Recent Achievements in the Production of Biobased 1,3-Propanediol

  • Noura Raddadi
  • Stefania De Giorgi
  • Fabio Fava


The increasing concerns related to the high prices and limited availability of fossil fuels have led to a remarkable growth of biodiesel industry in recent years. This, in turn resulted in the accumulation of high quantities of crude glycerol as a by-product of the transesterification reaction. It is indeed estimated that the production of 100 kg of biodiesel results in the production of 10 kg of crude glycerol. The obtained crude glycerol by-products could be purified and further used in several processes, but this purification process is costly. The biorefinery concept, i.e. the exploitation of wastes or by-products for the obtainment of high-value products, has been then considered as an interesting alternative strategy for the valorisation of this by-product. In this context, several fine chemicals, among which is 1,3-propanediol, are produced from biodiesel-derived raw glycerol feedstock. In this chapter, we report on recent achievements in the production of 1,3-propanediol from biodiesel-derived crude glycerol including a detailed literature review on the biotechnological processes developed and the strategies employed for yield improvement. The bottlenecks of these biorefinery processes are also discussed.


Hydraulic Retention Time Crude Glycerol Biotechnological Process Removal Ratio Genome Shuffle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The support of the Italian Ministry of Agricultural, Food and Forestry Policies (MiPAAF) (project EXTRAVALORE) and the Italian Ministry for Education, University and Research (MIUR) (Cluster Agrifood SO.FI.A; CTN01_00230_450760), is acknowledged.


  1. Almeida JR, Fávaro LC, Quirino BF (2012) Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels 5:48PubMedCentralCrossRefPubMedGoogle Scholar
  2. Ames TT (2002) Process for the isolation of 1,3-propanediol from fermentation broth. US patent 6,361,983 B1Google Scholar
  3. Anand P, Saxena RK (2012) A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii. New Biotechnol 29:199–205CrossRefGoogle Scholar
  4. Anand P, Saxena RK, Merwah RG (2011) A novel downstream process for 1,3-propanediol from glycerol-based fermentation. Appl Microbiol Biotechnol 90:1267–1276CrossRefPubMedGoogle Scholar
  5. Biebl H (2001) Fermentation of glycerol by Clostridium pasteurianum-batch and continuous studies. J Ind Microbiol Biotechnol 27:18–25CrossRefPubMedGoogle Scholar
  6. Biebl H, Menzel K, Zeng A-P, Deckwer W-D (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297CrossRefPubMedGoogle Scholar
  7. Bizukojc M, Dietz D, Sun J, Zeng A-P (2010) Metabolic modelling of syntrophic-like growth of a 1,3-propanediol producer, Clostridium butyricum, and a methanogenic archeon, Methanosarcina mazei, under anaerobic conditions. Bioprocess Biosyst Eng 33:507–523CrossRefPubMedGoogle Scholar
  8. Casali S, Gungormusler M, Bertin L, Fava F, Azbar N (2012) Development of a biofilm technology for the production of 1,3-propanediol (1,3-PDO) from crude glycerol. Biochem Eng J 64:84–90CrossRefGoogle Scholar
  9. Chatzifragkou A, Dietz D, Komaitis M, Zeng A-P, Papanikolaou S (2010) Effect of Biodiesel-Derived Waste Glycerol Impurities and 1,3-Propanediol production of Clostridium butyricum VPI 1718. Biotechnol Bioeng 107:76–84CrossRefPubMedGoogle Scholar
  10. Chatzifragkou A, Papanikolaou S, Dietz D, Doulgeraki AI, Nychas G-JE, Zeng A-P (2011) Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Appl Microbiol Biotechnol 91:101–112CrossRefPubMedGoogle Scholar
  11. Chen X, Xiu Z, Wang J, Zhang D, Xu P (2003) Stoichiometric analysis and experimental investigation of glycerol bioconversion to 1,3-propanediol by Klebsiella pneumoniae under microaerobic conditions. Enzym Microb Technol 33:386–394CrossRefGoogle Scholar
  12. Da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27:30–39CrossRefPubMedGoogle Scholar
  13. Dobson R, Gray V, Rumbold K (2012) Microbial utilization of crude glycerol for the production of value-added products. J Ind Microbiol Biotechnol 39:217–226CrossRefPubMedGoogle Scholar
  14. Drozdzynska A, Leja K, Czaczyk K (2011) Biotechnological production of 1,3-propanediol from crude glycerol. J Biotechnol Comput Biol Bionanotechnol 91:92–100Google Scholar
  15. Ferreira TF, Ribeiro RR, Ribeiro CMS, Freire DMG, Coelho AAZ (2012) Evaluation of 1,3-Propanediol Production from Crude glycerol by Citrobacter freundii ATCC 8090. Chem Eng Trans 27:57–162Google Scholar
  16. Festel Capital. 2007 (available on
  17. Gonzalez-Pajuelo M, Meynial-Salles I, Mended F, Soucaille P, Vasconcelos I (2006) Microbial Conversion of Glycerol to 1,3-Propanediol: Physiological comparison of a natural producer, Clostridium butyricum VPI 3266, and an Engineered Strain, Clostridium acetobutylicum DG1(pSPD5). Appl Environ Microbiol 872:96–101CrossRefGoogle Scholar
  18. Gungormusler M, Gonen C, Azbar N (2011) Continuous production of 1,3-propanediol using raw glycerol with immobilized Clostridium beijerinckii NRRL B-593 in comparison to suspended culture. Bioproc Biosyst Eng 34:727–733CrossRefGoogle Scholar
  19. Gungormusler M, Gonen C, Azbar N (2013) Effect of cell immobilization on the production of 1,3-propanediol. New Biotechnol 30:623–628CrossRefGoogle Scholar
  20. Hao J, Xu F, Liu H, Liu D (2006) Downstream processing of 1,3-propanediol fermentation broth. J Chem Technol Biotechnol 81:102–108CrossRefGoogle Scholar
  21. Hao J, Wang W, Tian J, Li J, Liu D (2008) Decrease of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol production by over-expressing dhaT gene in Klebsiella pneumoniae TUAC01. J Ind Microbiol Biotechnol 35:735–741CrossRefPubMedGoogle Scholar
  22. Hartlep M, Hussmann W, Prayitno N, Meynial-Salles I, Zeng A-P (2002) Study of two-stage processes for the microbial production of 1,3-propanediol from glucose. Appl Microbiol Biotechnol 60:60–66CrossRefPubMedGoogle Scholar
  23. Jensen TO, Kvist T, Mikkelsen MJ, Christensen PV, Westermann P (2012) Fermentation of crude glycerol from biodiesel production by Clostridium pasteurianum. J Ind Microbiol Biotechnol 39:709–717CrossRefPubMedGoogle Scholar
  24. Jun S-A, Moon C, Kang C-H, Kong S-W, Sang B-I, Um Y (2010) Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Appl Biochem Biotechnol 161:491–501CrossRefPubMedGoogle Scholar
  25. Kaur G, Srivastava AK, Chand S (2012) Advances in biotechnological production of 1,3-propanediol. Biochem Eng J 64:106–118CrossRefGoogle Scholar
  26. Kivisto A, Santala V, Karp M (2012) 1,3-Propanediol production and tolerance of a halophilic fermentative bacterium, Halanaerobium saccharolyticum subsp. Saccharolyticum. J Biotechnol 158:242–247CrossRefPubMedGoogle Scholar
  27. Kraus GA (2008) Synthetic Methods for the Preparation of 1,3-Propanediol. Clean 8:648–651Google Scholar
  28. Kurian JV (2005) A New Polymer Platform for the Future-Sorona from Corn Derived 1,3-Propanediol. J Polym Environ 13:159–167CrossRefGoogle Scholar
  29. Lange J-P (2001) Process and catalyst system for preparing a 1,3-diol by the hydrogenation of a 3-hydroxyaldehyde. PCT Int Appl. WO 2001070658 A1 20010927 CAN 135:242664, 2001, 19 ppGoogle Scholar
  30. Lee CS, Aroua MK, Daud WMAW, Cognet P, Pérès-Lucchese Y, Fabre P-L, Reynes O, Latapie L (2015) A review: Conversion of bioglycerol into 1,3-propanediol via biological and chemical method. Renew Sustain Energ Rev 42:963–972CrossRefGoogle Scholar
  31. Leja K, Czaczyk K, Myszka K (2011) The use of microorganisms in 1,3-Propanediol production. Afr J Microbiol Res 5:4652–4658Google Scholar
  32. Li Z, Teng H, Xiu Z (2011) Extraction of 1,3-propanediol from glycerol-based fermentation broths with methanol/phosphate aqueous two-phase system. Proc Biochem 46:586–591CrossRefGoogle Scholar
  33. Ma BB, Xu XL, Zhang GL, Wang LW, Wu M, Li C (2009) Microbial Production of 1,3-Propanediol by Klebsiella pneumoniae XJPD-Li under Different Aeration Strategies. Appl Biochem Biotechnol 152:127–134CrossRefPubMedGoogle Scholar
  34. Maervoet VET, Beauprez J, De Maeseneire SL, Soetaert WK, De Mey M (2012) Citrobacter werkmanii, a new candidate for the production of 1,3-propanediol: strain selection and carbon source optimization. Green Chem 14:2168–2178CrossRefGoogle Scholar
  35. Metsoviti M, Paramithiotis S, Drosinos E, Galiotou-Panayotou M, Nychas G-JE, Zeng A-P, Papanikolaou S (2012) Screening of bacterial strains capable of converting biodiesel-derived raw glycerol into 1,3-propanediol, 2,3-butanediol and ethanol. Eng Life Sci 12:57–68CrossRefGoogle Scholar
  36. Metsoviti M, Zeng A-P, Koutinas AA, Papanikolaou S (2013) Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J Biotechnol 163:408–418CrossRefPubMedGoogle Scholar
  37. Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459CrossRefPubMedGoogle Scholar
  38. Otte B, Grunwaldt E, Mahamoud O, Jennewein S (2009) Genome shuffling in Clostridium diolis DSM 15410 for Improved 1,3-Propanediol Production. Appl Environ Microbiol 75:7610–7616PubMedCentralCrossRefPubMedGoogle Scholar
  39. Papanikolaou S, Fick M, Aggelis G (2004) The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum. J Chem Technol Biotechnol 79:1189–1196CrossRefGoogle Scholar
  40. Pflugl S, Marx H, Mattanovich D, Sauer M (2015) 1,3-Propanediol production from glycerol with Lactobacillus diolivorans. Bioresour Technol 119:133–140CrossRefGoogle Scholar
  41. Powell JB, Weider PR (2007) Ethylene oxide hydroformylation in expanded solvents. In: AIChE Spring National Meeting, Conference Proceedings, Houston, TX, USA, April 22–27, p80131/1–p80131/5Google Scholar
  42. Rashmi BJ, Rusu D, Prashantha K, Lacrampe M-F, Krawczak P (2013) Development of bio-based thermoplastic polyurethanes formulations using corn-derived chain extender for reactive rotational molding. Expr Polym Lett 10:852–862CrossRefGoogle Scholar
  43. Saxena RK, Anand P, Saran S, Isar J (2009) Microbial production of 1,3-propanediol: Recent developments and emerging opportunities. Biotechnol Adv 27:895–913CrossRefPubMedGoogle Scholar
  44. Sullivan JC (1993) Propanediol. Ullmann’s Encyclopedia of Industrial Chemistry, A-22. VCH Press, Wheinheim, pp 171–193Google Scholar
  45. Tang X, Tan Y, Zhu H, Zhao K, Shen W (2009) Microbial conversion of glycerol to 1,3-Propanediol by an engineered strain of Escherichia coli. Appl Environ Microbiol 75:1628–1634PubMedCentralCrossRefPubMedGoogle Scholar
  46. Umare SS, Chandure AS, Pandey RA (2007) Synthesis, characterization and biodegradable studies of 1,3-propanediol based polyesters. Polym Degrad Stab 92:464–479CrossRefGoogle Scholar
  47. Vieira PB, Kilikian BV, Basos RV, Perpetuo EA, Nascimento CAO (2015) Process strategies for enhanced production of 1,3-propanediol by Lactobacillus reuteri using glycerol as a co-substrate. Biochem Eng J 94:30–38CrossRefGoogle Scholar
  48. Wilkens E, Ringel AK, Horting D, Willke T, Vorlop K-D (2012) High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol 93:1057–1063CrossRefPubMedGoogle Scholar
  49. Xu Y-Z, Guo N-N, Zheng Z-M, Ou X-J, Liu H-J, Liu D-H (2009) Metabolism in 1,3-Propanediol Fed-Batch Fermentation by a D-Lactate deficient mutant of Klebsiella pneumoniae. Biotechnol Bioeng 104:965–972CrossRefPubMedGoogle Scholar
  50. Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol: a by product of biodiesel production. Biotechnol Biofuels 5:13PubMedCentralCrossRefPubMedGoogle Scholar
  51. Zhang Y, Li Y, Du C, Liu M, Cao Z (2006) Inactivation of aldehyde dehydrogenase: A key factor for engineering 1,3-propanediol production by Klebsiella pneumonia. Metabol Eng 8:578–586CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Noura Raddadi
    • 1
  • Stefania De Giorgi
    • 1
  • Fabio Fava
    • 1
  1. 1.Department of CivilChemical, Environmental and Materials Engineering (DICAM)BolognaItaly

Personalised recommendations