclide Therapy (PRRT). In: Radiopharmaceuticals for Therapy . Springer, New Delhi. https://doi.org/10.1007/978-81-322-2607-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2607-9_10

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2606-2

  • Online ISBN: 978-81-322-2607-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics