Advertisement

Recent Advances in Feedstocks and Enzyme-Immobilised Technology for Effective Transesterification of Lipids into Biodiesel

  • Madan L. Verma
  • Colin J. Barrow

Abstract

There are several technological and economic challenges that need to be addressed to make biodiesel production profitable. Among the technological obstacles in enzyme-catalysed transesterification process for biodiesel production, the selection of feedstock and robust biocatalyst are the critical factors for developing a cost-effective bioprocess. Feedstocks, mainly second and third generations, have been used recently to economise biodiesel production. Nanotechnology has revolutionised the enzyme immobilisation technology by providing versatile nanomaterials. Biocompatible nanomaterial is emerging as a novel immobilisation support for lipase enzyme to advance biodiesel production. Nanomaterials possess excellent properties such as higher surface area-to-volume ratios, lower mass transfer resistance, and quick separation from the reaction mixture using magnetic field. Utilising the cheap renewable feedstock such as waste oil and microalgae oil, nanomaterial-immobilised enzyme can be reused thus economising the process of enzymatic transesterification for biodiesel production. The chapter provides an insight of recent progresses in improving immobilised lipase technology, focusing on innovation in feedstock and nanomaterial processing such as synthesis, functionalisation, and characterisation with regard to biodiesel production. This chapter concludes that synergies between nanotechnology and industrial biotechnology will become an integral part of sustainable biodiesel production.

Keywords

Enzyme Immobilisation Bioenergy Production Oleaginous Yeast Oleaginous Microorganism High Enzyme Loading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors acknowledge the Centre for Chemistry and Biotechnology, Deakin University, Australia, for providing the necessary facilities. The authors have declared that no competing interests exist.

References

  1. Abdulla R, Chan ES, Ravindra P (2011) Biodiesel production from Jatropha curcas: a critical review. Crit Rev Biotechnol 31:53–64. doi: 10.3109/07388551.2010.487185 PubMedCrossRefGoogle Scholar
  2. Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90:1219–1227. doi: 10.1007/s00253-011-3200-z PubMedCrossRefGoogle Scholar
  3. Ahmad A, Yasin N, Derek C, Lim J (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sustain Energy Rev 15:584–593. doi: 10.1016/j.rser.2010.09.018 CrossRefGoogle Scholar
  4. Alex D, Mathew A, Sukumaran RK (2014) Esterases immobilized on aminosilane modified magnetic nanoparticles as a catalyst for biotransformation reactions. Bioresour Technol 167:547–550. doi: 10.1016/j.biortech.2014.05.110 PubMedCrossRefGoogle Scholar
  5. Alvarez HM, Steinbuchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376. doi: 10.1007/s00253-002-1135-0 PubMedCrossRefGoogle Scholar
  6. Andrade LH, Rebelo LP, Netto CGCM, Toma HE (2010) Kinetic resolution of a drug precursor by Burkholderia cepacia lipase immobilized methodologies on superparamagnetic nanoparticles. J Mol Catal B Enzym 66:55–62. doi: 10.1016/j.molcatb.2010.03.002 CrossRefGoogle Scholar
  7. Andrich G, Zinnai A, Nesti U, Venturi F (2006) Supercritical fluid extraction of oil from microalga Spirulina (arthrospira) platensis. Acta Aliment 35:195–203. doi: 10.1556/AAlim.35.2006.2.6 CrossRefGoogle Scholar
  8. Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nanomaterials: a review. Biotechnol Adv 30:512–523. doi: 10.1016/j.biotechadv.2011.09.005 PubMedCrossRefGoogle Scholar
  9. Ashraful AM, Masjuki HH, Kalam MA, Rizwanul Fattah IM, Imtenan S, Shahir SA, Mobarak HM (2014) Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: a review. Energy Convers Manage 80:202–228. doi: 10.1016/j.enconman.2014.01.037 CrossRefGoogle Scholar
  10. Azocar L, Ciudad G, Heipieper HJ, Navia R (2010) Biotechnological processes for biodiesel production using alternative oils. Appl Microbiol Biotechnol 88:621–636. doi: 10.1007/s00253-010-2804-z PubMedCrossRefGoogle Scholar
  11. Bagchi SK, Rao PS, Mallick N (2015) Development of an oven drying protocol to improve biodiesel production for an indigenous chlorophycean microalga Scenedesmus sp. Bioresour Technol 180:207–213. doi: 10.1016/j.biortech.2014.12.092 PubMedCrossRefGoogle Scholar
  12. Bankovillic IB, Stojkovic IJ, Stamenkovic OS, Veljkovic VB, Hung YT (2014) Waste animal fats as feedstocks for biodiesel production. Renew Sustain Energy Rev 32:238–254. doi: 10.1016/j.rser.2014.01.038 CrossRefGoogle Scholar
  13. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. doi: 10.1016/j.biotechadv.2010.01.004 PubMedCrossRefGoogle Scholar
  14. Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F (2012) Advances in top-down and bottom-up surface nanofabrication: techniques, applications and future prospects. Adv Colloid Interface Sci 170:2–27. doi: 10.1016/j.cis.2011.11.001 PubMedCrossRefGoogle Scholar
  15. Bligh E, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. doi: 10.1139/o59-099 PubMedCrossRefGoogle Scholar
  16. Borlido L, Azevedo AM, Roque ACA, Aires-Barros MR (2013) Magnetic separations in biotechnology. Biotechnol Adv 31:1374–1385. doi: 10.1016/j.biotechadv.2013.05.009 PubMedCrossRefGoogle Scholar
  17. Brennan L, Owende P (2010) Biofuels from microalgae: a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577. doi: 10.1016/j.rser.2009.10.009 CrossRefGoogle Scholar
  18. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. doi: 10.1016/j.biotechadv.2007.02.001 PubMedCrossRefGoogle Scholar
  19. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131. doi: 10.1016/j.tibtech.2007.12.002 PubMedCrossRefGoogle Scholar
  20. Cho SC, Choi WY, Oh SH, Lee CG, Seo YC, Kim JS, Song CH, Kim GV, Lee SY, Kang DH, Lee HY (2012) Enhancement of lipid extraction from marine microalga, Scenedesmus associated with high-pressure homogenization process. J Biomed Biotechnol 2012:6. doi: 10.1155/2012/359432 CrossRefGoogle Scholar
  21. Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Sep Purif Rev 38:291–325. doi: 10.1080/15422110903327919 CrossRefGoogle Scholar
  22. Cruz JC, Pfromm PH, Tomich JM, Rezac ME (2010) Conformational changes and catalytic competency of hydrolases adsorbing on fumed silica nanoparticles: I. Tertiary structure. Colloid Surf B Biointerfaces 79:97–104. doi: 10.1016/j.colsurfb.2010.03.036 PubMedCrossRefGoogle Scholar
  23. Demirbas A (2009) Potential resources of non-edible oils for biodiesel. Energy Sources Part B Econ Plan Policy 4:310–314. doi: 10.1080/15567240701621166 CrossRefGoogle Scholar
  24. Divakara BN, Upadhyaya HD, Wani SP, Gowda CL (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energy 87:732–742. doi: 10.1016/j.apenergy.2009.07.013 CrossRefGoogle Scholar
  25. Du W, Xu YY, Liu DH, Li Z (2005) Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production. J Mol Catal B Enzym 37:68–71. doi: 10.1016/j.molcatb.2005.09.008 CrossRefGoogle Scholar
  26. Escobar JC, Lora ES, Venturini OJ, Yanez EE, Castillo EF, Almazan O (2009) Biofuels: environment, technology and food security. Renew Sustain Energy Rev 13:1275–1287. doi: 10.1016/j.rser.2008.08.014 CrossRefGoogle Scholar
  27. Ganesan A, Moore BD, Kelly SM, Price NC, Rolinski OJ, Birch DJ, Dunkin IR, Halling PJ (2009) Optical spectroscopic methods for probing the conformational stability of immobilised enzymes. Chemphyschem 10:1492–1499. doi: 10.1002/cphc.200800759 PubMedCrossRefGoogle Scholar
  28. Gouda MK, Omar SH, Aouad LM (2008) Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microbiol Biotechnol 24:1703–1711. doi: 10.1007/s11274-008-9664-z CrossRefGoogle Scholar
  29. Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274. doi: 10.1007/s10295-008-0495-6 PubMedCrossRefGoogle Scholar
  30. Gupta MN, Kaloti M, Kapoor M, Solanki K (2011) Nanomaterials as matrices for enzyme immobilisation. Artif Cell Blood Substit Immobil Biotechnol 39:98–109. doi: 10.3109/10731199.2010.516259 CrossRefGoogle Scholar
  31. Halim R, Gladman B, Danquah MK, Webley PA (2011) Oil extraction from microalgae for biodiesel production. Bioresour Technol 102:178–185. doi: 10.1016/j.biortech.2010.06.136 PubMedCrossRefGoogle Scholar
  32. Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30:709–732. doi: 10.1016/j.biotechadv.2012.01.001 PubMedCrossRefGoogle Scholar
  33. Hama S, Kondo A (2013) Enzymatic biodiesel production: an overview of potential feedstocks and process development. Bioresour Technol 135:386–395. doi: 10.1016/j.biortech.2012.08.014 PubMedCrossRefGoogle Scholar
  34. Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14:1037–1047. doi: 10.1016/j.rser.2009.11.004 CrossRefGoogle Scholar
  35. Hasan F, Shah AA, Hameed A (2009) Methods for detection and characterization of lipases: a comprehensive review. Biotechnol Adv 27:782–798. doi: 10.1016/j.biotechadv.2009.06.001 PubMedCrossRefGoogle Scholar
  36. Huang XJ, Yu AG, Xu ZK (2008) Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application. Bioresour Technol 99:5459–5465. doi: 10.1016/j.biortech.2007.11.009 PubMedCrossRefGoogle Scholar
  37. Huang J, Xia J, Jiang W, Li Y, Li J (2015) Biodiesel production from microalgae oil catalysed by a recombinant lipase. Bioresour Technol 180:47–53. doi: 10.1016/j.biortech.2014.12.072 PubMedCrossRefGoogle Scholar
  38. Illanes A, Cauerhff A, Wilson L, Castro GR (2012) Recent trends in biocatalysis engineering. Bioresour Technol 115:48–57. doi: 10.1016/j.biortech.2011.12.050 PubMedCrossRefGoogle Scholar
  39. Janaun J, Ellis N (2010) Perspectives on biodiesel as a sustainable fuel. Renew Sustain Energy Rev 14:1312–1320. doi: 10.1016/j.rser.2009.12.011 CrossRefGoogle Scholar
  40. Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker DH, Wang P (2002) Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol Prog 18:1027–1032. doi: 10.1021/bp020042m PubMedCrossRefGoogle Scholar
  41. Jiang S, Win KY, Liu S, Teng CP, Zheng Y, Han MY (2013) Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. Nanoscale 5:3127–3148. doi: 10.1039/c3nr34005h PubMedCrossRefGoogle Scholar
  42. Jochems P, Satyawali Y, Diels L, Dejonghe W (2011) Enzyme immobilization on/in polymeric membranes: status, challenges and perspectives in biocatalytic membrane reactors (BMRs). Green Chem 13:1609–1623. doi: 10.1039/C1GC15178A CrossRefGoogle Scholar
  43. Johnson PA, Park HJ, Driscoll AJ (2011) Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization. Methods Mol Biol 679:183–191. doi: 10.1007/978-1-60761-895-9_15 PubMedCrossRefGoogle Scholar
  44. Kafuku G, Mbarawa M (2010) Biodiesel production from Croton megalocarpus oil and its process optimization. Fuel 89:2556–2560. doi: 10.1016/j.fuel.2010.03.039 CrossRefGoogle Scholar
  45. Kalantari M, Kazemeini M, Tabandeh F, Arpanaei A (2012) Lipase immobilisation on magnetic silica nanocomposite particles: effects of the silica structure on properties of the immobilised enzyme. J Mater Chem 22:8385–8393. doi: 10.1039/C2JM30513E CrossRefGoogle Scholar
  46. Kalantari M, Kazemeini M, Arpanaei A (2013) Evaluation of biodiesel production using lipase immobilised on magnetic silica nanocomposite particles of various structures. Biochem Eng J 79:267–273. doi: 10.1016/j.bej.2013.09.001 CrossRefGoogle Scholar
  47. Kalscheuer R, Stolting T, Steinbuchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536. doi: 10.1099/mic.0.29028-0 PubMedCrossRefGoogle Scholar
  48. Kanwar SS, Verma ML (2010) Lipases. In: Encyclopedia of industrial biotechnology. Wiley Publishers, New York, pp 1–16. doi: 10.1002/9780470054581.eib387 Google Scholar
  49. Karmakar A, Karmakar S, Mukherjee S (2010) Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol 101:7201–7210. doi: 10.1016/j.biortech.2010.04.079 PubMedCrossRefGoogle Scholar
  50. Kim J, Grate JW, Wang P (2006a) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026. doi: 10.1016/j.ces.2005.05.067 CrossRefGoogle Scholar
  51. Kim J, Jia H, Wang P (2006b) Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol Adv 24:296–308. doi: 10.1016/j.biotechadv.2005.11.006 PubMedCrossRefGoogle Scholar
  52. Kim J, Grate JW, Wang P (2008) Nanobiocatalysis and its potential applications. Trends Biotechnol 26:639–646. doi: 10.1016/j.tibtech.2008.07.009 PubMedCrossRefGoogle Scholar
  53. Kishore D, Talat M, Srivastava ON, Kayastha AM (2012) Immobilization of β-galactosidase onto functionalized graphene nanosheets using response surface methodology and its analytical applications. PLoS ONE 7, e40708. doi: 10.1371/journal.pone.0040708 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Kralova I, Sjooblom J (2010) Biofuels-renewable energy sources: a review. J Disper Sci Technol 31:409–525. doi: 10.1080/01932690903119674 CrossRefGoogle Scholar
  55. Kumar M, Sharma MP (2015) Assessment of potential of oils for biodiesel production. Renew Sustain Energy Rev 44:814–823. doi: 10.1016/j.rser.2015.01.013 CrossRefGoogle Scholar
  56. Kumar S, Jana AK, Dhamija I, Singla Y, Maiti M (2013) Preparation, characterization and targeted delivery of serratiopeptidase immobilized on amino-functionalized magnetic nanoparticles. Eur J Pharm Biopharm 85:413–426. doi: 10.1016/j.ejpb.2013.06.019 PubMedCrossRefGoogle Scholar
  57. Kumar S, Jana AK, Maiti M, Dhamija I (2014) Carbodiimide-mediated immobilization of serratiopeptidase on amino-, carboxyl-functionalized magnetic nanoparticles and characterization for target delivery. J Nanopart Res 16:2233. doi: 10.1007/s11051-013-2233-x CrossRefGoogle Scholar
  58. Kumari A, Mahapatra P, Garlapati VK, Banerjee R (2009) Enzymatic transesterification of jatropha oils. Biotechnol Biofuels 2:1. doi: 10.1186/1754-6834-2-1 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Kurosawa K, Boccazzi P, de Almeida NM, Sinskey AJ (2010) High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. J Biotechnol 147:212–218. doi: 10.1016/j.jbiotec.2010.04.003 PubMedCrossRefGoogle Scholar
  60. Lam MK, Lee KT, Mohamed AR (2010) Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv 28:500–518. doi: 10.1016/j.biotechadv.2010.03.002 PubMedCrossRefGoogle Scholar
  61. Lee CH, Lin TS, Mou CY (2009) Mesoporous materials for encapsulating enzymes. Nano Today 4:165–179. doi: 10.1016/j.nantod.2009.02.001 CrossRefGoogle Scholar
  62. Li SF, Fan YH, Hu RF, Wu WT (2011) Pseudomonas cepacia lipase immobilized onto the electrospun PAN nanofibrous membranes for biodiesel production from soybean oil. J Mol Catal B Enzym 72:40–45. doi: 10.1016/j.molcatb.2011.04.022 CrossRefGoogle Scholar
  63. Liand MH, Jiang JG (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52:395–408. doi: 10.1016/j.plipres.2013.05.002 CrossRefGoogle Scholar
  64. Lim S, Teong LK (2010) Recent trends, opportunities and challenges of biodiesel in Malaysia: an overview. Renew Sustain Energy Rev 14:938–954. doi: 10.1016/j.rser.2009.10.027 CrossRefGoogle Scholar
  65. Lin L, Zhou C, Saritporn V, Shen X, Dong M (2011) Opportunities and challenges for biodiesel fuel. Appl Energy 88:1020–1031. doi: 10.1016/j.apenergy.2010.09.029 CrossRefGoogle Scholar
  66. Liu CH, Huang CC, Wang YW, Lee DJ, Chang JS (2012) Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles. Appl Energy 100:41–46. doi: 10.1016/j.apenergy.2012.05.053 CrossRefGoogle Scholar
  67. Lu J, Nie K, Xie F, Wang F, Tan T (2007) Enzymatic synthesis of fatty acid methyl esters from lard with immobilized Candida sp. 99–125. Process Biochem 42:1367–1370. doi: 10.1016/j.procbio.2007.06.004 CrossRefGoogle Scholar
  68. Luque R, Lovett JC, Datta B, Clancy J, Campelo JM, Romero AA (2010) Biodiesel as feasible petrol fuel replacement: a multidisciplinary overview. Energy Environ Sci 3:1706–1721. doi: 10.1039/c0ee00085j CrossRefGoogle Scholar
  69. Macario A, Verri F, Diaz U, Corma A, Giordano G (2013) Pure silica nanoparticles for liposome/lipase system encapsulation: application in biodiesel production. Catal Today 204:148–155. doi: 10.1016/j.cattod.2012.07.014 CrossRefGoogle Scholar
  70. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463. doi: 10.1016/j.enzmictec.2007.01.018 CrossRefGoogle Scholar
  71. Mendes RL, Reis AD, Palavra AF (2006) Supercritical CO2 extraction of γ-linolenic acid and other lipids from Arthrospira (Spirulina) maxima: comparison with organic solvent extraction. Food Chem 99:57–63. doi: 10.1016/j.foodchem.2005.07.019 CrossRefGoogle Scholar
  72. Mendiola JA, Jaime L, Santoyo S, Reglero G, Cifuentes A, Ibañez E, Señoráns FJ (2007) Screening of functional compounds in supercritical fluid extracts from Spirulina platensis. Food Chem 102:1357–1367. doi: 10.1016/j.foodchem.2006.06.068 CrossRefGoogle Scholar
  73. Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5. doi: 10.1016/j.renene.2008.04.014 CrossRefGoogle Scholar
  74. Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846. doi: 10.1016/j.biortech.2005.04.008 PubMedCrossRefGoogle Scholar
  75. Misson M, Zhang H, Jin B (2015) Nanobiocatalyst advancements and bioprocessing applications. J R Soc Interface 12:20140891. doi: 10.1098/rsif.2014.0891 PubMedCentralPubMedCrossRefGoogle Scholar
  76. Nair S, Kim J, Crawford B, Kim SH (2007) Improving biocatalytic activity of enzyme-loaded nanofibers by dispersing entangled nanofiber structure. Biomacromolecules 8:1266–1270. doi: 10.1021/bm061004k PubMedCrossRefGoogle Scholar
  77. Ngo TPN, Li A, Tiew KW, Li Z (2013) Efficient transformation of grease to biodiesel using highly active and easily recyclable magnetic nanobiocatalyst aggregates. Bioresour Technol 145:233–239. doi: 10.1016/j.biortech.2012.12.053 PubMedCrossRefGoogle Scholar
  78. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68. doi: 10.1016/j.pecs.2010.01.003 CrossRefGoogle Scholar
  79. Patil V, Tran KQ, Giselrod HR (2008) Towards sustainable production of biofuels from microalgae. Int J Mol Sci 9:1188–1195. doi: 10.3390/ijms9071188 PubMedCentralPubMedCrossRefGoogle Scholar
  80. Pavlidis IV, Tsoufis T, Enotiadis A, Gournis D, Stamatis H (2010) Functionalized multi-wall carbon nanotubes for lipase immobilization. Adv Eng Mater 12:B179–B183. doi: 10.1002/adem.200980021 CrossRefGoogle Scholar
  81. Pavlidis IV, Vorhaben T, Gournis D, Papadopoulos GK, Bornscheuer UT, Stamatis H (2012a) Regulation of catalytic behaviour of hydrolases through interactions with functionalised carbon-based nanomaterials. J Nanopart Res 14:842. doi: 10.1007/s11051-012-0842-4 CrossRefGoogle Scholar
  82. Pavlidis IV, Vorhaben T, Tsoufis T, Rudolf P, Bornscheuer UT, Gournis D, Stamatis H (2012b) Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Bioresour Technol 115:164–171. doi: 10.1016/j.biortech.2011.11.007 PubMedCrossRefGoogle Scholar
  83. Pinzi S, Leiva D, López-García I, Redel-Macías MD, Dorado MP (2014) Latest trends in feedstocks for biodiesel production. Biofuels Bioprod Bioref 8:126–143. doi: 10.1002/bbb.1435 CrossRefGoogle Scholar
  84. Prabakaran P, Ravindran AD (2011) A comparative study on effective cell disruption methods for lipid extraction from microalgae. Lett Appl Microbiol 53:150–154. doi: 10.1111/j.1472-765X.2011.03082.x PubMedCrossRefGoogle Scholar
  85. Pugh S, McKenna R, Moolick R, Nielsen DR (2011) Advances and opportunities at the interface between microbial bioenergy and nanotechnology. Can J Chem Eng 89:2–12. doi: 10.1002/cjce.20434 CrossRefGoogle Scholar
  86. Qiu H, Xu C, Huang X, Ding Y, Qu Y, Gao P (2008) Adsorption of laccase on the surface of nanoporous gold and the direct electron transfer between them. J Phys Chem C 112:14781–14785. doi: 10.1021/jp805600k CrossRefGoogle Scholar
  87. Ratledge C (1991) Microorganisms for lipids. Acta Biotechnol 11:429–438. doi: 10.1002/abio.370110506 CrossRefGoogle Scholar
  88. Ren Y, Rivera JG, He L, Kulkarni H, Lee DK, Messersmith PB (2011) Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticle via a biomimetic coating. BMC Biotechnol 11:63. doi: 10.1186/1472-6750-11-63 PubMedCentralPubMedCrossRefGoogle Scholar
  89. Robles-Medina A, González-Moreno PA, Esteban-Cerdán L, Molina-Grima E (2009) Biocatalysis: towards ever greener biodiesel production. Biotechnol Adv 27:398–408. doi: 10.1016/j.biotechadv.2008.10.008 PubMedCrossRefGoogle Scholar
  90. Safarik I, Safarikova M (2009) Magnetic nano and microparticles in biotechnology. Chem Pap 63:497–505. doi: 10.2478/s11696-009-0054-2 CrossRefGoogle Scholar
  91. Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN, Omar AKM (2009) Application of supercritical CO2 in lipid extraction – A review. J Food Eng 95:240–253. doi: 10.1016/j.jfoodeng.2009.06.026 CrossRefGoogle Scholar
  92. Sakai S, Liu YP, Yamaguchi T, Watanabe R, Kawabe M, Kawakami K (2010) Production of butyl-biodiesel using lipase physically-adsorbed onto electrospun polyacrylonitrile fibers. Bioresour Technol 101:7344–7349. doi: 10.1016/j.biortech.2010.04.036 PubMedCrossRefGoogle Scholar
  93. Serrano E, Rus G, Garcia-Martinez J (2009) Nanotechnology for sustainable energy. Renew Sustain Energy Rev 13:2373–2384. doi: 10.1016/j.rser.2009.06.003 CrossRefGoogle Scholar
  94. Shahid EM, Jamal J (2011) Production of biodiesel: a technical review. Renew Sustain Energy Rev 15:4732–4745. doi: 10.1016/j.rser.2011.07.079 CrossRefGoogle Scholar
  95. Shim M, Kam NWS, Chen RJ, Li Y, Dai H (2002) Functionalisation of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2:285–288. doi: 10.1021/nl015692j CrossRefGoogle Scholar
  96. Singh P, Singh D (2010) Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew Sustain Energy Rev 14:200–216. doi: 10.1016/j.rser.2009.07.017 CrossRefGoogle Scholar
  97. Singh A, Olsen SI, Nigam PS (2011) A viable technology to generate third-generation biofuel. J Chem Technol Biotechnol 86:1349–1353. doi: 10.1002/jctb.2666 CrossRefGoogle Scholar
  98. Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL (2014) Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol Adv 32:1336–1360. doi: 10.1016/j.biotechadv.2014.08.003 PubMedCrossRefGoogle Scholar
  99. Solovchenco AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251. doi: 10.1007/s10811-007-9233-0 CrossRefGoogle Scholar
  100. Stergiou PY, Foukis A, Filippou M, Koukouritaki M, Parapouli M, Theodorou LG, Hatziloukas E, Afendra A, Pandey A, Papamichael EM (2013) Advances in lipase-catalyzed esterification reactions. Biotechnol Adv 31:1846–1859. doi: 10.1016/j.biotechadv.2013.08.006 PubMedCrossRefGoogle Scholar
  101. Tan T, Lu J, Nie K, Deng L, Wang F (2010) Biodiesel production with immobilised lipase: a review. Biotechnol Adv 28:628–634. doi: 10.1016/j.biotechadv.2010.05.012 PubMedCrossRefGoogle Scholar
  102. Tran DT, Chen CL, Chang JS (2012) Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. J Biotechnol 158:112–119. doi: 10.1016/j.jbiotec.2012.01.018 PubMedCrossRefGoogle Scholar
  103. Verma ML, Kanwar SS (2010) Purification and characterization of a low molecular mass alkaliphilic lipase of Bacillus cereus MTCC 8372. Acta Microbiol Immunol Hung 57:187–201. doi: 10.1556/AMicr.57.2010.3.4 CrossRefGoogle Scholar
  104. Verma ML, Azmi W, Kanwar SS (2008) Microbial lipases: at the interface of aqueous and non-aqueous media. Acta Microbiol Immunol Hung 55:265–294. doi: 10.1556/AMicr.55.2008.3.1 PubMedCrossRefGoogle Scholar
  105. Verma ML, Azmi W, Kanwar SS (2009) Synthesis of ethyl acetate employing celite-immobilized lipase of Bacillus cereus MTCC 8372. Acta Microbiol Immunol Hung 56:229–242. doi: 10.1556/AMicr.56.2009.3.3 PubMedCrossRefGoogle Scholar
  106. Verma ML, Azmi W, Kanwar SS (2011) Enzymatic synthesis of isopropyl acetate catalysed by immobilized Bacillus cereus lipase in organic medium. Enzyme Res 2011:919386. doi: 10.4061/2011/919386 PubMedCentralPubMedCrossRefGoogle Scholar
  107. Verma ML, Barrow CJ, Kennedy JF, Puri M (2012) Immobilization of β-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis. Int J Biol Macromol 50:432–437. doi:10.1016/j.ijbiomac.2011.12.029 10.1016/j.ijbiomac.2011.12.029
  108. Verma ML, Barrow CJ, Puri M (2013a) Nanobiotechnology as a novel paradigm for enzyme immobilization and stabilisation with potential applications in biofuel production. Appl Microbiol Biotechnol 97:23–39. doi: 10.1007/s00253-012-4535-9 PubMedCrossRefGoogle Scholar
  109. Verma ML, Naebe M, Barrow CJ, Puri M (2013b) Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation. PLoS ONE 8(9), e73642. doi: 10.1371/journal.pone.0073642 PubMedCentralPubMedCrossRefGoogle Scholar
  110. Verma ML, Puri M, Barrow CJ (2014) Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit Rev Biotechnol 14:1–12. doi: 10.3109/07388551.2014.928811 Google Scholar
  111. Volder MFLD, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539. doi: 10.1126/science.1222453 PubMedCrossRefGoogle Scholar
  112. Wang P (2006) Nanoscale biocatalyst systems. Curr Opin Biotechnol 17:574–579. doi: 10.1016/j.copbio.2006.10.009 PubMedCrossRefGoogle Scholar
  113. Wang X, Dou P, Zhao P, Zhao C, Ding Y, Xu P (2009) Immobilization of lipases onto magnetic Fe3O4 nanoparticles for application in biodiesel production. ChemSusChem 2:947–950. doi: 10.1002/cssc.200900174 PubMedCrossRefGoogle Scholar
  114. Wang X, Liu X, Yan X, Zhao P, Ding Y, Xu P (2011a) Enzyme-nanoporous gold biocomposite: excellent biocatalyst with improved biocatalytic performance and stability. PLoS ONE 6, e24207. doi: 10.1371/journal.pone.0024207 PubMedCentralPubMedCrossRefGoogle Scholar
  115. Wang X, Liu X, Zhao C, Ding Y, Xu P (2011b) Biodiesel production in packed-bed reactors using lipase-nanoparticle biocomposite. Bioresour Technol 102:6352–6355. doi: 10.1016/j.biortech.2011.03.003 PubMedCrossRefGoogle Scholar
  116. Wang J, Meng G, Tao K, Feng M, Zhao X, Li Z, Xu H, Xia D, Lu JR (2012) Immobilisation of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity. PLoS ONE 7, e43478. doi: 10.1371/journal.pone.0043478 PubMedCentralPubMedCrossRefGoogle Scholar
  117. Wentzel A, Ellingsen TE, Kotlar H, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221. doi: 10.1007/s00253-007-1119-1 PubMedCrossRefGoogle Scholar
  118. Wijffels RH, Barbosa MJ (2010) An outlook on microalgal oil. Science 329:796–799. doi: 10.1126/science.1189003 PubMedCrossRefGoogle Scholar
  119. Wiltshire KH, Boersma M, Möller A, Buhtz H (2000) Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae). Aquat Ecol 34:119–126. doi: 10.1023/A:1009911418606 CrossRefGoogle Scholar
  120. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415. doi: 10.1007/s11671-008-9174-9 PubMedCentralPubMedCrossRefGoogle Scholar
  121. Xie W, Ma N (2009) Immobilized lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energy Fuel 23:1347–1353. doi: 10.1021/ef800648y CrossRefGoogle Scholar
  122. Xie W, Ma N (2010) Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass Bioenergy 34:890–896. doi: 10.1016/j.biombioe.2010.01.034 CrossRefGoogle Scholar
  123. Xu X, Gao Y, Liu G, Wang Q, Zhao J (2008) Optimization of supercritical carbon dioxide extraction of sea buckthorn (Hippophaë thamnoides L.) oil using response surface methodology. LWT Food Sci Technol 41:1223–1231. doi: 10.1016/j.lwt.2007.08.002 CrossRefGoogle Scholar
  124. Yiu HHP, Keane MA (2012) Enzyme-magnetic nanoparticle hybrids: new effective catalysts for the production of high value chemicals. J Chem Technol Biotechnol 87:583–594. doi: 10.1002/jctb.3735 CrossRefGoogle Scholar
  125. Yu CY, Huang LY, Kuan IC, Lee SL (2013) Optimized production of biodiesel from waste cooking oil by lipase immobilized on magnetic nanoparticles. Int J Mol Sci 14:24074–24086. doi: 10.3390/ijms141224074 PubMedCentralPubMedCrossRefGoogle Scholar
  126. Zheng H, Yin J, Gao Z, Huang H, Ji X, Dou C (2011) Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl Biochem Biotechnol 164:1215–1224. doi: 10.1007/s12010-011-9207-1 PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Centre for Chemistry and Biotechnology, Faculty of Science Engineering & Built EnvironmentDeakin UniversityGeelongAustralia

Personalised recommendations