Biotechnology in Aid of Biodiesel Industry Effluent (Glycerol): Biofuels and Bioplastics

  • Prasun Kumar
  • Sanjeet Mehariya
  • Subhasree Ray
  • Anjali Mishra
  • Vipin Chandra Kalia


Crude glycerol produced by the biodiesel industries as a waste has gathered significant attention as a cheap carbon source. It was recently realized that this forthcoming problem of waste glycerol may be circumvented through biological routes. The role of glycerol to serve as start material for a plethora of chemicals has been well recognized. The lead of science in the field of biotechnology has broadened the application range of glycerol using microorganisms. Here, we are dealing with the potential of the glycerol for the production of third-generation fuels and polymers. The reduced nature of the glycerol molecule makes it a suitable substrate for these biological processes. It would be worth observing that the rapidly thriving biodiesel industry will certainly assist in offering a low-cost glycerol feed for producing other valuable bioproducts. An integrative approach to merge all these procedures could possibly assist in growing and managing a sustainable energy production.


Anaerobic Digestion Continuous Stir Tank Reactor Enterobacter Aerogenes Paracoccus Denitrificans Microbial Electrolysis Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the Director of CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi, CSIR-WUM (ESC0108) Government of India for providing necessary funds and facilities. PK is thankful to CSIR for granting Senior Research Fellowship.


  1. Akutsu Y, Lee DY, Li YY, Noike T (2009) Hydrogen production potentials and fermentative characteristics of various substrates with different heat-pretreated natural microflora. Int J Hydrogen Energy 34:5365–5372. doi: 10.1016/j.ijhydene.2009.04.052 CrossRefGoogle Scholar
  2. Amon T, Amon B, Kryvoruchko V, Bodiroza V, Pötsch E, Zollitsch W (2006) Optimizing methane yield from anaerobic digestion of manure: effects of dairy systems and of glycerine supplementation. Int Congress Ser 1293:217–220. doi: 10.1016/j.ics.2006.03.007 CrossRefGoogle Scholar
  3. Ashby RD, Solaiman DK, Foglia TA (2004) Bacterial poly-(hydroxyalkanoate) polymer production from the biodiesel co-product stream. J Polym Environ 12:105–112. doi: 10.1023/B:JOOE.0000038541.54263.d9 CrossRefGoogle Scholar
  4. Ashby RD, Solaiman DK, Strahan GD (2011) Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly (3-hydroxybutyrate) biopolymers. J Am Oil Chem Soc 88:949–959. doi: 10.1007/s11746-011-1755-6 CrossRefGoogle Scholar
  5. Astals S, Ariso M, Galí A, Mata-Alvarez J (2011) Co-digestion of pig manure and glycerine: experimental and modelling study. J Environ Manag 92:1091–1096. doi: 10.1016/j.jenvman.2010.11.014 CrossRefGoogle Scholar
  6. Astals S, Nolla-Ardèvol V, Mata-Alvarez J (2013) Thermophilic co-digestion of pig manure and crude glycerol: process performance and digestate stability. J Biotechnol 166:97–104. doi: 10.1016/j.jbiotec.2013.05.004 CrossRefPubMedGoogle Scholar
  7. Bormann EJ, Roth M (1999) The production of polyhydroxybutyrate by Methylobacterium rhodesianum and Ralstonia eutropha in media containing glycerol and casein hydrolysates. Biotechnol Lett 21:1059–1063. doi: 10.1023/A:1005640712329 CrossRefGoogle Scholar
  8. Castrillón L, Fernández-Nava Y, Ormaechea P, Marañón E (2011) Optimization of biogas production from cattle manure by pre-treatment with ultrasound and co-digestion with crude glycerin. Bioresour Technol 102:7845–7849. doi: 10.1016/j.biortech.2011.05.047 CrossRefPubMedGoogle Scholar
  9. Castrillón L, Fernández-Nava Y, Ormaechea P, Marañón E (2013a) Methane production from cattle manure supplemented with crude glycerin from the biodiesel industry in CSTR and IBR. Bioresour Technol 127:312–317. doi: 10.1016/j.biortech.2012.09.080 CrossRefPubMedGoogle Scholar
  10. Castrillón L, Marañón E, Fernández-Nava Y, Ormaechea P, Quiroga G (2013b) Thermophilic co-digestion of cattle manure and food waste supplemented with crude glycerin in induced bed reactor (IBR). Bioresour Technol 136:73–77. doi: 10.1016/j.biortech.2013.02.076 CrossRefPubMedGoogle Scholar
  11. Cavalheiro JM, Raposo RS, de Almeida MCMD, Teresa Cesario M, Sevrin C, Grandfils C, da Fonseca MMR (2012) Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour Technol 111:391–397. doi: 10.1016/j.biortech.2012.01.176 CrossRefPubMedGoogle Scholar
  12. Chien CC, Chen CC, Choi MH, Kung SS, Wei YH (2007) Production of poly-β-hydroxybutyrate (PHB) by Vibrio spp. isolated from marine environment. J Biotechnol 132:259–263. doi: 10.1016/j.jbiotec.2007.03.002 CrossRefPubMedGoogle Scholar
  13. Christoph R, Schmidt B, Steinberner U, Dilla W, Karinen R (2006) Glycerol. Ullmann’s Encyclop Ind Chem. doi: 10.1002/14356007.a12_477.pub2 Google Scholar
  14. Costa JB, Rossi DM, De Souza EA, Samios D, Bregalda F, do Carmo Ruaro Peralba M, Flores SH, Antonio M, Ayub MAZ (2011) The optimization of biohydrogen production by bacteria using residual glycerol from biodiesel synthesis. J Environ Sci Health Part A 46:1461–1468. doi:  10.1080/10934529.2011.609036
  15. de Almeida A, Giordano AM, Nikel PI, Pettinari MJ (2010) Effects of aeration on the synthesis of poly (3-hydroxybutyrate) from glycerol and glucose in recombinant Escherichia coli. Appl Environ Microbiol 76:2036–2040. doi: 10.1128/AEM.02706-09 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829. doi: 10.1002/bit.21025 CrossRefPubMedGoogle Scholar
  17. Dobroth ZT, Hu S, Coats ER, McDonald AG (2011) Polyhydroxybutyrate synthesis on biodiesel wastewater using mixed microbial consortia. Bioresour Technol 102:3352–3359. doi: 10.1016/j.biortech.2010.11.053 CrossRefPubMedGoogle Scholar
  18. Escapa A, Manuel MF, Morán A, Gómez X, Guiot SR, Tartakovsky B (2009) Hydrogen production from glycerol in a membraneless microbial electrolysis cell. Energy Fuels 23:4612–4618. doi: 10.1021/ef900357y CrossRefGoogle Scholar
  19. Fernandes BS, Peixoto G, Albrecht FR, Saavedra del Aguila NK, Zaiat M (2010) Potential to produce biohydrogen from various wastewaters. Energy Sustain Dev 14:143–148. doi: 10.1016/j.esd.2010.03.004 CrossRefGoogle Scholar
  20. Fountoulakis MS, Manios T (2009) Enhanced methane and hydrogen production from municipal solid waste and agro-industrial by-products co-digested with crude glycerol. Bioresour Technol 100:3043–3047. doi: 10.1016/j.biortech.2009.01.016 CrossRefPubMedGoogle Scholar
  21. Fountoulakis MS, Petousi I, Manios T (2010) Co-digestion of sewage sludge with glycerol to boost biogas production. Waste Manag 30:1849–1853. doi: 10.1016/j.wasman.2010.04.011 CrossRefPubMedGoogle Scholar
  22. Full TD, Jung DO, Madigan MT (2006) Production of poly‐β‐hydroxyalkanoates from soy molasses oligosaccharides by new, rapidly growing Bacillus species. Lett Appl Microbiol 43:377–384. doi: 10.1111/j.1472-765X.2006.01981.x CrossRefPubMedGoogle Scholar
  23. Gasser E, Ballmann P, Dröge S, Bohn J, König H (2014) Microbial production of biopolymers from the renewable resource wheat straw. J Appl Microbiol 117:1035–1044. doi: 10.1111/jam.12581 CrossRefPubMedGoogle Scholar
  24. Gözke G, Prechtl C, Kirschhöfer F, Mothes G, Ondruschka J, Brenner-Weiss G, Obst U, Posten C (2012) Electrofiltration as a purification strategy for microbial poly-(3-hydroxybutyrate). Bioresour Technol 123:272–278. doi: 10.1016/j.biortech.2012.07.039 CrossRefPubMedGoogle Scholar
  25. Heyndrickx M, De Vos P, Vancanneyt M, De Ley J (1991) The fermentation of glycerol by Clostridium butyricum LMG 1212t2 and 1213t1 and C. pasteurianum LMG 3285. Appl Microbiol Biotechnol 34:637–642. doi: 10.1007/BF00167914 CrossRefGoogle Scholar
  26. Hu H, Wood TK (2010) An evolved Escherichia coli strain for producing hydrogen and ethanol from glycerol. Biochem Biophys Res Comm 391:1033–1038. doi: 10.1016/j.bbrc.2009.12.013 CrossRefPubMedGoogle Scholar
  27. Ibrahim MHA, Steinbüchel A (2009) Poly-(3-Hydroxybutyrate) production from glycerol by Zobellella denitrifican MW1 via high-cell-density fed-batch fermentation and simplified solvent extraction. Appl Environ Microbiol 75:6222–6231. doi: 10.1128/AEM.01162-09 PubMedCentralCrossRefPubMedGoogle Scholar
  28. Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N (2005) Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 100:260–265. doi: 10.1263/jbb.100.260 CrossRefPubMedGoogle Scholar
  29. Jensen PD, Astals S, Lu Y, Devadas M, Batstone DJ (2014) Anaerobic codigestion of sewage sludge and glycerol, focusing on process kinetics, microbial dynamics and sludge dewaterability. Water Res 67:355–366. doi: 10.1016/j.watres.2014.09.024 CrossRefPubMedGoogle Scholar
  30. Kalia VC (2007) Microbial treatment of domestic and industrial wastes for bioenergy production, Appl Microbiol (e-Book). National Science Digital Library NISCAIR, New Delhi, India.
  31. Kalia VC, Joshi AP (1995) Conversion of waste biomass (pea-shells) into hydrogen and methane through anaerobic digestion. Bioresour Technol 53:165–168. doi: 10.1016/0960-8524(95)00077-R CrossRefGoogle Scholar
  32. Kalia VC, Purohit HJ (2008) Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 35:403–419. doi: 10.1007/s10295-007-0300-y CrossRefPubMedGoogle Scholar
  33. Kalia VC, Kumar A, Jain SR, Joshi AP (1992a) Biomethanation of plant materials. Bioresour Technol 41:209–212. doi: 10.1016/0960-8524(92)90003-G CrossRefGoogle Scholar
  34. Kalia VC, Kumar A, Jain SR, Joshi AP (1992b) Methanogenesis of dumping wheat grains and recycling of the effluent. Resour Conserv Recyl 6:161–166. doi: 10.1016/0921-3449(92)90042-Z CrossRefGoogle Scholar
  35. Kalia VC, Jain SR, Kumar A, Joshi AP (1994) Fermentation of biowaste to hydrogen by Bacillus licheniformis. World J Microbiol Biotechnol 10:224–227. doi: 10.1007/BF00360893 CrossRefPubMedGoogle Scholar
  36. Kalia VC, Sonakya V, Raizada N (2000) Anaerobic digestion of banana stem waste. Bioresour Technol 73:191–193. doi:  10.1016/S0960-8524(99)00172-8
  37. Kalia VC, Lal S, Cheema S (2007) Insight in to the phylogeny of polyhydroxyalkanoate biosynthesis: horizontal gene transfer. Gene 389:19–26. doi: 10.1016/j.gene.2006.09.010 CrossRefPubMedGoogle Scholar
  38. Kivistö A, Santala V, Karp M (2010) Hydrogen production from glycerol using halophilic fermentative bacteria. Bioresour Technol 101:8671–8677. doi: 10.1016/j.biortech.2010.06.066 CrossRefPubMedGoogle Scholar
  39. Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6:561–565. doi: 10.1021/bm049478b CrossRefPubMedGoogle Scholar
  40. Kotay SM, Das D (2007) Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresour Technol 98:1183–1190. doi: 10.1016/j.biortech.2006.05.009 CrossRefPubMedGoogle Scholar
  41. Kumar A, Jain SR, Sharma CB, Joshi AP, Kalia VC (1995) Increased H2 production by immobilized microorganisms. World J Microbiol Biotechnol 11:156–159. doi: 10.1007/BF00704638 CrossRefPubMedGoogle Scholar
  42. Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. doi: 10.1016/j.biotechadv.2013.08.007 CrossRefPubMedGoogle Scholar
  43. Kumar P, Pant DC, Mehariya S, Sharma R, Kansal A, Kalia VC (2014a) Ecobiotechnological strategy to enhance efficiency of bioconversion of wastes into hydrogen and methane. Indian J Microbiol 54:262–267. doi: 10.1007/s12088-014-0467-7 PubMedCentralCrossRefPubMedGoogle Scholar
  44. Kumar P, Singh M, Mehariya S, Patel SKS, Lee JK, Kalia VC (2014b) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:151–157. doi: 10.1007/s12088-014-0457-9 PubMedCentralCrossRefPubMedGoogle Scholar
  45. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015a) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol 55:1–7. doi: 10.1007/s12088-014-0509-1 CrossRefGoogle Scholar
  46. Kumar P, Ray S, Patel SKS, Lee JK, Kalia VC (2015b) Bioconversion of crude glycerol to PHA by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol (in press) doi:  10.1016/j.ijbiomac.2015.03.046
  47. Kumar P, Sharma R, Ray S, Mehariya S, Patel SKS, Lee JK, Kalia VC (2015c) Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour Technol 182:383–388. doi: 10.1016/j.biortech.2015.01.138 CrossRefPubMedGoogle Scholar
  48. Lee PC, Lee WG, Lee SY, Chang HN (2001) Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol Bioeng 72:41–48. doi: 10.1016/S0141-0229(98)00156-2
  49. Liu F, Fang B (2007) Optimization of biohydrogen production from biodiesel wastes by Klebsiella pneumonia. Biotechnol J 2:374–380. doi: 10.1002/biot.200600102 CrossRefPubMedGoogle Scholar
  50. Lo YC, Chen XJ, Huang CY, Yuan YJ, Chang JS (2013) Dark fermentative hydrogen production with crude glycerol from biodiesel industry using indigenous hydrogen-producing bacteria. Int J Hydrogen Energy 38:15815–15822. doi: 10.1016/j.ijhydene.2013.05.083 CrossRefGoogle Scholar
  51. López JA, Naranjo JM, Higuita JC, Cubitto MA, Cardona CA, Villar MA (2012) Biosynthesis of PHA from a new isolated Bacillus megaterium strain: outlook on future developments with endospore forming bacteria. Biotechnol Bioprocess Eng 17:250–258. doi: 10.1007/s12257-011-0448-1 CrossRefGoogle Scholar
  52. Luo G, Talebnia F, Karakashev D, Xie L, Zhou Q, Angelidaki I (2011) Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept. Bioresour Technol 102:1433–1439. doi: 10.1016/j.biortech.2010.09.071 CrossRefPubMedGoogle Scholar
  53. Markov SA, Averitt J, Waldron B (2011) Bioreactor for glycerol conversion into H2 by bacterium Enterobacter aerogenes. Int J Hydrogen Energy 36:262–266. doi: 10.1016/j.ijhydene.2010.09.090 CrossRefGoogle Scholar
  54. Marques PA, Bartolomeu ML, Tomé MM, Neves LM (2009) Bio-hydrogen production from glycerol by a strain of Enterobacter aerogenes. Proc Hypothesis VIII, LisbonGoogle Scholar
  55. Martino L, Cruz MV, Scoma A, Freitas F, Bertin L, Scandola M, Reis MAM (2014) Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil. Int J Biol Macromol 71:117–123. doi: 10.1016/j.ijbiomac.2014.04.016 CrossRefPubMedGoogle Scholar
  56. Maru BT, Bielen AAM, Kengen SWM, Constantí M, Medina F (2012) Biohydrogen production from glycerol using Thermotoga spp. Energy Procedia 29:300–307. doi: 10.1016/j.egypro.2012.09.036 CrossRefGoogle Scholar
  57. Maru BT, Constanti M, Stchigel AM, Medina F, Sueiras JE (2013) Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter sp. Biotechnol Prog 29:31–38. doi: 10.1002/btpr.1644 CrossRefPubMedGoogle Scholar
  58. Mothes G, Schnorpfeil C, Ackermann JU (2007) Production of PHB from crude glycerol. Eng Life Sci 7:475–479. doi: 10.1002/elsc.200620210 CrossRefGoogle Scholar
  59. Naranjo JM, Posada JA, Higuita JC, Cardona CA (2013) Valorization of glycerol through the production of biopolymers: the PHA case using Bacillus megaterium. Bioresour Technol 133:38–44. doi: 10.1016/j.biortech.2013.01.129 CrossRefPubMedGoogle Scholar
  60. Ngo TA, Kim MS, Sim SJ (2011) High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana. Int J Hydrogen Energy 36:5836–5842. doi: 10.1016/j.ijhydene.2010.11.057 CrossRefGoogle Scholar
  61. Nikel PI, Pettinari MJ, Galvagno MA, Méndez BS (2008) Poly (3-hydroxybutyrate) synthesis from glycerol by a recombinant Escherichia coli arcA mutant in fed-batch microaerobic cultures. Appl Microbiol Biotechnol 77:1337–1343. doi: 10.1007/s00253-007-1255-7 CrossRefPubMedGoogle Scholar
  62. Oliveira JV, Alves MM, Costa JC (2014) Optimization of biogas production from Sargassum sp. using a design of experiments to assess the co-digestion with glycerol and waste frying oil. Bioresour Technol 175:480–485. doi: 10.1016/j.biortech.2014.10.121 CrossRefGoogle Scholar
  63. Papanikolaou S, Fick M, Aggelis G (2004) The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum. J Chem Technol Biotechnol 79:1189–1196. doi: 10.1002/jctb.1103 CrossRefGoogle Scholar
  64. Patel SKS, Kalia VC (2013) Integrative biological hydrogen production: an overview. Indian J Microbiol 53:3–10. doi: 10.1007/s12088-012-0287-6 PubMedCentralCrossRefPubMedGoogle Scholar
  65. Patel SK, Purohit HJ, Kalia VC (2010) Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials. Int J Hydrogen Energy 35:10674–10681. doi: 10.1016/j.ijhydene.2010.03.025 CrossRefGoogle Scholar
  66. Patel SKS, Kumar P, Kalia VC (2012a) Enhancing biological hydrogen production through complementary microbial metabolisms. Int J Hydrogen Energy 37:10590–10603. doi: 10.1016/j.ijhydene.2012.04.045 CrossRefGoogle Scholar
  67. Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC (2012b) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy 36:218–225. doi: 10.1016/j.biombioe.2011.10.027 CrossRefGoogle Scholar
  68. Patel SKS, Kumar P, Mehariya S, Purohit HJ, Lee JK, Kalia VC (2014) Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int J Hydrogen Energy 39:14663–14668. doi: 10.1016/j.ijhydene.2014.07.084 CrossRefGoogle Scholar
  69. Patel SKS, Kumar P, Singh M, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. doi: 10.1016/j.biortech.2014.11.029 CrossRefPubMedGoogle Scholar
  70. Peixoto G, Pantoja-Filho JLR, Agnelli JAB, Barboza M, Zaiat M (2012) Hydrogen and methane production, energy recovery, and organic matter removal from effluents in a two-stage fermentative process. Appl Biochem Biotechnol 168:651–671. doi: 10.1007/s12010-012-9807-4 CrossRefPubMedGoogle Scholar
  71. Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Patel SKS, Kalia VC (2008) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 99:5444–5451. doi: 10.1016/j.biortech.2007.11.011 CrossRefPubMedGoogle Scholar
  72. Raizada N, Sonakya V, Anand V, Kalia VC (2002) Waste management and production of future fuels. J Sci Ind Res 61:184–207Google Scholar
  73. Reddy SV, Thirumala M, Mahmood SK (2009a) Production of PHA and P (3HB-co-3HV) biopolymers by Bacillus megaterium strain OU303A isolated from municipal sewage sludge. World J Microbiol Biotechnol 25:391–397. doi: 10.1007/s11274-008-9903-3 CrossRefGoogle Scholar
  74. Reddy SV, Thirumala M, Mahmood SK (2009b) A novel Bacillus sp. accumulating poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from a single carbon substrate. J Ind Microbiol Biotechnol 36:837–843. doi: 10.1007/s10295-009-0561-8 CrossRefPubMedGoogle Scholar
  75. Rohini D, Phadnis S, Rawal SK (2006) Synthesis and characterization of poly-β-hydroxybutyrate from Bacillus thuringiensis R1. Indian J Biotechnol 5:276–283Google Scholar
  76. Sakai S, Yagishita T (2007) Microbial production of hydrogen and ethanol from glycerol‐containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine. Biotechnol Bioeng 98:340–348. doi: 10.1002/bit.21427 CrossRefPubMedGoogle Scholar
  77. Sanchez-Torres V, Mohd Yusoff MZ, Nakano C, Maeda T, Ogawa HI, Wood TK (2013) Influence of Escherichia coli hydrogenases on hydrogen fermentation from glycerol. Int J Hydrogen Energy 38:3905–3912. doi: 10.1016/j.ijhydene.2013.01.031 CrossRefGoogle Scholar
  78. Sangkharak K, Prasertsan P (2012) Screening and identification of polyhydroxyalkanoates producing bacteria and biochemical characterization of their possible application. J Gen Appl Microbiol 58:173–182. doi: 10.2323/jgam.58.173 CrossRefPubMedGoogle Scholar
  79. Sarma SJ, Dhillon GS, Brar SK, Le Bihan Y, Buelna G, Verma M (2013) Investigation of the effect of different crude glycerol components on hydrogen production by Enterobacter aerogenes NRRL B-407. Renew Energy 60:566–571. doi: 10.1016/j.renene.2013.06.007 CrossRefGoogle Scholar
  80. Schauder R, Schink B (1989) Anaerovibrio glycerini sp. nov., an anaerobic bacterium fermenting glycerol to propionate, cell matter, and hydrogen. Arch Microbiol 152:473–478CrossRefGoogle Scholar
  81. Seifert K, Waligorska M, Wojtowski M, Laniecki M (2009) Hydrogen generation from glycerol in batch fermentation process. Int J Hydrogen Energy 34:3671–3678. doi: 10.1016/j.ijhydene.2009.02.045 CrossRefGoogle Scholar
  82. Selembo PA, Perez JM, Lloyd WA, Logan BE (2009a) Enhanced hydrogen and 1,3‐propanediol production from glycerol by fermentation using mixed cultures. Biotechnol Bioeng 104:1098–1106. doi: 10.1002/bit.22487 CrossRefPubMedGoogle Scholar
  83. Selembo PA, Perez JM, Lloyd WA, Logan BE (2009b) High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. Int J Hydrogen Energy 34:5373–5381. doi: 10.1016/j.ijhydene.2009.05.002 CrossRefGoogle Scholar
  84. Sharninghausen LS, Campos J, Manas MG, Crabtree RH (2014) Efficient selective and atom economic catalytic conversion of glycerol to lactic acid. Nat Commun 5:5084. doi: 10.1038/ncomms6084 CrossRefPubMedGoogle Scholar
  85. Sindhu R, Ammu B, Binod P, Deepthi SK, Ramachandran KB, Soccol CR, Pandey A (2011) Production and characterization of poly-3-hydroxybutyrate from crude glycerol by Bacillus sphaericus NII 0838 and improving its thermal properties by blending with other polymers. Braz Arch Biol Technol 54:783–794. doi: 10.1590/S1516-89132011000400019 CrossRefGoogle Scholar
  86. Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:38. doi: 10.1186/1475-2859-8-38 PubMedCentralCrossRefPubMedGoogle Scholar
  87. Singh M, Kumar P, Patel SKS, Kalia VC (2013) Production of polyhydroxyalkanoate co-polymer by Bacillus thuringiensis. Indian J Microbiol 53:77–83. doi: 10.1007/s12088-012-0294-7 PubMedCentralCrossRefPubMedGoogle Scholar
  88. Singh M, Kumar P, Ray S, Kalia VC (2015) Challenges and opportunities for customizing polyhydroxyalkanoates. Indian J Microbiol 55:235–249. doi: 10.1007/s12088-015-0528-6
  89. Sittijunda S, Reungsang A (2012a) Biohydrogen production from waste glycerol and sludge by anaerobic mixed cultures. Int J Hydrogen Energy 37:13789–13796. doi: 10.1016/j.ijhydene.2012.03.126 CrossRefGoogle Scholar
  90. Sittijunda S, Reungsang A (2012b) Media optimization for biohydrogen production from waste glycerol by anaerobic thermophilic mixed cultures. Int J Hydrogen Energy 37:15473–5482. doi: 10.1016/j.ijhydene.2012.02.185 CrossRefGoogle Scholar
  91. Sonakya V, Raizada N, Kalia VC (2001) Microbial and enzymatic improvement of anaerobic digestion of waste biomass. Biotechnol Lett 23:1463–1466. doi: 10.1023/A:1011664912970 CrossRefGoogle Scholar
  92. Tan HW, Abdul Aziz AR, Aroua MK (2013) Glycerol production and its applications as a raw material: a review. Renew Sust Energy Rev 27:118–127. doi: 10.1016/j.rser.2013.06.035 CrossRefGoogle Scholar
  93. Tran KT, Maeda T, Wood TK (2014) Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Appl Microbiol Biotechnol 98:4757–4770. doi: 10.1007/s00253-014-5600-3 CrossRefPubMedGoogle Scholar
  94. Varrone C, Giussani B, Izzo G, Massini G, Marone A, Signorini A, Wang A (2012) Statistical optimization of biohydrogen and ethanol production from crude glycerol by microbial mixed culture. Int J Hydrogen Energy 37:16479–16488. doi: 10.1016/j.ijhydene.2012.02.106 CrossRefGoogle Scholar
  95. Vlassis T, Stamatelatou K, Antonopoulou G, Lyberatos G (2013) Methane production via anaerobic digestion of glycerol: a comparison of conventional (CSTR) and high‐rate (PABR) digesters. J Chem Technol Biotechnol 88:2000–2006. doi: 10.1002/jctb.4059 Google Scholar
  96. Wu KJ, Lin YH, Lo YC, Chen CY, Chen WM, Chang JS (2011) Converting glycerol into hydrogen, ethanol, and diols with a Klebsiella sp. HE1 strain via anaerobic fermentation. J Taiwan Inst Chem Engg 42:20–25. doi: 10.1016/j.jtice.2010.04.005 CrossRefGoogle Scholar
  97. Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol—a byproduct of biodiesel production. Biotechnol Biofuels 5:13. doi: 10.1186/1754-6834-5-13 PubMedCentralCrossRefPubMedGoogle Scholar
  98. Yasin NHM, Fukuzaki M, Maeda T, Miyazaki T, Hakiman Che Maail CM, Ariffin H, Wood TK (2013) Biohydrogen production from oil palm frond juice and sewage sludge by a metabolically engineered Escherichia coli strain. Int J Hydrogen Energy 38:10277–10283. doi: 10.1016/j.ijhydene.2013.06.065 CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Prasun Kumar
    • 1
  • Sanjeet Mehariya
    • 2
  • Subhasree Ray
    • 1
  • Anjali Mishra
    • 1
  • Vipin Chandra Kalia
    • 2
  1. 1.Microbial Biotechnology and GenomicsCSIR-Institute of Genomics and Integrative Biology (IGIB)DelhiIndia
  2. 2.Microbial Biotechnology and GenomicsCSIR-Institute of Genomics and Integrative BiologyDelhiIndia

Personalised recommendations