Integrative Approach for Biohydrogen and Polyhydroxyalkanoate Production

  • Sanjay K. S. Patel
  • Prasun Kumar
  • Mamtesh Singh
  • Jung-Kul Lee
  • Vipin Chandra Kalia


Carbohydrates especially sugars are employed for the production of different bio-products. Biological waste(s) originating from agricultural, industrial, and municipal sources has been considered as suitable low-cost feed for the production of biofuels and biopolymers. Single-stage production of these bio-products does not lead to complete utilization of organic matter of the biowaste(s) used as feed. Recently, approaches to integrate bioprocesses leading to hydrogen (H2), polyhydroxyalkanoate (PHA), and methane production are gaining importance to metabolize more than 80 % of the biowastes. Integration of H2 and PHA has been proposed but has not been widely studied. Here, we are evaluating the feasibility of integrating H2 and PHA production systems. A further integration of these processes with methanogenesis might be a suitable approach in the near future for overall efficiency.


Chemical Oxygen Demand Volatile Fatty Acid Dark Fermentation NiFe Hydrogenase Uncontrolled Fermentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the Director of CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi, CSIR-WUM (ESC0108) Government of India for providing necessary funds and facilities. Part of this research work was also supported by 2015 KU Brain Pool of Konkuk University (KU) and the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), which granted financial resource from the Ministry of Trade, Industry and Energy, Republic of Korea (201320200000420). PK is thankful to CSIR for granting Senior Research Fellowship.


  1. Albuquerque MGE, Eiroa M, Torres C, Nunes BR, Reis MAM (2007) Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J Biotechnol 130:411–421. doi: 10.1016/j.jbiotec.2007.05.011 CrossRefPubMedGoogle Scholar
  2. Amulya K, Reddy MV, Venkata Mohan S (2014) Acidogenic spent wash valorization through polyhydroxyalkanoate (PHA) synthesis coupled with fermentative biohydrogen production. Bioresour Technol 158:336–342. doi: 10.1016/j.biortech.2014.02.026 CrossRefPubMedGoogle Scholar
  3. Arumugam A, Sandhya M, Ponnusami V (2014) Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake. Bioresour Technol 164:170–176. doi: 10.1016/j.biortech.2014.04.104 CrossRefPubMedGoogle Scholar
  4. Atta M, Meyer J (2000) Characterization of the gene encoding the [Fe]-hydrogenase from Megasphaera elsdenii. Biochim Biophys Acta 1476:368–371. doi: 10.1016/S0167-4838(99)00245-9 CrossRefPubMedGoogle Scholar
  5. Chen YT, Wu SC, Lee CM (2012) Relationship between cell growth, hydrogen production and poly-β-hydroxybutyrate (PHB) accumulation by Rhodopseudomonas palustris WP3-5. Int J Hydrogen Energy 37:13887–13894. doi: 10.1016/j.ijhydene.2012.06.024 CrossRefGoogle Scholar
  6. Das D (2009) Advances in biohydrogen production process: An approach towards commercialization. Int J Hydrogen Energy 34:7349–7357. doi: 10.1016/j.ijhydene.2008.12.013 CrossRefGoogle Scholar
  7. Fulop A, Beres R, Tengolics R, Rakhely G, Kovacs KL (2012) Relationship between PHA and hydrogen metabolism in the purple sulfur phototrophic bacterium Thiocapsa roseopersicina BBS. Int J Hydrogen Energy 37:4915–4924. doi: 10.1016/j.ijhydene.2011.12.019 CrossRefGoogle Scholar
  8. Hallenbeck PC, Benemann JR (2002) Biological hydrogen production: fundamentals and limiting processes. Int J Hydrogen Energy 27:1185–1193. doi: 10.1016/S0360-3199(02)00131-3 CrossRefGoogle Scholar
  9. Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27:287–297. doi: 10.1016/j.tibtech.2009.02.004 CrossRefPubMedGoogle Scholar
  10. Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260. doi: 10.1016/j.cattod.2008.08.039 CrossRefGoogle Scholar
  11. Hustede E, Steinbuchel A, Schlegel HG (1993) Relationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulphur purple bacteria. Appl Microbiol Biotechnol 39:87–93. doi: 10.1007/BF00166854 CrossRefGoogle Scholar
  12. Ivanova G, Rakhely G, Kovacs K (2008) Hydrogen production from biopolymers by Caldicellulosiruptor saccharolyticus and stabilization of the system by immobilization. Int J Hydrogen Energy 33:6953–6961. doi: 10.1016/j.ijhydene.2008.08.058 CrossRefGoogle Scholar
  13. Jain IP (2009) Hydrogen the fuel for 21st century. Int J Hydrogen Energy 34:7368–7378. doi: 10.1016/j.ijhydene.2009.05.093 CrossRefGoogle Scholar
  14. Kalia VC (2007) Microbial treatment of domestic and industrial wastes for bioenergy production, Appl Microbiol (e-Book). National Science Digital Library NISCAIR, New Delhi, India.
  15. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 32:224–245. doi: 10.1016/j.biotechadv.2012.10.004 CrossRefGoogle Scholar
  16. Kalia VC, Joshi AP (1995) Conversion of waste biomass (pea-shells) into hydrogen and methane through anaerobic digestion. Bioresour Technol 53:165–168. doi: 10.1016/0960-8524(95)00077-R CrossRefGoogle Scholar
  17. Kalia VC, Lal S (2006) A process for enhanced biological hydrogen and methane production by fermentative hydrogen producers and methanogens immobilized on ligno-cellulosic wastes. Indian Patent 152NF2006Google Scholar
  18. Kalia VC, Purohit HJ (2008) Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 35:403–419. doi: 10.1007/s10295-007-0300-y CrossRefPubMedGoogle Scholar
  19. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140. doi: 10.3109/1040841X.2010.532479 CrossRefPubMedGoogle Scholar
  20. Kalia VC, Kumar A, Jain SR, Joshi AP (1992a) Biomethanation of plant materials. Bioresour Technol 41:209–212. doi: 10.1016/0960-8524(92)90003-G CrossRefGoogle Scholar
  21. Kalia VC, Kumar A, Jain SR, Joshi AP (1992b) Methanogenesis of dumping wheat grains and recycling of the effluent. Resour Conserv Recy 6:161–166. doi: 10.1016/0921-3449(92)90042-Z CrossRefGoogle Scholar
  22. Kalia VC, Jain SR, Kumar A, Joshi AP (1994) Fermentation of biowaste to hydrogen by Bacillus licheniformis. World J Microbiol Biotechnol 10:224–227. doi: 10.1007/BF00360893 CrossRefPubMedGoogle Scholar
  23. Kalia VC, Raizada N, Sonakya V (2000a) Bioplastics. J Sci Ind Res 59:433–445Google Scholar
  24. Kalia VC, Sonakya V, Raizada N (2000b) Anaerobic digestion of banana stem waste. Bioresour Technol 73:191–193. doi: 10.1016/S0960-8524(99)00172-8 CrossRefGoogle Scholar
  25. Kalia VC, Chauhan A, Bhattacharyya G, Rashmi (2003a) Genomic databases yield novel bioplastic producers. Nat Biotechnol 21:845–846. doi: 10.1038/nbt0803-845 CrossRefPubMedGoogle Scholar
  26. Kalia VC, Lal S, Ghai R, Mandal M, Chauhan A (2003b) Mining genomic databases to identify novel hydrogen producers. Trends Biotechnol 21:152–156. doi: 10.1016/S0167-7799(03)00028-3 CrossRefPubMedGoogle Scholar
  27. Kalia VC, Lal S, Cheema S (2007) Insight in to the phylogeny of polyhydroxyalkanoate biosynthesis: horizontal gene transfer. Gene 389:19–26. doi: 10.1016/j.gene.2006.09.010 CrossRefPubMedGoogle Scholar
  28. Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582. doi: 10.1016/j.enzmictec.2005.09.015 CrossRefGoogle Scholar
  29. Kim D-H, Kim M-S (2013) Development of a novel three-stage fermentation system converting food waste to hydrogen and methane. Bioresour Technol 127:267–274. doi: 10.1016/j.biortech.2012.09.088 CrossRefPubMedGoogle Scholar
  30. Kim S-H, Shin H-S (2008) Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste. Int J Hydrogen Energy 33:5266–5274. doi: 10.1016/j.ijhydene.2008.05.010 CrossRefGoogle Scholar
  31. Kim MS, Kim DH, Son HN, Ten LN, Lee JK (2011) Enhancing photo-fermentative hydrogen production by Rhodobacter sphaeroides KD131 and its PHB synthase deleted-mutant from acetate and butyrate. Int J Hydrogen Energy 36:13964–13971. doi: 10.1016/j.ijhydene.2011.03.099 CrossRefGoogle Scholar
  32. Kleerebezem R, van Loosdrecht MCM (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212. doi: 10.1016/j.copbio.2007.05.001 CrossRefPubMedGoogle Scholar
  33. Kotay SM, Das D (2007) Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresour Technol 98:1183–1190. doi: 10.1016/j.biortech.2006.05.009 CrossRefPubMedGoogle Scholar
  34. Kumar N, Das D (2001) Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb Technol 29:280–287. doi: 10.1016/S0141-0229(01)00394-5 CrossRefGoogle Scholar
  35. Kumar A, Jain SR, Sharma CB, Joshi AP, Kalia VC (1995) Increased H2 production by immobilized microorganisms. World J Microbiol Biotechnol 11:156–159. doi: 10.1007/BF00704638 CrossRefPubMedGoogle Scholar
  36. Kumar A, Jain SR, Kalia VC, Joshi AP (1998) Effect of some physiological factors on nitrogenase activity and nitrogenase mediated hydrogen evolution by mixed microbial culture. Biochem Mol Biol Int 45:245–253PubMedGoogle Scholar
  37. Kumar T, Singh M, Purohit HJ, Kalia VC (2009) Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste. J Appl Microbiol 106:2017–2023. doi: 10.1111/j.1365-2672.2009.04160.x CrossRefPubMedGoogle Scholar
  38. Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. doi: 10.1016/j.biotechadv.2013.08.007 CrossRefPubMedGoogle Scholar
  39. Kumar P, Pant DC, Mehariya S, Sharma R, Kansal A, Kalia VC (2014a) Ecobiotechnological strategy to enhance efficiency of bioconversion of wastes into hydrogen and methane. Indian J Microbiol 54:262–267. doi: 10.1007/s12088-014-0467-7 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Kumar P, Singh M, Mehariya S, Patel SKS, Lee JK, Kalia VC (2014b) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:151–157. doi: 10.1007/s12088-014-0457-9 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015a) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol 55:1–7. doi: 10.1007/s12088-014-0509-1 CrossRefGoogle Scholar
  42. Kumar P, Ray S, Patel SKS, Lee JK, Kalia VC (2015b) Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol 78:9–16. doi: 10.1016/j.ijbiomac.2015.03.046 CrossRefPubMedGoogle Scholar
  43. Kumar P, Sharma R, Ray S, Mehariya S, Patel SKS, Lee JK, Kalia VC (2015c) Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour Technol 182:383–388. doi: 10.1016/j.biortech.2015.01.138 CrossRefPubMedGoogle Scholar
  44. Levin DB, Chahine R (2010) Challenges for renewable hydrogen production from biomass. Int J Hydrogen Energy 35:4962–4969. doi: 10.1016/j.ijhydene.2009.08.067 CrossRefGoogle Scholar
  45. Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29:173–185. doi: 10.1016/S0360-3199(03)00094-6 CrossRefGoogle Scholar
  46. Manish S, Banerjee R (2008) Comparison of biohydrogen production processes. Int J Hydrogen Energy 33:279–286. doi: 10.1016/j.ijhydene.2007.07.026 CrossRefGoogle Scholar
  47. Nissila ME, Lay C-H, Puhakka JA (2014) Dark fermentative hydrogen production from lignocellulosic hydrolysates – a review. Biomass Bioenergy 67:145–159. doi: 10.1016/j.biombioe.2014.04.035 CrossRefGoogle Scholar
  48. Ntaikou I, Kourmentza C, Koutrouli EC, Stamatelatou K, Zampraka A, Kornaros M, Lyberatos G (2009) Exploitation of olive oil mill wastewater for combined biohydrogen and biopolymers production. Bioresour Technol 100:3724–3730. doi: 10.1016/j.biortech.2008.12.001 CrossRefPubMedGoogle Scholar
  49. Patel SKS, Kalia VC (2013) Integrative biological hydrogen production: an overview. Indian J Microbiol 53:3–10. doi: 10.1007/s12088-012-0287-6 PubMedCentralCrossRefPubMedGoogle Scholar
  50. Patel SK, Purohit HJ, Kalia VC (2010) Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials. Int J Hydrogen Energy 35:10674–10681. doi: 10.1016/j.ijhydene.2010.03.025 CrossRefGoogle Scholar
  51. Patel SKS, Singh M, Kalia VC (2011) Hydrogen and polyhydroxybutyrate producing abilities of Bacillus spp. from glucose in two stage system. Indian J Microbiol 51:418–423. doi: 10.1007/s12088-011-0236-9 PubMedCentralCrossRefPubMedGoogle Scholar
  52. Patel SKS, Kumar P, Kalia VC (2012a) Enhancing biological hydrogen production through complementary microbial metabolisms. Int J Hydrogen Energy 37:10590–10603. doi: 10.1016/j.ijhydene.2012.04.045 CrossRefGoogle Scholar
  53. Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC (2012b) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy 36:218–225. doi: 10.1016/j.biombioe.2011.10.027 CrossRefGoogle Scholar
  54. Patel SKS, Kumar P, Mehariya S, Purohit HJ, Lee JK, Kalia VC (2014) Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int J Hydrogen Energy 39:14663–14668. doi: 10.1016/j.ijhydene.2014.07.084 CrossRefGoogle Scholar
  55. Patel SKS, Kumar P, Singh M, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. doi: 10.1016/j.biortech.2014.11.029 CrossRefPubMedGoogle Scholar
  56. Pielke R, Wigley T, Green C (2008) Dangerous assumptions: how big is the energy challenge of climate change? Nature 452:531–532. doi: 10.1038/452531a CrossRefPubMedGoogle Scholar
  57. Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Patel SKS, Kalia VC (2008) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 99:5444–5451. doi: 10.1016/j.biortech.2007.11.011 CrossRefPubMedGoogle Scholar
  58. Rai PK, Singh SP, Asthana RK, Singh S (2014) Biohydrogen production from sugarcane bagasse by integrating dark- and photo-fermentation. Bioresour Technol 152:140–146. doi: 10.1016/j.biortech.2013.10.117 CrossRefPubMedGoogle Scholar
  59. Raizada N, Sonakya V, Anand V, Kalia VC (2002) Waste management and production of future fuels. J Sci Ind Res 61:184–207Google Scholar
  60. Rani A, Porwal S, Sharma R, Kapley A, Purohit HJ, Kalia VC (2008) Assessment of microbial diversity in effluent treatment plants by culture dependent and culture independent approaches. Bioresour Technol 99:7098–7107. doi: 10.1016/j.biortech.2008.01.003 CrossRefPubMedGoogle Scholar
  61. Reddy MV, Venkata Mohan S (2012) Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia. Bioresour Technol 103:313–321. doi: 10.1016/j.biortech.2011.09.040 CrossRefPubMedGoogle Scholar
  62. Reddy CSK, Ghai R, Rashmi KVC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146. doi: 10.1016/S0960-8524(02)00212-2 CrossRefPubMedGoogle Scholar
  63. Reddy MV, Nikhil GN, Venkata Mohan S, Swamy YV, Sarma PN (2012) Pseudomonas otitidis as a potential biocatalyst for polyhydroxyalkanoates (PHA) synthesis using synthetic wastewater and acidogenic effluents. Bioresour Technol 123:471–479. doi: 10.1016/j.biortech.2012.07.077 CrossRefGoogle Scholar
  64. Reddy MV, Amulya K, Rohit MV, Sarma PN, Venkata Mohan S (2014) Valorization of fatty acid waste for bioplastics production using Bacillus tequilensis: integration with dark-fermentative hydrogen production. Int J Hydrogen Energy 39:7616–7626. doi: 10.1016/j.ijhydene.2013.09.157 CrossRefGoogle Scholar
  65. Redwood MD, Beedle MP, Macaskie LE (2009) Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Biotechnol 8:149–185. doi: 10.1007/s11157-008-9144-9 CrossRefGoogle Scholar
  66. Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592. doi: 10.1038/nrmicro2354 CrossRefPubMedGoogle Scholar
  67. Rittmann BE, Krajmalnik-Brown R, Halden RU (2008) Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nat Rev Microbiol 6:604–612. doi: 10.1038/nrmicro1939 CrossRefPubMedGoogle Scholar
  68. Rosa PRF, Santos SC, Silva EL (2014) Different ratios of carbon sources in the fermentation of cheese whey and glucose as substrates for hydrogen and ethanol production in continuous reactors. Int J Hydrogen Energy 39:1288–1296. doi: 10.1016/j.ijhydene.2013.11.011 CrossRefGoogle Scholar
  69. Saraphirom P, Reungsang A, Plangklang P (2013) Polyhydroxyalkanoates production from effluent of hydrogen fermentation process by Cupriavidus sp. KKU38. Environ Technol 34:477–483. doi: 10.1080/09593330.2012.701237 CrossRefPubMedGoogle Scholar
  70. Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:38. doi: 10.1186/1475-2859-8-38 PubMedCentralCrossRefPubMedGoogle Scholar
  71. Singh M, Kumar P, Patel SKS, Kalia VC (2013) Production of polyhydroxyalkanoate co-polymer by Bacillus thuringiensis. Indian J Microbiol 53:77–83. doi: 10.1007/s12088-012-0294-7 PubMedCentralCrossRefPubMedGoogle Scholar
  72. Singh M, Kumar P, Ray S, Kalia VC (2015) Challenges and opportunities for customizing polyhydroxyalkanoates. Indian J Microbiol 55:235–249. doi: 10.1007/s12088-015-0528-6 CrossRefPubMedGoogle Scholar
  73. Sonakya V, Raizada N, Kalia VC (2001) Microbial and enzymatic improvement of anaerobic digestion of waste biomass. Biotechnol Lett 23:1463–1466. doi: 10.1023/A:1011664912970 CrossRefGoogle Scholar
  74. Venkata Mohan S, Reddy MV, Subhash GV, Sarma PN (2010) Fermentative effluents from hydrogen producing bioreactor as substrate for poly(β-OH) butyrate production with simultaneous treatment: an integrated approach. Bioresour Technol 101:9382–9386. doi: 10.1016/j.biortech.2010.06.109 CrossRefPubMedGoogle Scholar
  75. Vincenzini M, Marchini A, Ena A, De Philippis R (1997) H2 and poly-β-hydroxybutyrate, two alternative chemicals from purple non sulfur bacteria. Biotechnol Lett 19:759–762. doi: 10.1023/A:1018336209252 CrossRefGoogle Scholar
  76. Wu SC, Liou SZ, Lee CM (2012) Correlation between bio-hydrogen production and polyhydroxybutyrate (PHB) synthesis by Rhodopseudomonas palustris WP3-5. Bioresour Technol 113:44–50. doi: 10.1016/j.biortech.2012.01.090 CrossRefPubMedGoogle Scholar
  77. Xia B, Cheng J, Zhou J, Song W, Cen K (2008) Cogeneration of hydrogen and methane from glucose to improve energy conversion efficiency. Int J Hydrogen Energy 33:5006–5011. doi: 10.1016/j.ijhydene.2008.07.048 CrossRefGoogle Scholar
  78. Yan Q, Zhao M, Miao H, Ruan W, Song R (2010) Coupling of the hydrogen and polyhydroxyalkanoates (PHA) production through anaerobic digestion from Taihu blue algae. Bioresour Technol 101:4508–4512. doi: 10.1016/j.biortech.2010.01.073 CrossRefPubMedGoogle Scholar
  79. Ye J-Y, Liu T, Chen Y, Liao Q, Wang Z-K, Chen G-C (2013) Effect of AI crude extract on PHB accumulation and hydrogen photoproduction in Rhodobacter sphaeroides. Int J Hydrogen Energy 38:15770–15776. doi: 10.1016/j.ijhydene.2013.03.141 CrossRefGoogle Scholar
  80. Yin D, Liu W, Zhai N, Yang G, Wang X, Feng Y, Ren G (2014) Anaerobic digestion of pig and dairy manure under photo-dark fermentation condition. Bioresour Technol 166:373–380. doi: 10.1016/j.biortech.2014.05.037 CrossRefPubMedGoogle Scholar
  81. Yokoi H, Tokushige T, Hirose J, Hayashi S, Takasaki Y (1997) Hydrogen Production by immobilized cells of aciduric Enterobacter aerogenes strain HO-39. J Ferment Bioeng 83:481–484. doi: 10.1016/S0922-338X(97)83006-1 CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Sanjay K. S. Patel
    • 1
  • Prasun Kumar
    • 2
  • Mamtesh Singh
    • 3
  • Jung-Kul Lee
    • 1
  • Vipin Chandra Kalia
    • 4
  1. 1.Department of Chemical EngineeringKonkuk UniversitySeoulRepublic of Korea
  2. 2.Microbial Biotechnology and GenomicsCSIR-Institute of Genomics and Integrative Biology (IGIB)DelhiIndia
  3. 3.Department of Zoology, Gargi CollegeUniversity of DelhiDelhiIndia
  4. 4.Microbial Biotechnology and GenomicsCSIR-Institute of Genomics and Integrative BiologyDelhiIndia

Personalised recommendations