Introduction: Radiopharmaceuticals Play an Important Role in Both Diagnostic and Therapeutic Nuclear Medicine

  • F. F. (Russ) Knapp
  • Ashutosh Dash


The goal of Radiopharmaceuticals for Therapy is to discuss the applications of particle-emitting radioisotopes attached to tissue-targeting radiopharmaceutical agents for use as unsealed therapeutic sources. This book is not meant to represent a compendium of the extensive therapeutic options available using unsealed radioisotopic sources, but instead primarily focuses on current and developing new therapeutic strategies for applications in nuclear medicine, oncology, and interventional specialties. Examples of disease processes are discussed which can benefit from treatment with radiopharmaceuticals and those clinical indications when the use of therapeutic radioisotopes offers a unique opportunity for treatment. This book is focused on therapeutic radiopharmaceuticals which have been recently developed and have entered the clinical routine and new promising and attractive technologies and agents for therapy of cancer and chronic conditions. This chapter provides a brief introduction of the general principles of radiopharmaceutical applications as unsealed sources for both diagnostic and therapeutic applications. These introductory comments on the use of radioisotopes in nuclear medicine set the stage for subsequent more detailed discussion of specific therapeutic radiopharmaceuticals in subsequent chapters.


Positron Emission Tomographic Peptide Receptor Radionuclide Therapy Radionuclide Therapy Positron Emission Tomographic Nuclear Medicine Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aerts A, Impens NR, Gijs M, et al. Biological carrier molecules of radiopharmaceuticals for molecular cancer imaging and targeted cancer therapy. Curr Pharm Des. 2014;20(32):5218–44.PubMedCrossRefGoogle Scholar
  2. Akkas BE, Demirel BB, Vural G. Prognostic factors affecting disease-specific survival in patients with recurrent and/or metastatic differentiated thyroid carcinoma detected by positron emission tomography/computed tomography. Thyroid. 2014;24(2):287–925.PubMedCrossRefGoogle Scholar
  3. Alavi A, Basu S. Planar and SPECT imaging in the era of PET and PET-CT: can it survive the test of time? Eur J Nucl Med Mol Imaging. 2008;35(8):1554–9.PubMedCrossRefGoogle Scholar
  4. Alazraki NP. Radionuclide imaging in the evaluation of infections and inflammatory disease. Radiol Clin North Am. 1993;31(4):783–94.PubMedGoogle Scholar
  5. Anger H. Scintillation camera. Rev Sci Instr. 1958;29:27–33.CrossRefGoogle Scholar
  6. Bentzen SM, Gregoire V. Molecular imaging-based dose painting: a novel paradigm for radiation therapy prescription. Semin Radiat Oncol. 2011;21(2):101–10.Google Scholar
  7. Beyer T, Freudenberg LS, Townsend DW, et al. The future of hybrid imaging—part 1: hybrid imaging technologies and SPECT/CT insights. Imaging. 2011;2(2):161–9.Google Scholar
  8. Bhattacharyya S, Dixit M. Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals. Dalton Trans. 2011;40(23):6112–28.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bockisch A, Freudenberg LS, Schmidt D, et al. Hybrid imaging by SPECT/CT and PET/CT: proven outcomes in cancer imaging. Semin Nucl Med. 2009;39(4):276–89.PubMedCrossRefGoogle Scholar
  10. Bomanji JB, Siraj QH. Tumour imaging. Br J Hosp Med. 1995;54(2–3):70–5.PubMedGoogle Scholar
  11. Brandon D, Alazraki A, Halkar RK, et al. The role of single-photon emission computed tomography and SPECT/computed tomography in oncologic imaging. Semin Oncol. 2011;38(1):87–108.PubMedCrossRefGoogle Scholar
  12. Britton KE. Towards the goal of cancer-specific imaging and therapy. Nucl Med Commun. 1997;18:992–1005.PubMedCrossRefGoogle Scholar
  13. Chowdhury FU, Scarsbrook AF. The role of hybrid SPECT-CT in oncology: current and emerging clinical applications. Clin Radiol. 2008;63(3):241–51.PubMedCrossRefGoogle Scholar
  14. Coleman RE. PET in lung cancer. J Nucl Med. 1999;40(5):814–20.PubMedGoogle Scholar
  15. Connell PP, Hellman S. Advances in radiotherapy and implications for the next century: a historical perspective. Cancer Res. 2009;69:383–92.PubMedCrossRefGoogle Scholar
  16. Cuaron JJ, Hirsch JA, Medich DC, et al. A proposed methodology to select radioisotopes for use in radionuclide therapy. AJNR Am J Neuroradiol. 2009;30:1824–9.PubMedCrossRefGoogle Scholar
  17. Cutler CS, Hennkens HM, Sisay N, et al. Radiometals for combined imaging and therapy. Chem Rev. 2013;113(2):858–83.PubMedCrossRefGoogle Scholar
  18. Dalvie D. Recent advances in the applications of radioisotopes in drug metabolism, toxicology and pharmacokinetics. Curr Pharm Des. 2000;6(10):1009–28.PubMedCrossRefGoogle Scholar
  19. Dash A, Knapp FF, Pillai MRA. Targeted radionuclide therapy-an overview. Curr Radiopharm. 2013;6(3):152–80.PubMedCrossRefGoogle Scholar
  20. de Haas HJ, van den Borne SW, Boersma HH, et al. Evolving role of molecular imaging for new understanding: targeting myofibroblasts to predict remodeling. Ann N Y Acad Sci. 2012;1254:33–41.PubMedCrossRefGoogle Scholar
  21. Delbeke D, Martin WH. Positron emission tomography imaging in oncology. Radiol Clin North Am. 2001;39(5):883–917.PubMedCrossRefGoogle Scholar
  22. Delbeke D, Sandler MP. The role of hybrid cameras in oncology. Semin Nucl Med. 2000;30(4):268–80.PubMedCrossRefGoogle Scholar
  23. Delbeke D, Schöder H, Martin WH, et al. Hybrid imaging (SPECT/CT and PET/CT): improving therapeutic decisions. Semin Nucl Med. 2009;39(5):308–40.PubMedCrossRefGoogle Scholar
  24. Eary JF. Nuclear medicine in cancer diagnosis. Lancet. 1991;354:853–7.CrossRefGoogle Scholar
  25. Eberl S, Chan HK, Daviskas E. SPECT imaging for radioaerosol deposition and clearance studies. J Aerosol Med. 2006;19(1):8–20.PubMedCrossRefGoogle Scholar
  26. Eberlein U, Bröer JH, Vandevoorde C, et al. Biokinetics and dosimetry of commonly used radiopharmaceuticals in diagnostic nuclear medicine – a review. Eur J Nucl Med Mol Imaging. 2011;38(12):2269–81.PubMedPubMedCentralCrossRefGoogle Scholar
  27. El-Maghraby TA, Moustafa HM, Pauwels EK. Nuclear medicine methods for evaluation of skeletal infection among other diagnostic modalities. Q J Nucl Med Mol Imaging. 2006;50(3):167–92.PubMedGoogle Scholar
  28. Ercan MT, Caglar M. Therapeutic radiopharmaceuticals. Cur Pharm Des. 2000;6:1085–121.CrossRefGoogle Scholar
  29. Erickson JJ. Development of the scintillation camera. Am J Physiol Imaging. 1992;3–4:98–104.Google Scholar
  30. Gabriel M. Radionuclide therapy beyond radioiodine. Wien Med Wochenschr. 2012;162(19–20):430–9.PubMedCrossRefGoogle Scholar
  31. Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer. 2002;2(9):683–93.PubMedCrossRefGoogle Scholar
  32. Ganz WI, Serafini AN. The diagnostic role of nuclear medicine in the acquired immunodeficiency syndrome. J Nucl Med. 1989;30(12):1935–45.PubMedGoogle Scholar
  33. Garden KL, Bones PJ, Bates RH. From living being to medical image-bridging the dimensionality gap. Australas Phys Eng Sci Med. 1989;4:186–204.Google Scholar
  34. Gerber DE, Chan TA. Recent advances in radiation therapy. Am Fam Physician. 2008;78:1254–62.PubMedGoogle Scholar
  35. Gholamrezanejhad A, Mirpour S, Mariani G. Future of nuclear medicine: SPECT versus PET. J Nucl Med. 2009;50(7):16N–8.PubMedGoogle Scholar
  36. Giron MC, Portolan S, Bin SA, Mazzi U, Cutler CS. Cytochrome P450 and radiopharmaceutical metabolism. Q J Nucl Med Mol Imaging. 2008;52(3):​254–66.PubMedGoogle Scholar
  37. Hoefnagel CA. Radionuclide therapy revisited. Eur J Nucl Med. 1991;18:408–31.PubMedCrossRefGoogle Scholar
  38. Hoefnagel CA. Radionuclide cancer therapy. Ann Nucl Med. 1998;12:61–70.PubMedCrossRefGoogle Scholar
  39. Horger M, Bares R. The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease. Semin Nucl Med. 2006;36(4):286–94.PubMedCrossRefGoogle Scholar
  40. Howard SA, Rosenthal MH, Jagannathan JP, et al. Beyond the vascular endothelial growth factor axis: update on role of imaging in nonantiangiogenic molecular targeted therapies in oncology. AJR Am J Roentgenol. 2015;204(5):919–32.PubMedCrossRefGoogle Scholar
  41. Hunter KU, Eisbruch A. Advances in imaging: target delineation. Cancer J. 2011;17(3):151–4.PubMedCrossRefGoogle Scholar
  42. James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92(2):897–965.PubMedCrossRefGoogle Scholar
  43. Jansen FP, Vanderheyden JL. The future of SPECT in a time of PET. Nucl Med Biol. 2007;34(7):733–5.PubMedCrossRefGoogle Scholar
  44. Jaszczak RJ. The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences. Phys Med Biol. 2006;51:R99–115.PubMedCrossRefGoogle Scholar
  45. Keidar Z, Israel O, Krausz Y. SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin Nucl Med. 2003;33(3):205–18.PubMedCrossRefGoogle Scholar
  46. Kjaer A. Molecular imaging of cancer using PET and SPECT. Adv Exp Med Biol. 2006;587:277–84.PubMedCrossRefGoogle Scholar
  47. Kostakoglu L, Fardanesh R, Posner M, et al. Early detection of recurrent disease by FDG-PET/CT leads to management changes in patients with squamous cell cancer of the head and neck. Oncologist. 2013;18(10):1108–17.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Krausz Y, Israel O. Single-photon emission computed tomography/computed tomography in endocrinology. Semin Nucl Med. 2006;36(4):267–74.PubMedCrossRefGoogle Scholar
  49. Kubota K. From tumor biology to clinical Pet: a review of positron emission tomography (PET) in oncology. Ann Nucl Med. 2001;15(6):471–86.PubMedCrossRefGoogle Scholar
  50. Kuikka JT, Britton KE, Chengazi VU, Savolainen S. Future developments in nuclear medicine instrumentation: a review. Nucl Med Commun. 1998;19(1):3–12.PubMedCrossRefGoogle Scholar
  51. Kurdziel KA, Ravizzini G, Croft BY, et al. The evolving role of nuclear molecular imaging in cancer. Expert Opin Med Diagn. 2008;2(7):829–42.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Leeds NE. The clinical application of radiopharmaceuticals. Drugs. 1990;40(5):713–21.PubMedCrossRefGoogle Scholar
  53. MacIntyre WJ, Saha GB, Go RT. Planar imaging with single-head large-field-of-view cameras: are they still the workhorse? Semin Nucl Med. 1994;24(1):11–6.PubMedCrossRefGoogle Scholar
  54. Maletz KL, Ennis RD, Ostenson J, et al. Comparison of CT and MR-CT fusion for prostate post-implant dosimetry. Int J Radiat Oncol Biol Phys. 2012;82(5):1912–7.PubMedCrossRefGoogle Scholar
  55. Mammatas LH, Verheul HM, Hendrikse NH, et al. Molecular imaging of targeted therapies with positron emission tomography: the visualization of personalized cancer care. Cell Oncol. 2015;38(1):49–64.CrossRefGoogle Scholar
  56. Mankoff DA, Bellon JR. Positron-emission tomographic imaging of cancer: glucose metabolism and beyond. Semin Radiat Oncol. 2001;11(1):16–27.PubMedCrossRefGoogle Scholar
  57. Mariani G, Bruselli L, Duatti A. Is PEt always an advantage versus planar and SPECT imaging? Eur J Nucl Med Mol Imaging. 2008;35(8):1560–5.Google Scholar
  58. Mariani G, Bruselli L, Kuwert T, et al. A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging. 2010;37(10):1959–85.PubMedCrossRefGoogle Scholar
  59. McCready VR. Milestones in nuclear medicine. Eur J Nucl Med. 2000;27(Suppl):S49–79.PubMedCrossRefGoogle Scholar
  60. Meikle SR, Kench P, Kassiou M, Banati RB. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol. 2005;50:R45–6.PubMedCrossRefGoogle Scholar
  61. Mercer JR. Molecular imaging agents for clinical positron emission tomography in oncology other than fluorodeoxyglucose (FDG): applications, limitations and potential. J Pharm Pharm Sci. 2007;10(2):180–202.PubMedGoogle Scholar
  62. Messa C, Fazio F, Costa DC. Clinical brain radionuclide imaging studies. Semin Nucl Med. 1995;25(2):111–43.PubMedCrossRefGoogle Scholar
  63. Notghi A, Harding LK. The clinical challenge of nuclear medicine in gastroenterology. Br J Hosp Med. 1995;54(2–3):80–6.PubMedGoogle Scholar
  64. Patton JA, Delbeke D, Sandler MP. Image fusion using an integrated, dual-head coincidence camera with X-ray tube-based attenuation maps. J Nucl Med. 2000;41(8):1364–8.PubMedGoogle Scholar
  65. Penner N, Klunk LJ, Prakash C. Human radiolabeled mass balance studies: objectives, utilities and limitations. Biopharm Drug Dispos. 2009;30:185–203.PubMedCrossRefGoogle Scholar
  66. Pexman JH. Gamma camera or rectilinear scanner. Proc R Soc Med. 1973;66(8):830–3.PubMedPubMedCentralGoogle Scholar
  67. Prvulovich EM, Bomanji JB. The role of nuclear medicine in clinical investigation. BMJ. 1998;316:1140–6.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun. 2008;3:193–207.CrossRefGoogle Scholar
  69. Riemann B, Schäfers KP, Schober O, Schäfers M. Small animal PET in preclinical studies: opportunities and challenges. Q J Nucl Med Mol Imaging. 2008;52(3):215–21.PubMedGoogle Scholar
  70. Ross DS. Evaluation of the thyroid nodule. J Nucl Med. 1991;32(11):2181–92.PubMedGoogle Scholar
  71. Schillaci O. Single-photon emission computed tomography/computed tomography in lung cancer and malignant lymphoma. Semin Nucl Med. 2006;36(4):275–85.PubMedCrossRefGoogle Scholar
  72. Schillaci O, Danieli R, Manni C, et al. Is SPECT/CT with a hybrid camera useful to improve scintigraphic imaging interpretation? Nucl Med Commun. 2004;25(7):705–10.PubMedCrossRefGoogle Scholar
  73. Schillaci O, Filippi L, Manni C, et al. Single-photon emission computed tomography/computed tomography in brain tumors. Semin Nucl Med. 2007;37(1):34–47.PubMedCrossRefGoogle Scholar
  74. Schlegel W. If you can’t see it, you can miss it: the role of biomedical imaging in radiation oncology. Radiat Prot Dosimetry. 2010;139(1–3):321–6.PubMedCrossRefGoogle Scholar
  75. Simpson DR, Lawson JD, Nath SK, et al. Utilization of advanced imaging technologies for target delineation in radiation oncology. J Am Coll Radiol. 2009;6(12):876–83.PubMedCrossRefGoogle Scholar
  76. Solomon B, McArthur G, Cullinane C, et al. Applications of positron emission tomography in the development of molecular targeted cancer therapeutics. BioDrugs. 2003;17(5):339–54.PubMedCrossRefGoogle Scholar
  77. Srivastava S, Dadachova E. Recent advances in radionuclide therapy. Semin Nucl Med. 2001;31(4):330–41.PubMedCrossRefGoogle Scholar
  78. Tapscott E. Nuclear medicine pioneer: Hal O. Anger. First scintillation camera is foundation for modern imaging systems. J Nucl Med. 1998;39(3):15N, 19N, 26N-27N.PubMedGoogle Scholar
  79. Telander GT, Loken MK. Comparison of the scintillation camera with a conventional rectilinear scanner using technetium-99m pertechnetate in a tumor brain phantom. J Nucl Med. 1967;8(7):487–501.PubMedGoogle Scholar
  80. Utsunomiya D, Shiraishi S, Imuta M, et al. Added value of SPECT/CT fusion in assessing suspected bone metastasis: comparison with scintigraphy alone and nonfused scintigraphy and CT. Radiology. 2006;238(1):264–71.PubMedCrossRefGoogle Scholar
  81. Volkert WA, Hoffman TJ. Therapeutic radiopharmaceuticals. Chem Rev. 1999;99:2269–92.PubMedCrossRefGoogle Scholar
  82. Wheldon TE. Targeting radiation to tumours. Int J Radiat Biol. 1994;65:109–16.PubMedCrossRefGoogle Scholar
  83. Wolbarst AB, Hendee WR. Evolving and experimental technologies in medical imaging. Radiology. 2006;238(1):16–39.PubMedCrossRefGoogle Scholar
  84. Wood KA, Hoskin PJ, Saunders MI. Positron emission tomography in oncology: a review. Clin Oncol. 2007;19:237–55.CrossRefGoogle Scholar
  85. Yeong C-H, Cheng M-H, Ng K-H. Therapeutic radionuclides in nuclear medicine: current and future prospects. J Zhejiang Univ Sci B. 2014;15(10):845–63.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Zaidi H. Recent developments and future trends in nuclear medicine instrumentation. Z Med Phys. 2006;16(1):5–17.PubMedCrossRefGoogle Scholar
  87. Zanzonico P. Principles of nuclear medicine imaging: planar, SPECT, PET, multi-modality, and autoradiography systems. Radiat Res. 2012;177(4):349–64.PubMedCrossRefGoogle Scholar
  88. Zimmermann RG. Why are investors not interested in my radiotracer? The industrial and regulatory constraints in the development of radiopharmaceuticals. Nucl Med Biol. 2013;40:155–66.PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • F. F. (Russ) Knapp
    • 1
  • Ashutosh Dash
    • 2
  1. 1.Nuclear Security and Isotope DivisionOak Ridge National LaboratoryOAK RIDGEUSA
  2. 2.Isotope Production and Applications DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations