Biotransformation of Arsenic in Environment Mediated by Microorganisms

  • Supriya Kore


The health of the people worldwide is at risk due to the drinking of water contaminated with arsenic (As). Occurrence of As in drinking water is due to the natural processes and rarely by man-made activities. Mobilization of As from natural or anthropogenic sources in the drinking water is the first crucial step responsible for human health implication. Exposure to As can damage body parts leading to diseases such as cancer of the bladder and the skin, diabetes, cardiovascular diseases, and developmental, neurological, and metabolic disorders. Evidences from scientific studies suggest that mobilization of As is a microbiological phenomenon. All living organisms show resistance or sensitivity to As depending on the concentration of As to which they are exposed to. But few groups of microorganisms utilize As for their growth. In the environment, microorganisms interact with As through a variety of mechanisms, including sorption mobilization, precipitation, and redox and methylation reaction. The microbial activities in the environment may be beneficial or detrimental affecting the fate and mobility of As in the biogeochemical cycle. This review highlights the different systems which have evolved in microorganisms to resist the high concentration and to participate in environmental As cycles.


Methylation Reaction Arsenate Reductase Arsenic Sulfide Arsenite Oxidase Ferric Arsenate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thank Prof. M. B. Khetmalas and Prof. B. P. Kapdnis for the initiative and support. The author is grateful to the editor of this book, Prof. V. C. Kalia, for the support in editing of the manuscript. The author is thankful to Dr. D.Y. Patil Vidyapeeth for the support.


  1. Acharyya SK, Chakraborty P, Lahiri S, Raymahashay BC, Guha S, Bhowmik A (1999) Arsenic poisoning in the Ganges delta. Nature 401:545. doi: 10.1038/44052 CrossRefPubMedGoogle Scholar
  2. Achour AR, Bauda P, Billard P (2007) Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res Microbiol 158:128–137. doi: 10.1016/j.resmic.2006.11.006 CrossRefPubMedGoogle Scholar
  3. Afkar E, Lisak J, Saltikov C, Basu P, Oremland RS, Stolz JF (2003) The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microb Lett 226:107–112. doi: 10.1016/S0378-1097(03)00609-8 CrossRefGoogle Scholar
  4. Ahmann D, Roberts AL, Krumholz LR, Morel FM (1994) Microbe grows by reducing arsenic. Nature 371:750. doi: 10.1038/371750a0 CrossRefPubMedGoogle Scholar
  5. Anderson GL, Williams J, Hille R (1992) The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J Biol Chem 267:23674–23682PubMedGoogle Scholar
  6. Arsene Ploetze F, Koechler S, Marchal M, Coppee JY, Chandler M, Bonnefoy V et al (2010) Structure, function, and evolution of the Thiomonas spp. genome. PLoS Genet 6, e1000859. doi: 10.1371/journal.pgen.1000859 PubMedCentralCrossRefPubMedGoogle Scholar
  7. Battaglia Brunet F, Dictor MC, Garrido F, Crouzet C, Morin D, Dekeyser K, Clarens M, Baranger P (2002) An Arsenic(III)-oxidizing bacterial population: selection, characterization, and performance in reactors. J Appl Microbiol 93:1–12. doi: 10.1046/j.1365-2672.2002.01726.x CrossRefGoogle Scholar
  8. Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: Arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66: 250–271. doi: 10.1128/MMBR.66.2.250–271.2002
  9. Boyle DR, Turner RJW, Hall GEM (1998) Anomalous arsenic concentrations in ground waters of an island community, Bowen Island, British Colombia. Environ Geochem Health 20:199–212. doi: 10.1023/A:1006597311909
  10. Branco R, Francisco R, Chung AP, Morais PV (2009) Identification of an aox system that requires cytochrome c in the highly arsenic-resistant bacterium Ochrobactrum tritici SCII24. Appl Environ Microbiol 75:5141–5147. doi: 10.1128/AEM.02798-08 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Cai L, Rensing C, Li X, Wang G (2009) Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44. Appl Microbiol Biotechnol 83:715–725. doi: 10.1007/s00253-009-1929-4 CrossRefPubMedGoogle Scholar
  12. Chakraborti D, Basu GK, Biswas BK, Chowdhury UK, Rahman MM, Paul K, Roy T, Chowdhury CR, Chanda D, Lodh D (2001) Characterization of arsenic bearing sediments in Gangetic delta of West Bengal India. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsenic exposure and health effects. Elsevier, Amsterdam/Lausanne/New York/Oxford/Tokyo, pp 27–52Google Scholar
  13. Challenger F (1951) Biological methylation. Adv Enzymol Relat Subj Biochem 12:429–491PubMedGoogle Scholar
  14. Chauhan NS, Ranjan R, Purohit HJ, Kalia VC, Sharma R (2009) Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge metagenomic library. FEMS Microbiol Ecol 67:130–139. doi: 10.1111/j.1574-6941.2008.00613.x CrossRefPubMedGoogle Scholar
  15. Clingenpeel SR, D’Imperio S, Oduro H, Druschel GK, McDermott TR (2009) Cloning and in situ expression studies of the Hydrogenobaculum arsenite oxidase genes. Appl Environ Microbiol 75:3362–3365. doi: 10.1128/AEM.00336-09 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Cullen WR, McBride BC, Manji H, Pickett AW, Reglinski J (1989) The metabolism of methylarsine oxide and sulfide. Appl Organomet Chem 3:71–78. doi: 10.1002/aoc.590030107 CrossRefGoogle Scholar
  17. Czarnecki GL, Baker DH, Garst JE (1982) Arsenic-sulfur amino acid interactions in the chick. J Anim Sci 59:1573–1581. doi: 10.2134/jas1984.5961573x Google Scholar
  18. Datta DV, Kaul MK (1976) As contents in drinking water in villages of Northern India. J Assoc Phy Ind 24:599–604Google Scholar
  19. De Sastre RBR, Varillas A, Kirschbaum P (1992) Proceeding of international seminar on arsenic in the environment and its incidence on health. Universidad de Chile, SantiagoGoogle Scholar
  20. Di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130. doi: 10.1016/S0098-8472(98)00058-6 CrossRefGoogle Scholar
  21. Dombrowski PM, Long W, Farley KJ, Mahony JD, Capitani JF, Di Toro DM (2005) Thermodynamic analysis of arsenic methylation. Environ Sci Technol 39:2169–2176. doi: 10.1021/es0489691 CrossRefPubMedGoogle Scholar
  22. Dopp E, von Recklinghausen U, Diaz-Bone R, Hirner AV, Rettenmeier AW (2010) Cellular uptake, subcellular distribution and toxicity of arsenic compounds in methylating and non-methylating cells. Environ Res 110:435–442CrossRefPubMedGoogle Scholar
  23. Eblin KE, Bowen ME, Cromey DW, Bredfeldt TG, Mash EA, Lau SS, Gandolfi AJ (2006) Arsenite and monomethylarsonous acid generate oxidative stress response in human bladder cell culture. Toxicol Appl Pharmacol 217:7–14. doi: 10.1016/j.taap.2006.07.004 CrossRefPubMedGoogle Scholar
  24. Fisher E, Dawson AM, Polshyna G, Lisak J, Crable B, Perera E, Ranganathan M, Thangavelu M, Basu P, Stolz JF (2008) Transformation of inorganic and organic Arsenic by Alkaliphilus oremlandii sp. nov. strain OhILArsenic. Ann N Y Acad Sci 1125:230–241. doi: 10.1196/annals.1419.006 CrossRefPubMedGoogle Scholar
  25. Francesconi KA, Kuehnelt D (2002) Environmental chemistry of arsenic, Frankenberger WT Jr (ed). CRC Press, New York. N.Y pp 51–94Google Scholar
  26. Gihring TM, Banfield JF (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204:335–340. doi: 10.1111/j.1574-6968.2001.tb10907.x CrossRefPubMedGoogle Scholar
  27. Goldblatt EL, Van Denburgh SA, Marsland RA (1963) The unusual and widespread occurrence of Arsenic in well waters of Lane Country, Oregon. Lane County Health Department Report, p 24Google Scholar
  28. Goldsmith JR, Deane M, Thom J, Gentry G (1972) Evaluation of health implications of elevated arsenic in well water. Water Res 6:133Google Scholar
  29. Gomez-Caminero A, Howe P, Hughes M, Kenyon E, Lewis DR, Moore M, Ng J, Aitio A, Becking G (2001) Arsenic and arsenic compound. Environmental health criteria 224. World Health Organization, pp 28–33Google Scholar
  30. Gourbal B, Sonuc N, Bhattacharjee H, Legare D, Sundar S, Ouellette M, Rosen BP, Mukhopadhyay R (2004) Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem 279:31010–31017. doi: 10.1074/jbc.M403959200 CrossRefPubMedGoogle Scholar
  31. Harrington JM, Fendorf SE, Rosenzweig RF (1998) Biotic generation of Arsenic (III) in metal(loid)-contaminated freshwater lake sediments. Environ Sci Technol 32:2425–2430. doi: 10.1021/es971129k CrossRefGoogle Scholar
  32. Herbel MJ, Switzer Blum J, Hoeft SE, Cohen SM, Arnold LL, Lisak J, Stolz JF, Oremland RS (2002) Dissimilatory arsenate reductase activity and arsenate-respiring bacteria in bovine rumen fluid, hamster feces, and the termite hindgut. FEMS Microbiol Ecol 41:59–67. doi: 10.1111/j.1574-6941.2002.tb00966.x CrossRefPubMedGoogle Scholar
  33. Hoeft SE, Lucas F, Hollibaugh JT, Oremland RS (2002) Characterization of bacterial arsenate reduction in the anoxic bottom waters of Mono Lake, California. Geomicrobiol J 19:23–40 Google Scholar
  34. Hoeft SE, Blum JS, Stolz JF, Tabita FR, Witte B, King GM (2007) Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol 57:504–512CrossRefPubMedGoogle Scholar
  35. Honschopp S, Brunken N, Nehrkorn A, Breunig HR (1996) Isolation and characterization of a new Arsenic methylating bacterium from soil. Microbiol Res 151:37–41CrossRefPubMedGoogle Scholar
  36. Hossain MF(2004) Arsenic contamination in Bangladesh: an overview. Agric Ecosyst Environ 113:1–16Google Scholar
  37. Huber GR, Sacher M, Vollman A, Huber H, Rose D (2000) Respiration of arsenate and selenate by hyperthermophilic archea. Syst Appl Microbiol 23:305–314. doi: 10.1016/S0723-2020(00)80058-2 CrossRefPubMedGoogle Scholar
  38. Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16CrossRefPubMedGoogle Scholar
  39. IPCS Environmental Health Criteria (2001) 224: arsenic and arsenic compounds. WHO, Geneva, pp 1–521Google Scholar
  40. Islam FS, Gault AG, Boothman C, Polya DA, Chamok JM et al (2004) Role of metal-reducing bacteria in Arsenic release from Bengal delta sediments. Nature 430:68–71. doi: 10.1038/nature02638 CrossRefPubMedGoogle Scholar
  41. Jackson CR, Langner HW, Donahoe-Christiansen J, Inskeep WP, McDermott TR (2001) Molecular analysis of microbial community structure in an arsenite oxidizing acidic thermal spring. Environ Microbiol 3:532–542. doi: 10.1046/j.1462-2920.2001.00221.x CrossRefPubMedGoogle Scholar
  42. Jin Y, Liang C, He G, Cao J (2003) Study on distribution of endemic arsenism in China. J Hyg Res 32:519–540Google Scholar
  43. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31: 95–107. doi:  10.1002/jat.1649
  44. Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants (English). CRC Press, Boca Raton, p 315Google Scholar
  45. Kalia VC (2010) Extending genomic limits through metagenomic exploration. J Cosmol 13:3625–3627Google Scholar
  46. Kashyap DR, Botero LM, Franck WL, Hassett DJ, McDermott TR (2006) Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. J Bacteriol 188:1081–1088. doi: 10.1128/JB.188.3.1081-1088.2006 PubMedCentralCrossRefPubMedGoogle Scholar
  47. Kenney LJ, Kaplan JH (1988) Arsenate substitutes for phosphate in the human red cell sodium pump and anion exchanger. J Biol Chem 263:7954–7960PubMedGoogle Scholar
  48. Krafft T, Macy JM (1998) Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur J Biochem 255:647–653. doi: 10.1046/ j.1432-1327.1998.2550647.x CrossRefPubMedGoogle Scholar
  49. Langner HW, Inskeep WP (2000) Microbial reduction of arsenate in the presence of ferrihydrite. Environ Sci Technol 34:3131–3136. doi: 10.1021/es991414z CrossRefGoogle Scholar
  50. Langner HW, Jackson CR, McDermot TR, Inskeep WP (2001) Rapid oxidation of arsenite in a hot spring microbial ecosystem. Environm Sci Technol 35:3302–3309. doi: 10.1021/es0105562 CrossRefGoogle Scholar
  51. Lewis DR, Southwick JW, Ouellet-Hellstrom R, Rench J, Calderon RL (1999) Evaluation of health implications of elevated arsenic in well water. Environ Health Perspect 107:359Google Scholar
  52. Li XG (1982) Chemical forms and content of Arsenic in some soils of China. Turang Xuebao 19:360–366Google Scholar
  53. Lièvremont D, N’Negue MA, Behra P, Lett MC (2003) Biological oxidation of arsenite: batch reactor experiments in presence of kutnahorite and chabazite. Chemosphere 51:419–428. doi: 10.1016/S0045-6535(02)00869-X CrossRefPubMedGoogle Scholar
  54. Lieutaud A, van Lis R, Duval S, Capowiezl L, Muller D, Lebrun R (2010) Arsenite oxidase from Ralstonia sp. 22: characterization of the enzyme and its interaction with soluble cytochromes. J Biol Chem 285:20433–20441. doi: 10.1074/jbc.M110.113761
  55. Liu A, Garcia-Dominguez E, Rhine ED, Young LY (2004) A novel arsenate respiring isolate that can utilize aromatic substances. FEMS Microbiol Ecol 48:323–332. doi: 10.1016/j.femsec.2004.02.008 CrossRefPubMedGoogle Scholar
  56. Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253CrossRefPubMedGoogle Scholar
  57. Maki T, Hasegawa H, Watarai H, Ueda K (2004) Classification for dimethylarsenate-decomposing bacteria using a restrict fragment length polymorphism analysis of 16S rRNA genes. Anal Sci 20:61–68CrossRefPubMedGoogle Scholar
  58. Malasarn D, Keeffe JR, Newman DK (2008) Characterization of the arsenate respiratory reductase from Shewanella sp. strain ANA-3. J Bacteriol 190:135–142. doi: 10.1128/JB.01110–07
  59. Malasarn D, Saltikov CW, Campbell KM, Santini JM, Hering JG, Newman DK (2004) arrA is a reliable marker for Arsenic(V) respiration. Science 306:455. doi: 10.1126/science.1102374
  60. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235. doi: 10.1016/S0039-9140(02)00268-0 CrossRefPubMedGoogle Scholar
  61. McArthur JM, Ravenscroft P, Safulla S, Thirlwall MF (2001) Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour Res 37:109. doi: 10.1029/2000WR900270 CrossRefGoogle Scholar
  62. Miller WH Jr, Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanisms of action of Arsenic trioxide. Cancer Res 62:3893–3903PubMedGoogle Scholar
  63. Morrison JL (1969) Distribution of Arsenic from poultry litter in broiler chickens, soil and crops. J Agric Food Chem 17:1288–1290. doi: 10.1021/jf60166a018 CrossRefGoogle Scholar
  64. Mukhopadhyay R, Rosen BP (2002) Arsenate reductases in prokaryotes and eukaryotes. Environ Health Perspect 110(Suppl 5):745–748. doi: 10.1289/ehp.02110s5745 PubMedCentralCrossRefPubMedGoogle Scholar
  65. Mukhopadhyay R, Zhou Y, Rosen BP (2003) Directed evolution of a yeast arsenate reductase into a protein-tyrosine phosphatase. J Biol Chem 278:24476–24480. doi: 10.1074/jbc.M302610200 CrossRefPubMedGoogle Scholar
  66. Muller D, Lievremont D, Simeonova DD, Hubert JC, Lett MC (2003) Arsenite oxidase aox genes from a metal resistant beta proteobacterium. J Bacteriol 185:135–141. doi: 10.1128/JB.185.1.135-141.2003 PubMedCentralCrossRefPubMedGoogle Scholar
  67. Nagy G, Korom L (1983) Late skin symptoms of Arsenic poisoning in the Arsenic endemy in Bugac Alsomonostor. Z Hautkr 58:961–4PubMedGoogle Scholar
  68. Nakamura M, Matsuzono Y, Tanaka S, Hashimoto Y (1990) Chemical form of arsenic compounds and distribution of their concentrations in the atmosphere. Appl Organomet Chem 4:223–30. doi: 10.1002/aoc.590040308 CrossRefGoogle Scholar
  69. Nelson KW (1977) Industrial contributions of Arsenic to the environment. Environ Health Perspect 19:31–34PubMedCentralCrossRefPubMedGoogle Scholar
  70. Németi B, Csanaky I, Gregus Z (2006) Effect of an inactivator of glyceraldehyde-3-phosphate dehydrogenase, a fortuitous arsenate reductase, on disposition of arsenate in rats. Toxicol Sci 90:49–60. doi: 10.1093/toxsci/kfj058 CrossRefPubMedGoogle Scholar
  71. Németi B, Gregus Z (2005) Reduction of arsenate to arsenite by human erythrocyte lysate and rat liver cytosol characterization of a glutathione and NAD-dependent arsenate reduction linked to glycolysis. Toxicol Sci 85:847–858. doi: 10.1093/toxsci/kfi157 CrossRefPubMedGoogle Scholar
  72. Newman D, Beveridge T, Morel F (1997) Precipitation of Arsenic trisulfide by Desulfotomaculum auripigmentum. Appl Environ Microbiol 63:2022–2028. doi: 10.1007/s002030050512 PubMedCentralPubMedGoogle Scholar
  73. Newman DK, Ahmann D, Morel FMM (1998) A brief review of microbial arsenate respiration. Geomocrobiol J 15:255–268. doi: 10.1080/01490459809378082 CrossRefGoogle Scholar
  74. Niggemeyer A, Spring S, Stackenbrandt E, Rosenzweig RF (2001) Isolation and characterization of a novel Arsenic(V)-reducing bacterium: Implication for Arsenic mobilization and the genus Desulfitobacterium. Appl Environ Microbiol 67:5568–5580. doi: 10.1128/AEM.67.12.5568-5580.2001 CrossRefGoogle Scholar
  75. Nordstrom DK (2000) An overview of arsenic mass-poisoning in Bangladesh and West Bengal, India. In: Young C (ed) Minor elements, processing and environmental aspects of Arsenic, Sb, Se, Te, Bi. Proceedings, Society for Mining, Metallurgy and Exploration Meeting, Salt Lake City, pp 21–30Google Scholar
  76. Nordstrom DK (2002) Worldwide occurring of Arsenic in ground water. Science 296:2143. doi: 10.1126/science. 1072375 CrossRefPubMedGoogle Scholar
  77. Oremland RS, Hoeft SE, Santini JM, Bano N, Hollibaugh RA, Hollibaugh JT (2002) Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68:s4795–4802. doi: 10.1128/AEM.68.10.4795-4802.2002 CrossRefGoogle Scholar
  78. Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944. doi: 10.1126/science.1081903 CrossRefPubMedGoogle Scholar
  79. Paez-Espino D, Tamames J, de Lorenzo V, Canovas D (2009) Microbial responses to environmental Arsenic. Biometals 22:117–130. doi: 10.1007/s10534-008-9195-y CrossRefPubMedGoogle Scholar
  80. Perez-Jimenez JR, DeFraia C, Young LY (2005) Arsenate respiratory reductase gene (arrA) for Desulfosporosinus sp. strain Y5. Biochem Biophys Res Commun 338:825–829. doi: 10.1016/j.bbrc.2005.10.011 CrossRefPubMedGoogle Scholar
  81. Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Vasken Aposhian H (2000) Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol 163: 203–207. doi:  10.1006/taap.1999.8872
  82. Pott WA, Benjamin SA, Yang RS (2001) Pharmacokinetics, metabolism, and carcinogenicity of Arsenic. Rev Environ Contam Toxicol 169:165–214. doi: 11330077Google Scholar
  83. Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A 103:2075–2080. doi: 10.1073/pnas.0506836103 PubMedCentralCrossRefPubMedGoogle Scholar
  84. Riethmiller S (2005) From Atoxyl to Salvarsan: searching for the magic bullet. Chemotherapy 51:235–242. doi: 10.1159/000087453 CrossRefGoogle Scholar
  85. Ritchie JA (1961) Arsenic and antimony in some New Zealand thermal waters. N Z J Sci Technol 4:218–29Google Scholar
  86. Rosen BR (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92. doi: 10.1016/S0014-5793(02)03186-1 CrossRefPubMedGoogle Scholar
  87. Rosen P, Liu Z (2008) Transport pathways for arsenic and selenium. Environ Int 35: 512–515. doi:  10.1016/j.envint.2008.07.023
  88. Rosenberg H, Gerdes RG, Chegwidden K (1977) Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 131:505–511PubMedCentralPubMedGoogle Scholar
  89. Roy P, Saha A (2002) Metabolism and toxicity of arsenic: a human carcinogen. Curr Sci 82:38–45Google Scholar
  90. Salmassi TM et al (2002) Oxidation of arsenite by Agrobacterium albertimagni, AOL15, sp. Nov., isolated from Hot Creek, California. Geomicrobiol J 19:53–66. doi:  10.1080/014904502317246165
  91. Saltikov CW, Cifuentes A, Venkateswaren K, Newman DK (2003) The ars tem is advantageous but not required for Arsenic(V)-respiration by the genetically tractable Shewanella species, strain ANA-3. Appl Environ Microbiol 69:2800–2809. doi: 10.1128/AEM.69.5.2800-2809.2003 PubMedCentralCrossRefPubMedGoogle Scholar
  92. Saltikov CW, Newman DK (2003) Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci U S A 100:10983–10988. doi: 10.1073/pnas.1834303100 PubMedCentralCrossRefPubMedGoogle Scholar
  93. Sanders OI, Rensing C, Kuroda M, Mitra B, Rosen BP (1997) Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol 179:3365–3367PubMedCentralPubMedGoogle Scholar
  94. Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66:92–97. doi: 10.1128/AEM.66.1.92-97.2000 PubMedCentralCrossRefPubMedGoogle Scholar
  95. Santini JM, Sly LI, Wen A, Comrie DD, Wulf-Durand P, Macy JM (2002) New arsenite-oxidizing bacteria isolated from Australian gold mining environments phylogenetic relationships. Geomicrobiol J 19:67–76. doi: 10.1080/014904502317246174 CrossRefGoogle Scholar
  96. Scheindlin S (2005) The duplicitous nature of inorganic Arsenic. Mol Interv 5:60–64. doi: 10.1124/mi.5.2.1 CrossRefPubMedGoogle Scholar
  97. Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789. doi: 10.1146/annurev.micro.50.1.753 CrossRefPubMedGoogle Scholar
  98. Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic Arsenic. Appl Environ Microbiol 71: 599–608. doi:  10.1128/AEM.71.2.599–608.2005
  99. Slyemi D, Bonnefoy V (2012) How prokaryotes deal with Arsenic environmental microbiology reports 4, 571–586. doi:  10.1111/j.1758-2229.2011.00300.x
  100. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of Arsenic in natural waters. Appl Geochem 17:517–568. doi: 10.1016/S0883-2927(02)00018-5 CrossRefGoogle Scholar
  101. Smith AH, Arroyo AP, Guha Mazumder DN, Kosnett MJ (2000) Environ Health Perspect :108–617Google Scholar
  102. Southwick JW, Western AE, Beck MM, Whitley T, Isaacs R, Petajan J, Hansen CD (1983). In: Leaderer WH, Robert J (eds) Arsenic: industrial, biomedical, environmental perspectives. Van Nostrand Reinhold Company, Fensterheim, pp 210–225Google Scholar
  103. Stolz JF, Basu P, Oremland RS (2010) Microbial arsenic metabolism: new twists on an old poison. Microbes 5(2):53–59. doi: 10.1128/microbe.5.53.1 Google Scholar
  104. Stolz JF, Oremland RS (1999) Bacterial respiration of Arsenic and selenium. FEMS Microbiol Rev 23:615–627. doi: 10.1111/j.1574-6976.1999.tb00416.x CrossRefPubMedGoogle Scholar
  105. Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130. doi: 10.1146/annurev.micro.60.080805.142053 CrossRefPubMedGoogle Scholar
  106. Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA et al (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated Arsenicals in rat and human cells. Arch Toxicol 74(6):289–299. doi: 101.1007/s002040000134Google Scholar
  107. Takai K, Hirayama H, Sakihama Y, Inagaki F, Yamato Y, Horikoshi K (2002) Isolation and metabolic characteristics of previously uncultured members of the order Aquificales in a subsurface gold mine. Appl Environ Microbiol 68:3046–3054. doi: 10.1128/AEM PubMedCentralCrossRefPubMedGoogle Scholar
  108. Thomas DJ, Li J, Waters SB et al (2007) Arsenic (+3 oxidation state) methyltransferase and the methylation of Arsenicals. Exp Biol Med 232:3–13Google Scholar
  109. Thornton M, Farago M (1997) The geochemistry of arsenic. In: Abernathy CO, Calderon RL, Chappell WR (eds) Arsenic: exposure and health effects. Chapman and Hall, Kluwer Academic Publishers, London, pp 1–16CrossRefGoogle Scholar
  110. Vahter M (2000) Genetic polymorphism in the biotransformation of inorganic Arsenic and its role in toxicity. Toxicol Lett 112–113:209–217. doi: 10.1016/S0378-4274(99)00271-4 CrossRefPubMedGoogle Scholar
  111. Wharton JC (2010) The arsenic century: how Victorian Britain was poisoned at home, work and play. Oxford University Press, Oxford, p 412Google Scholar
  112. Wilkie JA, Hering JG (1998) Rapid oxidation of geothermal Arsenic (III) in streamwaters of the eastern Sierra Nevada. Environ Sci Technol 32:657–662. doi: 10.1021/es970637r CrossRefGoogle Scholar
  113. Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J, Stolz JF, Webb SM, Weber PK, Davies PCW, Anbar AD, Oremland RS (2010) A bacterium that can grow by using arsenic instead of phosphorous. Science 332:1149. doi: 10.1126/science.1197258 CrossRefGoogle Scholar
  114. Wu B, Song Beitz E (2010) Novel channel enzyme fusion proteins confer arsenate resistance. J Biol Chem 285:40081–40087. doi: 10.1074/jbc.M110.184457 PubMedCentralCrossRefPubMedGoogle Scholar
  115. Wyllie J (1937) An investigation of the source of Arsenic in a well water. Can Public Health J 28:128Google Scholar
  116. Yang HC, Cheng J, Finan TM, Rosen BP, Bhattacharjee H (2005) Noval pathway for Arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J Bacteriol 187:6991–6997. doi: 10.1128/JB.187.20.6991-6997.2005 PubMedCentralCrossRefPubMedGoogle Scholar
  117. Yoshinaga M, Cai Y, Rosen BP (2011) Demethylation of methylarsonic acid by a microbial community. Environ Microbial 13:1205–1215. doi: 10.1111/j.1462-2920.2010.02420.x CrossRefGoogle Scholar
  118. Yuan C, Lu X, Qin J, Rosen BP, Le XC (2008) Volatile arsenic species released from Escherichia coli expressing the AsIII adenosylmethionine methyltransferase gene. Environ Sci Technol 42:3201–3206. doi: 10.1021/es702910g
  119. Zegers I, Martins JC, Willem R, Wyns L, Messens J (2001) Arsenate reductase from S. aureus plasmid pI258 is a phosphatase drafted for redox duty. Nat Struct Biol 8:843–847. doi: 10.1038/nsb1001-843 CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Dr. D. Y. Patil Biotechnology and Bioinformatics InstitutePune-33India
  2. 2.Dr. D. Y. Patil VidyapeethPuneIndia

Personalised recommendations