Bio-Methane Production from Wastes: Focus on Feedstock Sources and Microbial Communities

  • Luigi Chiarini
  • Silvia Tabacchioni


The anaerobic digestion process is a proven microbially mediated technology to achieve the reduction of organic wastes with simultaneous production of biogas. The number of biogas plants is continuously increasing worldwide. In Asia, millions of family produce biogas for domestic use by means of their own small-scale digesters. A number of new biowaste-based feedstocks are currently investigated as well as the efficacy of different substrate mixtures. During anaerobic digestion, biomass is degraded by microorganisms belonging to different functional groups performing their task through three sequential stages: hydrolysis and acetogenesis dominated by Bacteria and methanogenesis carried out by Archaea. A stable and efficient process relies heavily on the concerted and syntrophic activity of these microorganisms. During the last years, the application of culture-independent molecular techniques to samples from various anaerobic digesters has provided significant insights into these complex microbial communities revealing higher diversity at phylogenetic and functional level of bacterial communities than the archaeal ones. Greater efforts are needed to gain insights into the phylogeny, interspecies interactions, and function of key microorganisms involved in the first steps of anaerobic digestion as these details can provide the opportunity for enhancing methane yields through a more efficient production of substrates for methanogenesis.


Bacterial Community Sewage Sludge Anaerobic Digestion Food Waste Biogas Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Al Seadi T (2001) Good practice in quality management of AD residues from biogas production. Report made for the International Energy Agency, Task 24- Energy from Biological Conversion of Organic Waste. Published by IEA Bioenergy and AEA Technology Environment, Oxfordshire, UKGoogle Scholar
  2. Al Seadi T, Rutz D, Prassl H, Köttner M, Finsterwalder T, Volk S, Janssen R (2008) Biogas Handbook. Published by University of Southern Denmark Esbjerg, Niels Bohrs Vej 9-10, DK-6700 Esbjerg, DenmarkGoogle Scholar
  3. Angelidaki I, Ellegaard L (2003) Codigestion of manure and organic wastes in centralized biogas plants. Appl Biochem Biotechnol 109:95–105PubMedCrossRefGoogle Scholar
  4. Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJ (2011) Biomethanation and its potential. Methods Enzymol 494:327–351. doi: 10.1016/B978-0-12-385112-3.00016- PubMedCrossRefGoogle Scholar
  5. Anonymous (2003) Statistical databases of Food and Agriculture Organization of the United Nations (
  6. Appels L, Baeyens J, DegrèveJ DR (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781. doi: 10.1016/j.pecs.2008.06.002 CrossRefGoogle Scholar
  7. Bauer C, Korthals M, Gronanen A, Lebuhn M (2008) Methanogens in biogas production from renewable resources – a novel molecular population analysis approach. Water Sci Technol 58:1433–1439. doi: 10.2166/wst.2008.514 PubMedCrossRefGoogle Scholar
  8. Beccari M, Majone M, Torrisi L (1998) Two-reactor system with partial phase separation for anaerobic treatment of olive oil mill effluents. Water Sci Technol 38:53–60CrossRefGoogle Scholar
  9. Bergman I, Mundt K, Sontag M, Baumstark I, Nettmann E, Klocke M (2010) Influence of DNA isolation on Q-PCR-based quantification of methanogenic Archaea in biogas fermenters. Syst Appl Microbiol 33:78–84. doi: 10.1016/j.syapm.2009.11.004 CrossRefGoogle Scholar
  10. Bertin L, Bettini C, Zanaroli G, Frascari D, Fava F (2012) A continuous-flow approach for the development of an anaerobic consortium capable of an effective biomethanization of a mechanically sorted organic fraction of municipal solid waste as the sole substrate. Water Res 46:413–424. doi: 10.1016/j.watres.2011.11.001 PubMedCrossRefGoogle Scholar
  11. Bouallagui H, Torrijos A, Godon JJ, Moletta R, Ben Cheick R, Touhami Y, Delgenes JP, Hamdi M (2004) Two-phases anaerobic digestion of fruit and vegetable wastes: bioreactors performance. Biochem Engin J 21:193–197CrossRefGoogle Scholar
  12. Bouallagui H, Touhami Y, Cheikh RB, Hamdi M (2005) Bioreactor performance in anaerobic digestion of fruit and vegetables wastes. Process Biochem 40:989–995CrossRefGoogle Scholar
  13. Bouallagui H, Lahdheb H, Ben Romdan E, Rachdi B, Hamdi M (2009) Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. J Environ Manag 90:1844–1849. doi: 10.1016/j.jenvman.2008.12.002 CrossRefGoogle Scholar
  14. Browne JD, Murphy JD (2013) Assessment of the resource associated with biomethane from food waste. Appl Energy 104:170–177. doi: 10.1016/j.apenergy.2012.11.017 CrossRefGoogle Scholar
  15. Browne JD, Murphy JD (2014) The impact of increasing organic loading in two phase digestion of food waste. Renew Energy 71:69–76. doi: 10.1016/j.renene.2014.05.026 CrossRefGoogle Scholar
  16. Cardinali-Rezende J, Colturato LFDB, Colturato TDB, Chartone-Souza E, Nascimento AMA, Sanz JL (2012) Prokaryotic diversity and dynamics in a full-scale municipal solid waste anaerobic reactor from start-up to steady-state conditions. Bioresour Technol 119:373–383. doi: 10.1016/j.biortech.2012.05.136 PubMedCrossRefGoogle Scholar
  17. Chen S, Zamudio Cañas EM, Zhang Y, Zhu Z, He Q (2012) Impact of substrate overloading on archaeal populations in anaerobic digestion of animal waste. J Appl Microbiol 113:1371–1379. doi: 10.1111/jam.12001 PubMedCrossRefGoogle Scholar
  18. Collins G, Mahony T, McHugh S, Gieseke A, de Beer D, O’Flaherty V (2005) Distribution, dynamics and in situ ecophysiology of Crenarchaeota in anaerobic wastewater treatment granular biofilms. Water Sci Technol 52:233–239Google Scholar
  19. Comino E, Riggio VA, Rosso M (2012) Biogas production by anaerobic co-digestion of cattle slurry and cheese whey. Bioresour Technol 114:46–53. doi: 10.1016/j.biortech.2012.02.090 PubMedCrossRefGoogle Scholar
  20. De Baere L (2000) Anaerobic digestion of solid waste: state-of-the-art. Water Sci Technol 41:283–289PubMedGoogle Scholar
  21. De Francisci D, Kougias PG, Treu L, Campanaro S, Angelidaki I (2015) Microbial diversity and dynamicity of biogas reactors due to radical changes of feedstock composition. Bioresour Technol 176:56–64. doi: 10.1016/j.biortech.2014.10.126 PubMedCrossRefGoogle Scholar
  22. El-Mashad HM, Zhang R (2010) Biogas production from co-digestion of dairy manure and food waste. Bioresour Technol 101:4021–4028. doi: 10.1016/j.biortech.2010.01.027 PubMedCrossRefGoogle Scholar
  23. Fezzani B, Ben Cheikh R (2010) Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature. Bioresour Technol 101:1628–1634. doi: 10.1016/j.biortech.2009.09.067 PubMedCrossRefGoogle Scholar
  24. Forgács G, Pourbafrani M, Niklasson C, Taherzadeh MJ, Hováth IS (2012) Methane production from citrus wastes: process development and cost estimation. J Chem Technol Biotechnol 87:250–255. doi: 10.1002/jctb.2707 CrossRefGoogle Scholar
  25. Forster-Carneiro T, Pérez M, Romero LI, Sales D (2007) Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste: focusing on the inoculum sources. Bioresour Technol 98:3195–3203. doi: 10.1016/j.biortech.2006.07.008 PubMedCrossRefGoogle Scholar
  26. Ganesh R, Torrijos M, Sousbie P, Lugardon A, Steyer JP, Delgenes JP (2014) Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: comparison of start-up, reactor stability and process performance. Waste Manag 34:875–885. doi: 10.1016/j.wasman.2014.02.023 PubMedCrossRefGoogle Scholar
  27. Gelegenis J, Georgakakis D, Angelidaki I, Mavris V (2007) Optimization of biogas production by co-digesting whey with diluted poultry manure. Renew Energy 32:2147–2160. doi: 10.1016/j.renene.2006.11.015 CrossRefGoogle Scholar
  28. Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS (2014) Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 90:1–17. doi: 10.1111/1574-6941.12383 PubMedCrossRefGoogle Scholar
  29. Guimarães PMR, Teixeira JA, Domingues L (2010) Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol Adv 28:375–384. doi: 10.1016/j.biotechadv.2010.02.002 PubMedCrossRefGoogle Scholar
  30. Guo X, Wang C, Sun F, Zhu W, Wu W (2014) A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings. Bioresour Technol 152:420–428. doi: 10.1016/j.biortech.2013.11.012 PubMedCrossRefGoogle Scholar
  31. Guo J, Peng Y, Ni BJ, Han X, Fan L, Yuan Z (2015) Dissecting microbial community structure and methane-producing pathways of digesting activated sludge from wastewater treatment by metagenome sequencing. Microb Cell Fact 14:218. doi: 10.1186/s12934-015-0218-4 Google Scholar
  32. Hagen LH, Vivekanand V, Linjordet R, Pope PB, Eijsink VGH, Horn SJ (2014) Microbial community structure and dynamics during co-digestion of whey permeate and cow manure in continuous stirred tank reactor systems. Bioresour Technol 171:350–359. doi: 10.1016/j.biortech.2014.08.095 PubMedCrossRefGoogle Scholar
  33. Hanaki K, Matsuo T, Nagase M (1981) Mechanisms of inhibition caused by long chain fatty acids in anaerobic digestion process. Biotechnol Bioeng 23:1591–1610CrossRefGoogle Scholar
  34. Hartmann H, Angelidaki I, Ahring BK (2003) Co-digestion of the organic fraction of municipal solid waste with other waste types. In: Mata-Alvarez J (ed) Biomethanization of the organic fraction of municipal solid wastes. IWA Publishing Company, AmsterdamGoogle Scholar
  35. Hori T, Haruta S, UenoY IM, Igarashi Y (2006) Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl Environ Microbiol 72:1623–1630. doi: 10.1128/AEM.72.2.1623 PubMedCrossRefPubMedCentralGoogle Scholar
  36. Iacovidou E, Ohandja DG, Voulvoulis N (2012) Food waste co-digestion with sewage sludge–realising its potential in the UK. J Environ Manag 112:267–274. doi: 10.1016/j.jenvman.2012.07.029 CrossRefGoogle Scholar
  37. Izumi K, Okishio YK, Nagao N, Niwa C, Yamamoto S, Toda T (2010) Effects of particle size on anaerobic digestion of food waste. Int Biodeterm Biodegr 64:601–608. doi: 10.1016/j.ibiod.2010.06.013 CrossRefGoogle Scholar
  38. Kampmann K, Ratering S, Baumann R, Schmidt M, Zerr W, Schnell S (2012a) Hydrogenotrophic methanogens dominate in biogas reactors fed with defined substrates. Syst Appl Microbiol 35:404–413. doi: 10.1016/j.syapm.2012.07.002 PubMedCrossRefGoogle Scholar
  39. Kampmann K, Ratering S, Kramer I, Schmidt M, Zerr W, Schnell S (2012b) Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates. Appl Environ Microbiol 78:2106–2119. doi: 10.1128/AEM.06394-11 PubMedCrossRefPubMedCentralGoogle Scholar
  40. Kampmann K, Ratering S, Geißler-Plaum R, Schmidt M, Zerr W, Schnell S (2014) Changes of the microbial population structure in an overloaded fed-batch biogas reactor digesting maize silage. Bioresour Technol 174:108–117. doi: 10.1016/j.biortech.2014.09.150 PubMedCrossRefGoogle Scholar
  41. Kaparaju P, Rintala J (2005) Anaerobic co-digestion of potato tuber and its industrial by-products with pig manure. Bioresour Conserv Recycl 43:175–188. doi: 10.1016/j.resconrec.200406.001 CrossRefGoogle Scholar
  42. Kaparaju P, Rintala J, Oikari A (2012) Agricultural potential of anaerobically digested industrial orange waste with and without aerobic post-treatment. Environ Technol 33:85–94PubMedCrossRefGoogle Scholar
  43. Kavacik B, Topaloglu B (2010) Biogas production from co-digestion of a mixture of cheese whey and dairy manure. Biomass Bioenergy 34:1321–1329. doi: 10.1016/j.biombioe.2010.04.006 CrossRefGoogle Scholar
  44. Kim IS, Kim DH, Hyun SH (2000) Effect of particle size and sodium ion concentration on anaerobic thermophilic food waste digestion. Water Sci Technol 41:67–73PubMedGoogle Scholar
  45. Kim W, Cho K, Lee S, Hwang S (2013) Comparison of methanogenic community structure and anaerobic process performance treating swine wastewater between pilot and optimized lab scale bioreactors. Bioresour Technol 145:48–56. doi: 10.1016/j.biortech.2013.02.044 PubMedCrossRefGoogle Scholar
  46. Koppar A, Pullammanappallil P (2013) Anaerobic digestion of peel waste and wastewater for on site energy generation in a citrus processing facility. Energy 60:62–68. doi: 10.1016/ CrossRefGoogle Scholar
  47. Krause L, Diaz NN, Edwards RA, Gartemann KH, Krömeke H, Neuweger H, Pühler A, Runte KJ, Schlüter A, Stoye J, Szczepanowski R, Tauch A, Goesmann A (2008) Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. J Biotechnol 136:91–101. doi: 10.1016/j.jbiotec.2008.06.003 PubMedCrossRefGoogle Scholar
  48. Kröber M, Bekel T, Diaz NN, Goesmann A, Jaenicke S, Krause L, Miller D, Runte KJ, Viehover P, Puhler A, Schluter A (2009) Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 142:38–49. doi: 10.1016/j.jbiotec.2009.02.010 PubMedCrossRefGoogle Scholar
  49. Lebuhn M, Hanreich A, Klocke M, Schlüter A, Bauer C, Pérez CM (2014) Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Anaerobe 29:10–21. doi: 10.1016/j.anaerobe.2014.04.006 PubMedCrossRefGoogle Scholar
  50. Lee SH, Kang HJ, Lee YH, Lee TJ, Han K, Choi Y, Park HD (2012) Monitoring bacterial community structure and variability in time scale in full-scale anaerobic digesters. J Environ Monit 14:1893–1905. doi: 10.1039/c2em10958a PubMedCrossRefGoogle Scholar
  51. Leis S, Dresch P, Peintner U, Fliegerová K, Sandbichler AM, Insam H, Podmirseg SM (2014) Finding a robust strain for biomethanation: anaerobic fungi (Neocallimastigomycota) from the Alpine ibex (Capra ibex) and their associated methanogens. Anaerobe 29:34–43. doi: 10.1016/j.anaerobe.2013.12.002 PubMedCrossRefGoogle Scholar
  52. Lehtomaki A, Huttunen S, Rintala JA (2007) Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio. Resour Conserv Recycl 51:591–609CrossRefGoogle Scholar
  53. Li R, Chen S, Li X (2010) Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system. Appl Biochem Biotechnol 160:643–654. doi: 10.1007/s12010-009-8533-z PubMedCrossRefGoogle Scholar
  54. Li Y, Zhang R, Chen C, Liu G, He Y, Liu X (2013) Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresour Technol 149:406–412. doi: 10.1016/j.biortech.2013.09.091 PubMedCrossRefGoogle Scholar
  55. Lin CSK, Koutinas A, Stamatelatou K, Mubofu EB, Matharu AS, Kopsahelis N, Pfaltzgraff LA, Clark JH, Papanicolau S, Kwan TH, Luque R (2014) Current and future trends in food waste valorization for the production of chemicals, materials and fuels: a global perspective. Biofuels Bioprod Bioref 8:686–715. doi: 10.1002/bbb.1506 CrossRefGoogle Scholar
  56. Lim JW, Chen CL, Ho IJR, Wang JY (2013) Study of microbial community and biodegradation efficiency for single- and two-phase anaerobic co-digestion of brown water and food waste. Bioresour Technol 147:193–201. doi: 10.1016/j.biortech.2013.08.038 PubMedCrossRefGoogle Scholar
  57. Liu G, Zhang R, El-Mashad HM, Dong R (2009a) Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresour Technol 100:5103–5108. doi: 10.1016/j.biortech.2009.03.081 PubMedCrossRefGoogle Scholar
  58. Liu FH, Wang SB, Zhang JS, Zhang J, Yan X, Zhou HK, Zhao GP, Zhou ZH (2009b) The structure of the bacterial and archaeal community in a biogas digesters as revealed by denaturing gradient gel electrophoresis and 16S rDNA sequencing analysis. J Appl Microbiol 106:952–66. doi: 10.1111/j.1365-2672.2008.04064.x PubMedCrossRefGoogle Scholar
  59. Lu X, Rao S, Shen Z, Lee PKH (2013) Substrate induced emergence of different active bacterial and archaeal assemblages during biomethane production. Bioresour Technol 148:517–524. doi: 10.1016/j.biortech.2013.09.017 PubMedCrossRefGoogle Scholar
  60. Luo G, De Francisci D, Kougias PG, Laura T, Zhu X, Angelidaki I (2015) New steady-state microbial community compositions and process performances in biogas reactors induced by temperature disturbances. Biotechnol Biofuels 8:3. doi: 10.1186/s13068-014-0182-y PubMedCrossRefPubMedCentralGoogle Scholar
  61. Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530PubMedCrossRefGoogle Scholar
  62. Lv Z, Leite AF, Harms H, Richnow HH, Liebetrau J, Nikolausz M (2014) Influences of the substrate feeding regime on methanogenic activity in biogas reactors approached by molecular and stable isotope methods. Anaerobe 29:91–99. doi: 10.1016/j.anaerobe.2013.11.005 PubMedCrossRefGoogle Scholar
  63. Martín MA, Siles JA, Chica AF, Martín A (2010) Biomethanization of orange peel waste. Bioresour Technol 101:8993–8999. doi:10.1016/j.biortech.2010.06.133PubMedCrossRefGoogle Scholar
  64. Martìn MA, Fernandez R, Serrano A, Siles JA (2013) Semicontinuous anaerobic co-digestion of orange peel waste and residual glycerol derived from biodiesel manufacturing. Waste Manag 33:1633–1639. doi: 10.1016/j.wasman.2013.03.027 PubMedCrossRefGoogle Scholar
  65. Mata-Alvarez J, Dosta J, Romero-Güiza MS, Fonoll X, Peces M, Astals S (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sustain Energy Rev 36:412–427. doi: 10.1016/j.rser.2014.04.039 CrossRefGoogle Scholar
  66. Merlino G, Rizzi A, Villa F, Sorlini C, Brambilla M, Navarotto P, Bertazzoni B, Zagni M, Araldi F, Daffonchio D (2012) Shifts of microbial community structure during anaerobic digestion of agro-industrial energetic crops and food industry byproducts. J Chem Technol Biotechnol 87:1302–1311. doi: 10.1002/jctb.3784 CrossRefGoogle Scholar
  67. Meyer-Aurich A, Schattauer A, Hellebrand HJ, Klauss H, Plöchl M, Berg W (2012) Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. Renew Energy 37:277–284. doi: 10.1016/j.renene.2011.06.030 CrossRefGoogle Scholar
  68. Mizuki E, Akao T, Saruwatari T (1990) Inhibitory effect of citrus unshu peel on anaerobic digestion. Biol Wastes 33:161–168CrossRefGoogle Scholar
  69. Montero B, Garcia-Morales JL, Sales D, Solera R (2010) Evolution of butyric acid and the methanogenic microbial population in a thermophilic dry anaerobic reactor. Waste Manag 30:1790–1797. doi: 10.1016/j.wasman.2010.04.014 PubMedCrossRefGoogle Scholar
  70. Mshandete A, Kivaisi A, Rubindamayugi M, Mattiasson B (2004) Anaerobic batch co-digestion of sisal pulp and fish wastes. Bioresour Technol 95:19–24. doi: 10.1016/j.biortech.2004.01.011 PubMedCrossRefGoogle Scholar
  71. Munk B, Lebuhn M (2014) Process diagnosis using methanogenic Archaea in maize-fed, trace element depleted fermenters. Anaerobe 29:22–28. doi: 10.1016/j.anaerobe.2014.04.002 PubMedCrossRefGoogle Scholar
  72. Nayono SE, Gallert C, Winter J (2010) Co-digestion of press water and food waste in a biowaste digester for improvement of biogas production. Bioresour Technol 101:6987–6993. doi: 10.1016/j.biortech.2010.03.123 CrossRefGoogle Scholar
  73. Nelson MC, Morrison M, Yu Z (2011) A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresour Technol 102:3730–3739. doi: 10.1016/j.biortech.2010.11.119 PubMedCrossRefGoogle Scholar
  74. Nettmann E, Bergmann I, Mundt K, Linke B, Klocke M (2008) Archaea diversity within a commercial biogas plant utilizing herbal biomass determined by16S rDNA and mcrA analysis. J Appl Microbiol 105:1835–1850. doi: 10.1111/j.1365-2672.2008.03949.x PubMedCrossRefGoogle Scholar
  75. Nettmann E, Bergmann I, Pramschüfer S, Mundt K, Plogsties V, Herrmann C, Klocke M (2010) Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plants. Appl Environ Microbiol 76:2540–2548. doi: 10.1128/AEM.01423-09 PubMedCrossRefPubMedCentralGoogle Scholar
  76. Nguyen H (2012) Biogas production from solvent pretreated orange peel. Thesis for Master of Science, Chalmers University of TechnologyGoogle Scholar
  77. Pandey PK, Ndegwa PM, Soupir ML, Alldredge JR, Pitts MJ (2011) Efficacies of inocula on the startup of anaerobic reactors treating dairy manure under stirred and unstirred conditions. Biomass Bioenergy 35:2705–2720. doi: 10.1016/j.biombioe.2011.03.017 CrossRefGoogle Scholar
  78. Paraskeva CA, Papadakis VG, Kanellopoulou DG, Koutsoukos PG, Angelopoulos KC (2007) membrane filtration of olive mill wastewater and exploitation of its fractions. Water Environ Res 79:421–429. doi: 10.2175/106143006X115345 PubMedCrossRefGoogle Scholar
  79. Pavan P, Battistoni P, Cecchi F, Mata-Alvarez J (2000) Two-phase anaerobic digestion of source sorted OFMSW (organic fraction of municipal solid waste): performance and kinetic study. Water Sci Technol 41:111–118PubMedGoogle Scholar
  80. Pereira MA, Pires OC, Mota M, Alves MM (2005) Anaerobic biodegradation of oleic and palmitic acids: evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge. Biotechnol Bioeng 92:15–23. doi: 10.1002/bit.20548 PubMedCrossRefGoogle Scholar
  81. Pervin HM, Dennis PG, Lim HJ, Tyson GW, Batstone DJ, Bond PL (2013a) Drivers of microbial community composition in mesophilic and thermophilic temperature-phased anaerobic digestion pre-treatment reactors. Water Res 47:7098–7108. doi: 10.1016/j.watres.2013.07.053 PubMedCrossRefGoogle Scholar
  82. Pervin HM, Bastone DJ, Bond PL (2013b) Previously unclassified bacteria dominate during thermophilic and mesophilic anaerobic pre-treatment of primary sludge. Syst Appl Microbiol 36:281–290. doi: 10.1016/j.syapm.2013.03.003 PubMedCrossRefGoogle Scholar
  83. Pilli S, Yan S, Tyagi RD, Surampalli RY (2015) Thermal pretreatment of sewage sludge to enhance anaerobic digestion: a review. Crit Rev Environ Sci Technol 45:669–702. doi: 10.1080/10643389.2013.876527 CrossRefGoogle Scholar
  84. Ponsà S, Gea T, Sànchez A (2011) Anaerobic co-digestion of the organic fraction of municipal solid waste with several pure organic co-substrates. Biosyst Eng 108:352–360. doi: 10.1016/j.biosystemseng.2011.01.007 CrossRefGoogle Scholar
  85. Pycke BF, Etchebehere C, Van de Caveye P, Negroni A, Verstraete W, Boon N (2011) A time-course analysis of four full-scale anaerobic digesters in relation to the dynamics of change of their microbial communities. Water Sci Technol 63:769–775. doi: 10.2166/wst.2011.307 PubMedCrossRefGoogle Scholar
  86. Qiao JT, Qiu YL, Yuan XZ, Shi XS, Xu XH, Guo RB (2013) Molecular characterization of bacterial and archaeal communities in a full-scale anaerobic reactor treating corn straw. Bioresour Technol 143:512–518. doi: 10.1016/j.biortech.2013.06.014 PubMedCrossRefGoogle Scholar
  87. Quintero M, Castro L, Ortiz C, Guzmán C, Escalante H (2012) Enhancement of starting up anaerobic digestion of lignocellulosic substrate: fique’s bagasse as an example. Bioresour Technol 108:8–13. doi: 10.1016/j.biortech.2011.12.052 PubMedCrossRefGoogle Scholar
  88. Rademacher A, Nolte C, Schönberg M, Klocke M (2012) Temperature increases from 55 to 75 °C in a two-phase biogas reactor result in fundamental alterations within the bacterial and archaeal community structure. Appl Microbiol Biotechnol 96:565–576. doi: 10.1007/s00253-012-4348-x PubMedCrossRefGoogle Scholar
  89. Rastogi G, Ranade DR, Yeole TY, Patole MS, Shouche YS (2008) Investigation of methanogen population structure in biogas reactor by molecular characterization of methyl-coenzyme M reductase A (mcrA) genes. Bioresour Technol 99:5317–5326PubMedCrossRefGoogle Scholar
  90. Rajeshwari KV, Lata K, Pant DC, Kishore VVN (2001) A novel process using enhanced acidification and a UASB reactor for biomethanation of vegetable market waste. Waste Manag Res 19:292–300PubMedCrossRefGoogle Scholar
  91. Regueiro L, Veiga P, Figueroa M, Alonso-Gutierrez J, Stams AJM, Lema JM, Carballa M (2012) Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters. Microbiol Res 167:581–589. doi: 10.1016/j.micres.2012.06.002 PubMedCrossRefGoogle Scholar
  92. Riggle D (1998) Acceptance improves for large-scale anaerobic digestion. Biocycle 39:51–55Google Scholar
  93. Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3:700–714. doi: 10.1038/ismej.2009.2 PubMedCrossRefGoogle Scholar
  94. Schlüter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann KH, Krahn I, Krause L, Kromeke H, Kruse O, Mussgnug JH, Neuweger H, Niehaus K, Puhler A, Runte KJ, Szczepanowski R, Tauch A, Tilker A, Viehover P, Goesmann A (2008) The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J Biotechnol 136:77–90. doi: 10.1016/j.jbiotec.2008.05.008 PubMedCrossRefGoogle Scholar
  95. Scully C, Collins G, O’Flaherty V (2005) Assessment of anaerobic wastewater treatment failure using terminal restriction fragment length polymorphism analysis. J Appl Microbiol 99:1463–1471PubMedCrossRefGoogle Scholar
  96. Solli L, Håvelsrud OE, Horn SJ, Rike AG (2014) A metagenomic study of the microbial communities in four parallel biogas reactors. Biotechnol Biofuels 7:146. doi: 10.1186/s13068-014-0146-2 PubMedCrossRefPubMedCentralGoogle Scholar
  97. Song M, Shin SG, Hwang S (2010) Methanogenic population dynamics assessed by real-time quantitative PCR in sludge granule in upflow anaerobic sludge blanket treating swine wastewater. Bioresour Technol 101:S23–S28. doi: 10.1016/j.biortech.2009.03.054 PubMedCrossRefGoogle Scholar
  98. Srilatha HR, Nand K, Babu KS, Madhukara K (1995) Fungal pretreatment of orange processing waste by solid-state fermentation for improved production of methane. Process Biochem 30:327–331CrossRefGoogle Scholar
  99. Sun R, Xing D, Jia J, Zhou A, Zhang L, Ren N (2014) Methane production and microbial community structure for alkaline pretreated waste activated sludge. Bioresour Technol 169:496–501. doi: 10.1016/j.biortech.2014.07.032 PubMedCrossRefGoogle Scholar
  100. Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, Sorensen SJ, Karlsson A (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85:612–626. doi: 10.1111/1574-6941.12148 PubMedCrossRefGoogle Scholar
  101. Town J, Annand H, Pratt D, Dumonceaux T, Fonstad T (2014) Microbial community composition is consistent across anaerobic digesters processing wheat-based fuel ethanol waste streams. Bioresour Technol 157:127–133. doi: 10.1016/j.biortech.2014.01.074 PubMedCrossRefGoogle Scholar
  102. Traversi D, Villa S, Acri M, Pietrangeli B, Degan R, Gilli G (2011) The role of different methanogen groups evaluated by real-time qPCR as high-efficiency bioindicators of wet anaerobic co-digestion of organic waste. AMB Express 1:1–28. doi: 10.1186/2191-0855-1-28 CrossRefGoogle Scholar
  103. Traversi D, Capone C, Villa S, Valeria R, Pietrangeli B, Gilli G (2014) Assessing archeal indicators of performance by RT-qPCR methods during anaerobic co-digestion of organic wastes. BioEnergy Res 7:720–727. doi: 10.1007/s12155-013-9401-9 CrossRefGoogle Scholar
  104. Wan CX, Zhou QC, Fu GM, Li YB (2011) Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease. Waste Manag 31:1752–1758. doi: 10.1016/j.wasman.2011.03.025 PubMedCrossRefGoogle Scholar
  105. Wang X, Lu X, Li F, Yang G (2014) Effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: focusing on ammonia inhibition. PLoS ONE 9(5), e97265. doi: 10.1371/journal.pone.0097265 PubMedCrossRefPubMedCentralGoogle Scholar
  106. Werner JJ, Knights D, Garcia ML, Scalfone NB, Smith S, Yarasheski K, Cummings TA, Beers AR, Knight R, Angenent LT (2011) Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc Natl Acad Sci 108:4158–4163. doi: 10.1073/pnas.1015676108 PubMedCrossRefPubMedCentralGoogle Scholar
  107. Wilkinson KG (2011) A comparison of the drivers influencing adoption of on-farm anaerobic digestion in Germany and Australia. Biomass Bioenergy 35:1613–1622. doi: 10.1016/j.biombioe.2011.01.013 CrossRefGoogle Scholar
  108. Wu X, Yao W, Zhu J, Miller C (2010) Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source. Bioresour Technol 101:4042–4047. doi: 10.1016/j.biortech.2010.01.052 PubMedCrossRefGoogle Scholar
  109. Yang Y, Yu K, Xia Y, Lau FT, Tang DT, Fung WC, Fang HH, Zhang T (2014) Metagenomic analysis of sludge from full-scale anaerobic digester operated in municipal wastewater treatment plants. Appl Microbiol Biotechnol 98:5709–5718. doi: 10.1007/s00253-014-5648-0 PubMedCrossRefGoogle Scholar
  110. Zagklis DP, Vavouraki AI, Kornaros ME, Paraskeva CA (2015) Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption. J Haz Mat 285:69–76. doi: 10.1016/j.jhazmat.2014.11.038 CrossRefGoogle Scholar
  111. Zhang L, Lee YW, Jahng D (2011a) Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements. Bioresour Technol 102:5048–5059. doi: 10.1016/j.biortech.2011.01.082 PubMedCrossRefGoogle Scholar
  112. Zhang Y, Zamudio Cañas EM, Zhu Z, Linville JL, Chen S, He Q (2011b) Robustness of archaeal populations in anaerobic co-digestion of dairy and poultry wastes. Bioresour Technol 102:779–785. doi:10.1016/j.biortech.2010.08.104PubMedCrossRefGoogle Scholar
  113. Zhang C, Xiao G, Peng L, Su H, Tan T (2013) The anaerobic co-digestion of food waste and cattle manure. Bioresour Technol 129:170–176. doi: 10.1016/j.biortech.2012.10.138 PubMedCrossRefGoogle Scholar
  114. Zhang L, Xu CC, Champagne P, Mabee W (2014a) Overview of current biological and thermo-chemical treatment technologies for sustainable sludge management. Waste Manag Res 32:586–600PubMedCrossRefGoogle Scholar
  115. Zhang C, Su H, Baeyens J, Tan T (2014b) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sust Energ Rev 38:383–392. doi: 10.1016/j.rser.2014.05.038 CrossRefGoogle Scholar
  116. Zhang W, Werner JJ, Agler MT, Angenent LT (2014c) Substrate type drives variation in reactor microbiomes of anaerobic digesters. Bioresour Technol 151:397–401. doi: 10.1016/j.biortech.2013.10.004 PubMedCrossRefGoogle Scholar
  117. Ziganshin AM, Liebetrau J, Pröter J, Kleinsteuber S (2013) Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Appl Microbiol Biotechnol 97:5161–5174. doi: 10.1007/s00253-013-4867-0 PubMedCrossRefGoogle Scholar
  118. Zupančič GD, Skrjanec I, Logar RM (2012) Anaerobic co-digestion of excess brewery yeast in a granular biomass reactor to enhance the production of biomethane. Bioresour Technol 124:328–337. doi: 10.1016/j.biortech.2012.08.064 PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Sustainable Territorial and Production Systems DepartmentENEA (Italian National Agency for New Technologies, Energy and Sustainable Development)RomeItaly

Personalised recommendations