Megasphaera as Lactate-Utilizing Hydrogen-Producing Bacteria


Hydrogen is likely to become an important energy carrier in the future. Hydrogen fermentation using obligate anaerobes has attracted much attention as a technique to supply inexpensive hydrogen fuel. Ease of use is important for the construction of a practical hydrogen fermentation system. The robustness of the hydrogen producer must be considered also, and a microbe that will not easily be inhibited by saprophytic bacteria and that has good hydrogen productivity should be chosen. Megasphaera elsdenii is a lactate-utilizing, hydrogen-producing bacterium (LU-HPB). It can use lactate as a substrate for hydrogen fermentation, and it is not inhibited by the presence of lactic acid bacteria. Thus, heat shock treatment is not required for stable hydrogen fermentation. This is “blind spot” of hydrogen fermentation. LU-HPB shows promise to improve the overall energy budget in hydrogen fermentation. Other species of Megasphaera are also linked to the environment, health, and industrial food production. However, the most popular method for detection of Megasphaera is conventional culture, which requires a week or more. In this chapter, we will describe rapid methodologies for detection of Megasphaera spp., which will contribute to the industry as well as to the development of future hydrogen fermentation systems.


Lactic Acid Bacterium Hydrogen Generation Hydrogen Yield Heat Shock Treatment Dark Fermentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thank Dr. Yukiko Bando, Shinko Abe, Yuji Hasegawa, and Ran Murayama for contributing to this research.


  1. Abdel-Rahman MA, Tashiro Y, Zendo T, Hanada K, Shibata K, Sonomoto K (2011) Efficient homofermentative L-(+)-lactic acid production from xylose by a novel lactic acid bacterium, Enterococcus mundtii QU 25. Appl Environ Microbiol 77:1892–1895. doi: 10.1007/s00253-010-2986-4 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Abu-Khader MM (2009) Recent advances in nuclear power: a review. Prog Nucl Energy 51:225–235. doi: 10.1016/j.pnucene.2008.05.001 CrossRefGoogle Scholar
  3. Atlas RM (2010) Handbook of microbiological media. CRC press, Boca RatonCrossRefGoogle Scholar
  4. Azwar M, Hussain M, Abdul-Wahab A (2014) Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renew Sustain Energy Rev 31:158–173. doi: 10.1016/j.rser.2013.11.022 CrossRefGoogle Scholar
  5. Baghchehsaraee B, Nakhla G, Karamanev D, Margaritis A (2009) Effect of extrinsic lactic acid on fermentative hydrogen production. Int J Hydrogen Energy 34:2573–2579. doi: 10.1016/j.ijhydene.2009.01.010 CrossRefGoogle Scholar
  6. Balat M, Balat M (2009) Political, economic and environmental impacts of biomass-based hydrogen. Int J Hydrogen Energy 34:3589–3603. doi: 10.1016/j.ijhydene.2009.02.067 CrossRefGoogle Scholar
  7. Balat H, Kırtay E (2010) Hydrogen from biomass–present scenario and future prospects. Int J Hydrogen Energy 35:7416–7426. doi: 10.1016/j.ijhydene.2010.04.137 CrossRefGoogle Scholar
  8. Ball M, Wietschel M (2009) The future of hydrogen–opportunities and challenges. Int J Hydrogen Energy 34:615–627. doi: 10.1016/j.ijhydene.2008.11.014 CrossRefGoogle Scholar
  9. Blakey S, Rye L, Wilson CW (2011) Aviation gas turbine alternative fuels: a review. Proc Combust Inst 33:2863–2885. doi: 10.1016/j.proci.2010.09.011 CrossRefGoogle Scholar
  10. Bradshaw A, Hamacher T, Fischer U (2011) Is nuclear fusion a sustainable energy form? Fusion Eng Des 86:2770–2773. doi: 10.1016/j.fusengdes.2010.11.040 CrossRefGoogle Scholar
  11. Castillo Martinez FA, Balciunas EM, Salgado JM, Dominguez Gonzalez JM, Converti A, Oliveira RPdS (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30:70–83. doi: 10.1016/j.tifs.2012.11.007 CrossRefGoogle Scholar
  12. Cavalcante de Amorim EL, Barros AR, Rissato Zamariolli Damianovic MH, Silva EL (2009) Anaerobic fluidized bed reactor with expanded clay as support for hydrogen production through dark fermentation of glucose. Int J Hydrogen Energy 34:783–790. doi: 10.1016/j.ijhydene.2008.11.007 CrossRefGoogle Scholar
  13. Cerf O (1977) A review tailing of survival curves of bacterial spores. J Appl Bacteriol 42:1–19. doi: 10.1111/j.1365-2672.1977.tb00665.x PubMedCrossRefGoogle Scholar
  14. Chang JS, Lee KS, Lin PJ (2002) Biohydrogen production with fixed-bed bioreactors. Int J Hydrogen Energy 27:1167–1174. doi: 10.1016/S0360-3199(02)00130-1 CrossRefGoogle Scholar
  15. Chen CC, Wu J-H, Lay C-H, Sen B, Chang J-S (2011) Kinetics of hydrogen production from condensed molasses fermentation solubles using sewage sludge in a continuous stirred tank reactor. Sustain Environ Res 21:117–121Google Scholar
  16. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303. doi: 10.1038/nature11475 PubMedCrossRefGoogle Scholar
  17. Chu Y, Wei Y, Yuan X, Shi X (2011) Bioconversion of wheat stalk to hydrogen by dark fermentation: effect of different mixed microflora on hydrogen yield and cellulose solubilisation. Bioresour Technol 102:3805–3809. doi: 10.1016/j.biortech.2010.11.092 PubMedCrossRefGoogle Scholar
  18. Claassen P, Van Lier J, Lopez Contreras A, Van Niel E, Sijtsma L, Stams A, De Vries S, Weusthuis R (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755. doi: 10.1007/s002530051586 CrossRefGoogle Scholar
  19. Counotte G, Prins R, Janssen R, DeBie M (1981) Role of Megasphaera elsdenii in the fermentation of DL-[2-13C] lactate in the rumen of dairy cattle. Appl Environ Microbiol 42:649PubMedCentralPubMedGoogle Scholar
  20. Delucchi MA, Jacobson MZ (2011) Providing all global energy with wind, water, and solar power, part II: reliability, system and transmission costs, and policies. Energy Policy 39:1170–1190. doi: 10.1016/j.enpol.2010.11.045 CrossRefGoogle Scholar
  21. Dong L, Zhenhong Y, Yongming S, Xiaoying K, Yu Z (2009) Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. Int J Hydrogen Energy 34:812–820. doi: 10.1016/j.ijhydene.2008.11.031 CrossRefGoogle Scholar
  22. Dovì VG, Friedler F, Huisingh D, Klemeš JJ (2009) Cleaner energy for sustainable future. J Clean Prod 17:889–895. doi: 10.1016/j.jclepro.2009.02.001 CrossRefGoogle Scholar
  23. Eltawil MA, Zhengming Z, Yuan L (2009) A review of renewable energy technologies integrated with desalination systems. Renew Sustain Energy Rev 13:2245–2262. doi: 10.1016/j.rser.2009.06.011 CrossRefGoogle Scholar
  24. Engelmann U, Weiss N (1985) Megasphaera cerevisiae sp. nov.: a new gram-negative obligately anaerobic coccus isolated from spoiled beer. Syst Appl Microbiol 6:287–290. doi: 10.1016/S0723-2020(85)80033-3 CrossRefGoogle Scholar
  25. Eroglu E, Melis A (2011) Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol 102:8403–8413. doi: 10.1016/j.biortech.2011.03.026 PubMedCrossRefGoogle Scholar
  26. Fang HH, Li C, Zhang T (2006) Acidophilic biohydrogen production from rice slurry. Int J Hydrogen Energy 31:683–692. doi: 10.1016/j.ijhydene.2005.07.005 CrossRefGoogle Scholar
  27. Françoise L (2010) Occurrence and role of lactic acid bacteria in seafood products. Food Microbiol 27:698–709. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  28. Ginkel SV, Sung S, Lay J-J (2001) Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol 35:4726–4730. doi: 10.1021/es001979r PubMedCrossRefGoogle Scholar
  29. Haikara A, Helander I (2006) Pectinatus, Megasphaera and Zymophilus. Prokaryotes 4:965–981CrossRefGoogle Scholar
  30. Haikara A, Lounatmaa K (1987) Characterization of Megasphaera sp., a new anaerobic beer spoilage coccus. In Proceedings of the European Brewing Convention, Madrid, pp 473-480Google Scholar
  31. Han S, Shin H (2004) Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrogen Energy 29:569–577. doi: 10.1016/j.ijhydene.2003.09.001 CrossRefGoogle Scholar
  32. Hashizume K, Tsukahara T, Yamada K, Koyama H, Ushida K (2003) Megasphaera elsdenii JCM1772T normalizes hyperlactate production in the large intestine of fructooligosaccharide-fed rats by stimulating butyrate production. J Nutr 133:3187–3190PubMedGoogle Scholar
  33. Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrogen Energy 32:172–184. doi: 10.1016/j.ijhydene.2006.08.014 CrossRefGoogle Scholar
  34. Hay JXW, Wu TY, Juan JC (2013) Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: overview, economics, and future prospects of hydrogen usage. Biofuels Bioprod Biorefin 7:334–352. doi: 10.1002/bbb.1403 CrossRefGoogle Scholar
  35. Hayashi H, Sakamoto M, Benno Y (2002) Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 46:535–548. doi: 10.1111/j.1348-0421.2002.tb02731.x PubMedCrossRefGoogle Scholar
  36. Hiligsmann S, Beckers L, Masset J, Hamilton C, Thonart P (2014) Improvement of fermentative biohydrogen production by Clostridium butyricum CWBI1009 in sequenced-batch, horizontal fixed bed and biodisc-like anaerobic reactors with biomass retention. Int J Hydrogen Energy 39:6899–6911. doi: 10.1016/j.ijhydene.2014.02.139 CrossRefGoogle Scholar
  37. Hino T, Kuroda S (1993) Presence of lactate dehydrogenase and lactate racemase in Megasphaera elsdenii grown on glucose or lactate. Appl Environ Microbiol 59:255–259PubMedCentralPubMedGoogle Scholar
  38. Hino T, Shimada K, Maruyama T (1994) Substrate preference in a strain of Megasphaera elsdenii, a ruminal bacterium, and its implications in propionate production and growth competition. Appl Environ Microbiol 60:1827–1831PubMedCentralPubMedGoogle Scholar
  39. Hung C-H, Lee K-S, Cheng L-H, Huang Y-H, Lin P-J, Chang J-S (2007) Quantitative analysis of a high-rate hydrogen-producing microbial community in anaerobic agitated granular sludge bed bioreactors using glucose as substrate. Appl Microbiol Biotechnol 75:693–701. doi: 10.1007/s00253-007-0854-7 PubMedCrossRefGoogle Scholar
  40. Hwang JJ (2012) Review on development and demonstration of hydrogen fuel cell scooters. Renew Sustain Energy Rev 16:3803–3815. doi: 10.1016/j.rser.2012.03.036 CrossRefGoogle Scholar
  41. John RP, Anisha G, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193. doi: 10.1016/j.biortech.2010.06.139 PubMedCrossRefGoogle Scholar
  42. Jung K-W, Kim D-H, Shin H-S (2011) Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. Bioresour Technol 102:2745–2750. doi: 10.1016/j.biortech.2010.11.042 PubMedCrossRefGoogle Scholar
  43. Juvonen R, Suihko M (2006) Megasphaera paucivorans sp. nov., Megasphaera sueciensis sp. nov. and Pectinatus haikarae sp. nov., isolated from brewery samples, and emended description of the genus Pectinatus. Int J Syst Evol Microbiol 56:695. doi: 10.1099/ijs.0.63699-0 PubMedCrossRefGoogle Scholar
  44. Juvonen R, Koivula T, Haikara A (2008) Group-specific PCR-RFLP and real-time PCR methods for detection and tentative discrimination of strictly anaerobic beer-spoilage bacteria of the class Clostridia. Int J Food Microbiol 125:162–169. doi: 10.1016/j.ijfoodmicro.2008.03.042 PubMedCrossRefGoogle Scholar
  45. Kalinci Y, Hepbasli A, Dincer I (2009) Biomass-based hydrogen production: a review and analysis. Int J Hydrogen Energy 34:8799–8817. doi: 10.1016/j.ijhydene.2009.08.078 CrossRefGoogle Scholar
  46. Kapdan I, Kargi F (2006) Bio-hydrogen production from waste materials. Enzym Microb Technol 38:569–582. doi: 10.1016/j.enzmictec.2005.09.015 CrossRefGoogle Scholar
  47. Khanal SK, Chen W-H, Li L, Sung S (2004) Biological hydrogen production: effects of pH and intermediate products. Int J Hydrogen Energy 29:1123–1131. doi: 10.1016/j.ijhydene.2003.11.002 Google Scholar
  48. Kim D-H, Kim S-H, Shin H-S (2009) Hydrogen fermentation of food waste without inoculum addition. Enzym Microb Technol 45:181–187. doi: 10.1016/j.enzmictec.2009.06.013 CrossRefGoogle Scholar
  49. Kim D-H, Kim S-H, Kim H-W, Kim M-S, Shin H-S (2011) Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance. Bioresour Technol 102:8501–8506. doi: 10.1016/j.biortech.2011.04.089 PubMedCrossRefGoogle Scholar
  50. Kırtay E (2011) Recent advances in production of hydrogen from biomass. Energy Convers Manage 52:1778–1789. doi: 10.1016/j.enconman.2010.11.010 CrossRefGoogle Scholar
  51. Krishna RH (2013) Review of research on production methods of hydrogen: future fuel. Eur J Biotechnol Biosci 1:84–93Google Scholar
  52. Lakaniemi A-M, Koskinen PE, Nevatalo LM, Kaksonen AH, Puhakka JA (2011) Biogenic hydrogen and methane production from reed canary grass. Biomass Bioenergy 35:773–780. doi: 10.1016/j.biombioe.2010.10.032 CrossRefGoogle Scholar
  53. Lanjekar VB, Marathe NP, Ramana VV, Shouche YS, Ranade DR (2014) Megasphaera indica sp. nov., an obligate anaerobic bacteria isolated from human faeces. Int J Syst Evol Microbiol 64:2250–2256. doi: 10.1099/ijs.0.059816-0 PubMedCrossRefGoogle Scholar
  54. Laothanachareon T, Kanchanasuta S, Mhuanthong W, Phalakornkule C, Pisutpaisal N, Champreda V (2014) Analysis of microbial community adaptation in mesophilic hydrogen fermentation from food waste by tagged 16S rRNA gene pyrosequencing. J Environ Manage 144:143–151. doi: 10.1016/j.jenvman.2014.05.019 PubMedCrossRefGoogle Scholar
  55. Lay JJ (2000) Modeling and optimization of Anaerobic sludge converting starch to hydrogen. Biotechnol Bioeng 68:269–278. doi: 10.1002/(SICI)1097-0290(20000505)68:3<269::AID-BIT5>3.0.CO;2-T PubMedCrossRefGoogle Scholar
  56. Lay JJ (2001) Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol Bioeng 74:280–287. doi: 10.1002/bit.1118 PubMedCrossRefGoogle Scholar
  57. Lay J-J, Fan K-S (2003) Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. Int J Hydrogen Energy 28:1361–1367. doi: 10.1016/S0360-3199(03)00027-2 CrossRefGoogle Scholar
  58. Lay J-J, Lee Y-J, Noike T (1999) Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 33:2579–2586. doi: 10.1016/S0043-1354(98)00483-7 CrossRefGoogle Scholar
  59. Lee H, Salerno M, Rittmann B (2008) Thermodynamic evaluation on H2 production in glucose fermentation. Environ Sci Technol 42:2401–2407. doi: 10.1021/es702610v PubMedCrossRefGoogle Scholar
  60. Lee D-Y, Ebie Y, Xu K-Q, Li Y-Y, Inamori Y (2010a) Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge. Bioresour Technol 101:S42–S47. doi: 10.1016/j.biortech.2009.03.037 PubMedCrossRefGoogle Scholar
  61. Lee H-S, Vermaas WF, Rittmann BE (2010b) Biological hydrogen production: prospects and challenges. Trends Biotechnol 28:262–271. doi: 10.1016/j.tibtech.2010.01.007 PubMedCrossRefGoogle Scholar
  62. Lee D-J, Show K-Y, Su A (2011) Dark fermentation on biohydrogen production: pure culture. Bioresour Technol 102:8393–8402. doi: 10.1016/j.biortech.2011.03.041 PubMedCrossRefGoogle Scholar
  63. Li C, Fang H (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39. doi: 10.1080/10643380600729071 CrossRefGoogle Scholar
  64. Li S, Lai C, Cai Y, Yang X, Yang S, Zhu M, Wang J, Wang X (2010) High efficiency hydrogen production from glucose/xylose by the ldh-deleted Thermoanaerobacterium strain. Bioresour Technol 101:8718–8724. doi: 10.1016/j.biortech.2010.06.111 PubMedCrossRefGoogle Scholar
  65. Lin C-Y, Lay C (2004a) Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. Int J Hydrogen Energy 29:275–281. doi: 10.1016/j.ijhydene.2003.07.002 CrossRefGoogle Scholar
  66. Lin C, Lay C (2004b) Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int J Hydrogen Energy 29:41–45. doi: 10.1016/S0360-3199(03)00083-1 CrossRefGoogle Scholar
  67. Lin C, Lay C (2005) A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int J Hydrogen Energy 30:285–292. doi: 10.1016/j.ijhydene.2004.03.002 CrossRefGoogle Scholar
  68. Liu S-n, Han Y, Zhou Z-j (2011) Lactic acid bacteria in traditional fermented Chinese foods. Food Res Int 44:643–651. doi: 10.1016/j.foodres.2010.12.034 CrossRefGoogle Scholar
  69. Liu Q, Zhang XL, Jun Z, Zhao AH, Chen SP, Liu F, Tai J, Liu JY, Qian GR (2012) Effect of carbonate on anaerobic acidogenesis and fermentative hydrogen production from glucose using leachate as supplementary culture under alkaline conditions. Bioresour Technol 113:37–43. doi: 10.1016/j.biortech.2012.02.115 PubMedCrossRefGoogle Scholar
  70. Logan BE, Oh SE, Kim IS, Van Ginkel S (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36:2530–2535. doi: 10.1021/es015783i PubMedCrossRefGoogle Scholar
  71. Lu Y, Lai Q, Zhang C, Zhao H, Ma K, Zhao X, Chen H, Liu D, Xing X-H (2009) Characteristics of hydrogen and methane production from cornstalks by an augmented two-or three-stage anaerobic fermentation process. Bioresour Technol 100:2889–2895. doi: 10.1016/j.biortech.2009.01.023 PubMedCrossRefGoogle Scholar
  72. Luo G, Karakashev D, Xie L, Zhou Q, Angelidaki I (2011) Long‐term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production. Biotechnol Bioeng 108:1816–1827. doi: 10.1002/bit.23122 PubMedCrossRefGoogle Scholar
  73. Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600. doi: 10.1016/S0723-2020(11)80121-9 CrossRefGoogle Scholar
  74. Marchandin H, Jumas-Bilak E, Gay B, Teyssier C, Jean-Pierre H, Simeon de Buochberg M, Carriere C, Carlier J (2003) Phylogenetic analysis of some Sporomusa sub-branch members isolated from human clinical specimens: description of Megasphaera micronuciformis sp. nov. Int J Syst Evol Microbiol 53:547. doi: 10.1099/ijs.0.02378-0 PubMedCrossRefGoogle Scholar
  75. Marchandin H, Juvonen R, Haikara A (2009) Genus XIII. Megasphaera. In Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol.3. The Firmicutes, pp. 1082–1089. Edited by Vos P, Garrity G, Jones D, Krieg N, Ludwig W, Rainey F, Schleifer K, Whitman W. New York: SpringerGoogle Scholar
  76. Marounek M, Fliegrova K, Bartos S (1989) Metabolism and some characteristics of ruminal strains of Megasphaera elsdenii. Appl Environ Microbiol 55:1570PubMedCentralPubMedGoogle Scholar
  77. Martin SA (1994) Nutrient transport by ruminal bacteria: a review. J Anim Sci 72:3019–3031PubMedGoogle Scholar
  78. Masset J, Calusinska M, Hamilton C, Hiligsmann S, Joris B, Wilmotte A, Thonart P (2012) Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp. Biotechnol Biofuels 5:35. doi: 10.1186/1754-6834-5-35 PubMedCentralPubMedCrossRefGoogle Scholar
  79. Merlino G, Rizzi A, Schievano A, Tenca A, Scaglia B, Oberti R, Adani F, Daffonchio D (2013) Microbial community structure and dynamics in two-stage vs single-stage thermophilic anaerobic digestion of mixed swine slurry and market bio-waste. Water Res 47:1983–1995. doi: 10.1016/j.watres.2013.01.007 PubMedCrossRefGoogle Scholar
  80. Methner U, Barrow P, Gregorova D, Rychlik I (2004) Intestinal colonisation-inhibition and virulence of Salmonella phoP, rpoS and ompC deletion mutants in chickens. Vet Microbiol 98:37–43. doi: 10.1016/j.vetmic.2003.10.019 PubMedCrossRefGoogle Scholar
  81. Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T (2000a) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 73:59–65. doi: 10.1016/S0960-8524(99)00130-3 CrossRefGoogle Scholar
  82. Mizuno O, Ohara T, Shinya M, Noike T (2000b) Characteristics of hydrogen production from bean curd manufacturing wasteby anaerobic microflora. Water Sci Technol 42:345–350Google Scholar
  83. Mohammadi P, Ibrahim S, Mohamad Annuar MS, Law S (2011) Effects of different pretreatment methods on anaerobic mixed microflora for hydrogen production and COD reduction from palm oil mill effluent. J Clean Prod 19:1654–1658. doi: 10.1016/j.jclepro.2011.05.009 CrossRefGoogle Scholar
  84. Montet D, Ray RC, Zakhia-Rozis N (2014) Lactic acid fermentation of vegetables and fruits. In: Microorganisms and fermentation of traditional foods, 108–140. Edited by Ray RC, Didier M. CRC PressGoogle Scholar
  85. Murugesan A, Umarani C, Subramanian R, Nedunchezhian N (2009) Bio-diesel as an alternative fuel for diesel engines: a review. Renew Sustain Energy Rev 13:653–662. doi: 10.1016/j.rser.2007.10.007 CrossRefGoogle Scholar
  86. Muyzer G, de Waal E, Uitterlinden A (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695PubMedCentralPubMedGoogle Scholar
  87. Naik S, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597. doi: 10.1016/j.rser.2009.10.003 CrossRefGoogle Scholar
  88. Noike T, Mizuno O (2000) Hydrogen fermentation of organic municipal wastes. Water Sci Technol 42:155–162Google Scholar
  89. Noike T, Takabatake H, Mizuno O, Ohba M (2002) Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int J Hydrogen Energy 27:1367–1371. doi: 10.1016/S0360-3199(02)00120-9 CrossRefGoogle Scholar
  90. Oh S-E, Van Ginkel S, Logan BE (2003a) The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci Technol 37:5186–5190. doi: 10.1021/es034291y PubMedCrossRefGoogle Scholar
  91. Oh Y-K, Seol E-H, Kim JR, Park S (2003b) Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int J Hydrogen Energy 28:1353–1359. doi: 10.1016/S0360-3199(03)00024-7 CrossRefGoogle Scholar
  92. Ohnishi A, Bando Y, Fujimoto N, Suzuki M (2010) Development of a simple bio-hydrogen production system through dark fermentation by using unique microflora. Int J Hydrogen Energy 35:8544–8553. doi: 10.1016/j.ijhydene.2010.05.113 CrossRefGoogle Scholar
  93. Ohnishi A, Abe S, Nashirozawa S, Shimada S, Fujimoto N, Suzuki M (2011a) Development of a 16S rRNA gene primer and PCR-restriction fragment length polymorphism method for rapid detection of members of the genus Megasphaera and species-level identification. Appl Environ Microbiol 77:5533–5535. doi: 10.1128/AEM.00359-11 PubMedCentralPubMedCrossRefGoogle Scholar
  94. Ohnishi A, Nagano A, Fujimoto N, Suzuki M (2011b) Phylogenetic and physiological characterization of mesophilic and thermophilic bacteria from a sewage sludge composting process in Sapporo, Japan. World J Microbiol Biotechnol 2:333–340. doi: 10.1007/s11274-010-0463-y CrossRefGoogle Scholar
  95. Ohnishi A, Abe S, Bando Y, Fujimoto N, Suzuki M (2012a) Rapid detection and quantification methodology for genus Megasphaera as a hydrogen producer in a hydrogen fermentation system. Int J Hydrogen Energy 37:2239–2247. doi: 10.1016/j.ijhydene.2011.10.094 CrossRefGoogle Scholar
  96. Ohnishi A, Hasegawa Y, Abe S, Bando Y, Fujimoto N, Suzuki M (2012b) Hydrogen fermentation using lactate as the sole carbon source: solution for ‘blind spots’ in biofuel production. RSC Adv 2:8332–8340. doi: 10.1039/C2RA20590D CrossRefGoogle Scholar
  97. Okamoto M, Miyahara T, Mizuno O, Noike T (2000) Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci Technol 41:25–32PubMedGoogle Scholar
  98. O-Thong S, Prasertsan P, Birkeland N-K (2009) Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis. Bioresour Technol 100:909–918. doi: 10.1016/j.biortech.2008.07.036 PubMedCrossRefGoogle Scholar
  99. Ouwerkerk D, Klieve A, Forster R (2002) Enumeration of Megasphaera elsdenii in rumen contents by real‐time Taq nuclease assay. J Appl Microbiol 92:753–758. doi: 10.1046/j.1365-2672.2002.01580.x PubMedCrossRefGoogle Scholar
  100. Patel SK, Kumar P, Kalia VC (2012) Enhancing biological hydrogen production through complementary microbial metabolisms. Int J Hydrogen Energy 37:10590–10603. doi: 10.1016/j.ijhydene.2012.04.045 CrossRefGoogle Scholar
  101. Raju M, Khaitan SK (2012) System simulation of compressed hydrogen storage based residential wind hybrid power systems. J Power Sour 210:303–320. doi: 10.1016/j.jpowsour.2012.02.050 CrossRefGoogle Scholar
  102. Rogosa M (1971) Transfer of Peptostreptococcus elsdenii Gutierrez et al. to a new genus, Megasphaera [M. elsdenii (Gutierrez et al.) comb. nov.]. Int J Syst Evol Microbiol 21:187. doi: 10.1099/00207713-21-2-187 Google Scholar
  103. Sa LRVd, Cammarota MC, Oliveira TCd, Oliveira EMM, Matos A, Ferreira-Leitão VS (2013) Pentoses, hexoses and glycerin as substrates for biohydrogen production. Int J Hydrogen Energy 7:2986–2997. doi: 10.1016/j.ijhydene.2012.12.103 Google Scholar
  104. Saidur R, Abdelaziz E, Demirbas A, Hossain M, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sustain Energy Rev 15:2262–2289. doi: 10.1016/j.rser.2011.02.015 CrossRefGoogle Scholar
  105. Sakamoto K, Konings W (2003) Beer spoilage bacteria and hop resistance. Int J Food Microbiol 89:105–124. doi: 10.1016/S0168-1605(03)00153-3 PubMedCrossRefGoogle Scholar
  106. Satokari R, Juvonen R, Mallison K, von Wright A, Haikara A (1998) Detection of beer spoilage bacteria Megasphaera and Pectinatus by polymerase chain reaction and colorimetric microplate hybridization. Int J Food Microbiol 45:119–127. doi: 10.1016/S0168-1605(98)00154-8 PubMedCrossRefGoogle Scholar
  107. Saxena R, Adhikari D, Goyal H (2009) Biomass-based energy fuel through biochemical routes: a review. Renew Sustain Energy Rev 13:167–178. doi: 10.1016/j.rser.2007.07.011 CrossRefGoogle Scholar
  108. Scarlat N, Dallemand J-F (2011) Recent developments of biofuels/bioenergy sustainability certification: a global overview. Energy Policy 39:1630–1646. doi: 10.1016/j.enpol.2010.12.039 CrossRefGoogle Scholar
  109. Selembo PA, Perez JM, Lloyd WA, Logan BE (2009) Enhanced hydrogen and 1, 3‐propanediol production from glycerol by fermentation using mixed cultures. Biotechnol Bioeng 104:1098–1106. doi: 10.1002/bit.22487 PubMedCrossRefGoogle Scholar
  110. Show K, Lee D, Tay J, Lin C, Chang J (2012) Biohydrogen production: current perspectives and the way forward. Int J Hydrogen Energy 37:15616–15631. doi: 10.1016/j.ijhydene.2012.04.109 CrossRefGoogle Scholar
  111. Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580. doi: 10.1016/j.biortech.2009.11.046 PubMedCrossRefGoogle Scholar
  112. Sreela-Or C, Imai T, Plangklang P, Reungsang A (2011) Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures. Int J Hydrogen Energy 36:14120–14133. doi: 10.1016/j.ijhydene.2011.04.136 CrossRefGoogle Scholar
  113. Stams AJ, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577. doi: 10.1038/nrmicro2166 PubMedCrossRefGoogle Scholar
  114. Suh MP, Park HJ, Prasad TK, Lim D-W (2011) Hydrogen storage in metal–organic frameworks. Chem Rev 112:782–835. doi: 10.1039/B802256A PubMedCrossRefGoogle Scholar
  115. Suihko M, Haikara A (2001) Characterization of Pectinatus and Megasphaera strains by automated ribotyping. J Inst Brewing 107:175–184. doi: 10.1002/j.2050-0416.2001.tb00089.x CrossRefGoogle Scholar
  116. Tenca A, Schievano A, Lonati S, Malagutti L, Oberti R, Adani F (2011) Looking for practical tools to achieve next-future applicability of dark fermentation to produce bio-hydrogen from organic materials in Continuously Stirred Tank Reactors. Bioresour Technol 102:7910–7916. doi: 10.1016/j.biortech.2011.05.088 PubMedCrossRefGoogle Scholar
  117. Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23:364–381. doi: 10.1016/j.copbio.2011.10.008 PubMedCrossRefGoogle Scholar
  118. Tsukahara T, Hashizume K, Koyama H, Ushida K (2006) Stimulation of butyrate production through the metabolic interaction among lactic acid bacteria, Lactobacillus acidophilus, and lactic acid-utilizing bacteria, Megasphaera elsdenii, in porcine cecal digesta. Anim Sci J 77:454–461. doi: 10.1111/j.1740-0929.2006.00372.x CrossRefGoogle Scholar
  119. Valdez-Vazquez I, Poggi-Varaldo HM (2009) Hydrogen production by fermentative consortia. Renew Sustain Energy Rev 13:1000–1013. doi: 10.1016/j.rser.2008.03.003 CrossRefGoogle Scholar
  120. Vamvuka D (2011) Bio‐oil, solid and gaseous biofuels from biomass pyrolysis processes: an overview. Int J Energy Res 35:835–862. doi: 10.1002/er.1804 CrossRefGoogle Scholar
  121. Verhelst S (2014) Recent progress in the use of hydrogen as a fuel for internal combustion engines. Int J Hydrogen Energy 39:1071–1085. doi: 10.1016/j.ijhydene.2013.10.102 CrossRefGoogle Scholar
  122. Vos P, Garrity G, Jones D, Krieg N, Ludwig W, Rainey F, Schleifer K, Whitman W (2009) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn, The firmicutes. Springer, New YorkGoogle Scholar
  123. Wang J, Wan W (2009) Experimental design methods for fermentative hydrogen production: a review. Int J Hydrogen Energy 34:235–244. doi: 10.1016/j.ijhydene.2008.10.008 CrossRefGoogle Scholar
  124. Wang J, Wan W (2011) Combined effects of temperature and pH on biohydrogen production by Anaerobic sludge. Biomass Bioenergy 35:3896–3901. doi: 10.1016/j.biombioe.2011.06.016 CrossRefGoogle Scholar
  125. Wang C, Chang C, Chu C, Lee D, Chang B-V, Liao C, Tay J (2003) Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Res 37:2789–2793. doi: 10.1016/S0043-1354(03)00004-6 PubMedCrossRefGoogle Scholar
  126. Wong YM, Wu TY, Juan JC (2014) A review of sustainable hydrogen production using seed sludge via dark fermentation. Renew Sustain Energy Rev 34:471–482. doi: 10.1016/j.rser.2014.03.008 CrossRefGoogle Scholar
  127. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13:134. doi: 10.1186/1471-2105-13-134 CrossRefGoogle Scholar
  128. Yilanci A, Dincer I, Ozturk H (2009) A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Prog Energy Combust Sci 35:231–244. doi: 10.1016/j.pecs.2008.07.004 CrossRefGoogle Scholar
  129. Yokoyama H, Moriya N, Ohmori H, Waki M, Ogino A, Tanaka Y (2007) Community analysis of hydrogen-producing extreme thermophilic anaerobic microflora enriched from cow manure with five substrates. Appl Microbiol Biotechnol 77:213–222. doi: 10.1007/s00253-007-1144-0 PubMedCrossRefGoogle Scholar
  130. Zheng H-S, Guo W-Q, Yang S-S, Feng X-C, Du J-S, Zhou X-J, Chang J-S, Ren N-Q (2014) Thermophilic hydrogen production from sludge pretreated by thermophilic bacteria: analysis of the advantages of microbial community and metabolism. Bioresour Technol 172:433–437. doi: 10.1016/j.biortech.2014.09.020 PubMedCrossRefGoogle Scholar
  131. Zozaya-Hinchliffe M, Martin D, Ferris M (2008) Prevalence and abundance of uncultivated Megasphaera-like bacteria in the human vaginal environment. Appl Environ Microbiol 74:1656–1659. doi: 10.1128/AEM.02127-07 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Department of Fermentation ScienceTokyo University of AgricultureTokyoJapan

Personalised recommendations