Skip to main content

Biotransformation of Arsenic in Environment Mediated by Microorganisms

  • Chapter
Book cover Microbial Factories

Abstract

The health of the people worldwide is at risk due to the drinking of water contaminated with arsenic (As). Occurrence of As in drinking water is due to the natural processes and rarely by man-made activities. Mobilization of As from natural or anthropogenic sources in the drinking water is the first crucial step responsible for human health implication. Exposure to As can damage body parts leading to diseases such as cancer of the bladder and the skin, diabetes, cardiovascular diseases, and developmental, neurological, and metabolic disorders. Evidences from scientific studies suggest that mobilization of As is a microbiological phenomenon. All living organisms show resistance or sensitivity to As depending on the concentration of As to which they are exposed to. But few groups of microorganisms utilize As for their growth. In the environment, microorganisms interact with As through a variety of mechanisms, including sorption mobilization, precipitation, and redox and methylation reaction. The microbial activities in the environment may be beneficial or detrimental affecting the fate and mobility of As in the biogeochemical cycle. This review highlights the different systems which have evolved in microorganisms to resist the high concentration and to participate in environmental As cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharyya SK, Chakraborty P, Lahiri S, Raymahashay BC, Guha S, Bhowmik A (1999) Arsenic poisoning in the Ganges delta. Nature 401:545. doi:10.1038/44052

    Article  CAS  PubMed  Google Scholar 

  • Achour AR, Bauda P, Billard P (2007) Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res Microbiol 158:128–137. doi:10.1016/j.resmic.2006.11.006

    Article  CAS  PubMed  Google Scholar 

  • Afkar E, Lisak J, Saltikov C, Basu P, Oremland RS, Stolz JF (2003) The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microb Lett 226:107–112. doi:10.1016/S0378-1097(03)00609-8

    Article  CAS  Google Scholar 

  • Ahmann D, Roberts AL, Krumholz LR, Morel FM (1994) Microbe grows by reducing arsenic. Nature 371:750. doi:10.1038/371750a0

    Article  CAS  PubMed  Google Scholar 

  • Anderson GL, Williams J, Hille R (1992) The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J Biol Chem 267:23674–23682

    CAS  PubMed  Google Scholar 

  • Arsene Ploetze F, Koechler S, Marchal M, Coppee JY, Chandler M, Bonnefoy V et al (2010) Structure, function, and evolution of the Thiomonas spp. genome. PLoS Genet 6, e1000859. doi:10.1371/journal.pgen.1000859

    Article  PubMed Central  PubMed  Google Scholar 

  • Battaglia Brunet F, Dictor MC, Garrido F, Crouzet C, Morin D, Dekeyser K, Clarens M, Baranger P (2002) An Arsenic(III)-oxidizing bacterial population: selection, characterization, and performance in reactors. J Appl Microbiol 93:1–12. doi:10.1046/j.1365-2672.2002.01726.x

    Article  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: Arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66: 250–271. doi:10.1128/MMBR.66.2.250–271.2002

  • Boyle DR, Turner RJW, Hall GEM (1998) Anomalous arsenic concentrations in ground waters of an island community, Bowen Island, British Colombia. Environ Geochem Health 20:199–212. doi:10.1023/A:1006597311909

  • Branco R, Francisco R, Chung AP, Morais PV (2009) Identification of an aox system that requires cytochrome c in the highly arsenic-resistant bacterium Ochrobactrum tritici SCII24. Appl Environ Microbiol 75:5141–5147. doi:10.1128/AEM.02798-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cai L, Rensing C, Li X, Wang G (2009) Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44. Appl Microbiol Biotechnol 83:715–725. doi:10.1007/s00253-009-1929-4

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti D, Basu GK, Biswas BK, Chowdhury UK, Rahman MM, Paul K, Roy T, Chowdhury CR, Chanda D, Lodh D (2001) Characterization of arsenic bearing sediments in Gangetic delta of West Bengal India. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsenic exposure and health effects. Elsevier, Amsterdam/Lausanne/New York/Oxford/Tokyo, pp 27–52

    Google Scholar 

  • Challenger F (1951) Biological methylation. Adv Enzymol Relat Subj Biochem 12:429–491

    CAS  PubMed  Google Scholar 

  • Chauhan NS, Ranjan R, Purohit HJ, Kalia VC, Sharma R (2009) Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge metagenomic library. FEMS Microbiol Ecol 67:130–139. doi:10.1111/j.1574-6941.2008.00613.x

    Article  CAS  PubMed  Google Scholar 

  • Clingenpeel SR, D’Imperio S, Oduro H, Druschel GK, McDermott TR (2009) Cloning and in situ expression studies of the Hydrogenobaculum arsenite oxidase genes. Appl Environ Microbiol 75:3362–3365. doi:10.1128/AEM.00336-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cullen WR, McBride BC, Manji H, Pickett AW, Reglinski J (1989) The metabolism of methylarsine oxide and sulfide. Appl Organomet Chem 3:71–78. doi:10.1002/aoc.590030107

    Article  CAS  Google Scholar 

  • Czarnecki GL, Baker DH, Garst JE (1982) Arsenic-sulfur amino acid interactions in the chick. J Anim Sci 59:1573–1581. doi:10.2134/jas1984.5961573x

    Google Scholar 

  • Datta DV, Kaul MK (1976) As contents in drinking water in villages of Northern India. J Assoc Phy Ind 24:599–604

    CAS  Google Scholar 

  • De Sastre RBR, Varillas A, Kirschbaum P (1992) Proceeding of international seminar on arsenic in the environment and its incidence on health. Universidad de Chile, Santiago

    Google Scholar 

  • Di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130. doi:10.1016/S0098-8472(98)00058-6

    Article  Google Scholar 

  • Dombrowski PM, Long W, Farley KJ, Mahony JD, Capitani JF, Di Toro DM (2005) Thermodynamic analysis of arsenic methylation. Environ Sci Technol 39:2169–2176. doi:10.1021/es0489691

    Article  CAS  PubMed  Google Scholar 

  • Dopp E, von Recklinghausen U, Diaz-Bone R, Hirner AV, Rettenmeier AW (2010) Cellular uptake, subcellular distribution and toxicity of arsenic compounds in methylating and non-methylating cells. Environ Res 110:435–442

    Article  CAS  PubMed  Google Scholar 

  • Eblin KE, Bowen ME, Cromey DW, Bredfeldt TG, Mash EA, Lau SS, Gandolfi AJ (2006) Arsenite and monomethylarsonous acid generate oxidative stress response in human bladder cell culture. Toxicol Appl Pharmacol 217:7–14. doi:10.1016/j.taap.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  • Fisher E, Dawson AM, Polshyna G, Lisak J, Crable B, Perera E, Ranganathan M, Thangavelu M, Basu P, Stolz JF (2008) Transformation of inorganic and organic Arsenic by Alkaliphilus oremlandii sp. nov. strain OhILArsenic. Ann N Y Acad Sci 1125:230–241. doi:10.1196/annals.1419.006

    Article  CAS  PubMed  Google Scholar 

  • Francesconi KA, Kuehnelt D (2002) Environmental chemistry of arsenic, Frankenberger WT Jr (ed). CRC Press, New York. N.Y pp 51–94

    Google Scholar 

  • Gihring TM, Banfield JF (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204:335–340. doi:10.1111/j.1574-6968.2001.tb10907.x

    Article  CAS  PubMed  Google Scholar 

  • Goldblatt EL, Van Denburgh SA, Marsland RA (1963) The unusual and widespread occurrence of Arsenic in well waters of Lane Country, Oregon. Lane County Health Department Report, p 24

    Google Scholar 

  • Goldsmith JR, Deane M, Thom J, Gentry G (1972) Evaluation of health implications of elevated arsenic in well water. Water Res 6:133

    Google Scholar 

  • Gomez-Caminero A, Howe P, Hughes M, Kenyon E, Lewis DR, Moore M, Ng J, Aitio A, Becking G (2001) Arsenic and arsenic compound. Environmental health criteria 224. World Health Organization, pp 28–33

    Google Scholar 

  • Gourbal B, Sonuc N, Bhattacharjee H, Legare D, Sundar S, Ouellette M, Rosen BP, Mukhopadhyay R (2004) Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem 279:31010–31017. doi:10.1074/jbc.M403959200

    Article  CAS  PubMed  Google Scholar 

  • Harrington JM, Fendorf SE, Rosenzweig RF (1998) Biotic generation of Arsenic (III) in metal(loid)-contaminated freshwater lake sediments. Environ Sci Technol 32:2425–2430. doi:10.1021/es971129k

    Article  CAS  Google Scholar 

  • Herbel MJ, Switzer Blum J, Hoeft SE, Cohen SM, Arnold LL, Lisak J, Stolz JF, Oremland RS (2002) Dissimilatory arsenate reductase activity and arsenate-respiring bacteria in bovine rumen fluid, hamster feces, and the termite hindgut. FEMS Microbiol Ecol 41:59–67. doi:10.1111/j.1574-6941.2002.tb00966.x

    Article  CAS  PubMed  Google Scholar 

  • Hoeft SE, Lucas F, Hollibaugh JT, Oremland RS (2002) Characterization of bacterial arsenate reduction in the anoxic bottom waters of Mono Lake, California. Geomicrobiol J 19:23–40

    Google Scholar 

  • Hoeft SE, Blum JS, Stolz JF, Tabita FR, Witte B, King GM (2007) Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol 57:504–512

    Article  CAS  PubMed  Google Scholar 

  • Honschopp S, Brunken N, Nehrkorn A, Breunig HR (1996) Isolation and characterization of a new Arsenic methylating bacterium from soil. Microbiol Res 151:37–41

    Article  CAS  PubMed  Google Scholar 

  • Hossain MF(2004) Arsenic contamination in Bangladesh: an overview. Agric Ecosyst Environ 113:1–16

    Google Scholar 

  • Huber GR, Sacher M, Vollman A, Huber H, Rose D (2000) Respiration of arsenate and selenate by hyperthermophilic archea. Syst Appl Microbiol 23:305–314. doi:10.1016/S0723-2020(00)80058-2

    Article  CAS  PubMed  Google Scholar 

  • Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16

    Article  CAS  PubMed  Google Scholar 

  • IPCS Environmental Health Criteria (2001) 224: arsenic and arsenic compounds. WHO, Geneva, pp 1–521

    Google Scholar 

  • Islam FS, Gault AG, Boothman C, Polya DA, Chamok JM et al (2004) Role of metal-reducing bacteria in Arsenic release from Bengal delta sediments. Nature 430:68–71. doi:10.1038/nature02638

    Article  CAS  PubMed  Google Scholar 

  • Jackson CR, Langner HW, Donahoe-Christiansen J, Inskeep WP, McDermott TR (2001) Molecular analysis of microbial community structure in an arsenite oxidizing acidic thermal spring. Environ Microbiol 3:532–542. doi:10.1046/j.1462-2920.2001.00221.x

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Liang C, He G, Cao J (2003) Study on distribution of endemic arsenism in China. J Hyg Res 32:519–540

    Google Scholar 

  • Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31: 95–107. doi: 10.1002/jat.1649

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants (English). CRC Press, Boca Raton, p 315

    Google Scholar 

  • Kalia VC (2010) Extending genomic limits through metagenomic exploration. J Cosmol 13:3625–3627

    Google Scholar 

  • Kashyap DR, Botero LM, Franck WL, Hassett DJ, McDermott TR (2006) Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. J Bacteriol 188:1081–1088. doi:10.1128/JB.188.3.1081-1088.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kenney LJ, Kaplan JH (1988) Arsenate substitutes for phosphate in the human red cell sodium pump and anion exchanger. J Biol Chem 263:7954–7960

    CAS  PubMed  Google Scholar 

  • Krafft T, Macy JM (1998) Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur J Biochem 255:647–653. doi:10.1046/ j.1432-1327.1998.2550647.x

    Article  CAS  PubMed  Google Scholar 

  • Langner HW, Inskeep WP (2000) Microbial reduction of arsenate in the presence of ferrihydrite. Environ Sci Technol 34:3131–3136. doi:10.1021/es991414z

    Article  CAS  Google Scholar 

  • Langner HW, Jackson CR, McDermot TR, Inskeep WP (2001) Rapid oxidation of arsenite in a hot spring microbial ecosystem. Environm Sci Technol 35:3302–3309. doi:10.1021/es0105562

    Article  CAS  Google Scholar 

  • Lewis DR, Southwick JW, Ouellet-Hellstrom R, Rench J, Calderon RL (1999) Evaluation of health implications of elevated arsenic in well water. Environ Health Perspect 107:359

    Google Scholar 

  • Li XG (1982) Chemical forms and content of Arsenic in some soils of China. Turang Xuebao 19:360–366

    CAS  Google Scholar 

  • Lièvremont D, N’Negue MA, Behra P, Lett MC (2003) Biological oxidation of arsenite: batch reactor experiments in presence of kutnahorite and chabazite. Chemosphere 51:419–428. doi:10.1016/S0045-6535(02)00869-X

    Article  PubMed  Google Scholar 

  • Lieutaud A, van Lis R, Duval S, Capowiezl L, Muller D, Lebrun R (2010) Arsenite oxidase from Ralstonia sp. 22: characterization of the enzyme and its interaction with soluble cytochromes. J Biol Chem 285:20433–20441. doi:10.1074/jbc.M110.113761

  • Liu A, Garcia-Dominguez E, Rhine ED, Young LY (2004) A novel arsenate respiring isolate that can utilize aromatic substances. FEMS Microbiol Ecol 48:323–332. doi:10.1016/j.femsec.2004.02.008

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253

    Article  CAS  PubMed  Google Scholar 

  • Maki T, Hasegawa H, Watarai H, Ueda K (2004) Classification for dimethylarsenate-decomposing bacteria using a restrict fragment length polymorphism analysis of 16S rRNA genes. Anal Sci 20:61–68

    Article  CAS  PubMed  Google Scholar 

  • Malasarn D, Keeffe JR, Newman DK (2008) Characterization of the arsenate respiratory reductase from Shewanella sp. strain ANA-3. J Bacteriol 190:135–142. doi:10.1128/JB.01110–07

  • Malasarn D, Saltikov CW, Campbell KM, Santini JM, Hering JG, Newman DK (2004) arrA is a reliable marker for Arsenic(V) respiration. Science 306:455. doi:10.1126/science.1102374

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235. doi:10.1016/S0039-9140(02)00268-0

    Article  CAS  PubMed  Google Scholar 

  • McArthur JM, Ravenscroft P, Safulla S, Thirlwall MF (2001) Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour Res 37:109. doi:10.1029/2000WR900270

    Article  CAS  Google Scholar 

  • Miller WH Jr, Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanisms of action of Arsenic trioxide. Cancer Res 62:3893–3903

    CAS  PubMed  Google Scholar 

  • Morrison JL (1969) Distribution of Arsenic from poultry litter in broiler chickens, soil and crops. J Agric Food Chem 17:1288–1290. doi:10.1021/jf60166a018

    Article  CAS  Google Scholar 

  • Mukhopadhyay R, Rosen BP (2002) Arsenate reductases in prokaryotes and eukaryotes. Environ Health Perspect 110(Suppl 5):745–748. doi:10.1289/ehp.02110s5745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mukhopadhyay R, Zhou Y, Rosen BP (2003) Directed evolution of a yeast arsenate reductase into a protein-tyrosine phosphatase. J Biol Chem 278:24476–24480. doi:10.1074/jbc.M302610200

    Article  CAS  PubMed  Google Scholar 

  • Muller D, Lievremont D, Simeonova DD, Hubert JC, Lett MC (2003) Arsenite oxidase aox genes from a metal resistant beta proteobacterium. J Bacteriol 185:135–141. doi:10.1128/JB.185.1.135-141.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagy G, Korom L (1983) Late skin symptoms of Arsenic poisoning in the Arsenic endemy in Bugac Alsomonostor. Z Hautkr 58:961–4

    CAS  PubMed  Google Scholar 

  • Nakamura M, Matsuzono Y, Tanaka S, Hashimoto Y (1990) Chemical form of arsenic compounds and distribution of their concentrations in the atmosphere. Appl Organomet Chem 4:223–30. doi:10.1002/aoc.590040308

    Article  CAS  Google Scholar 

  • Nelson KW (1977) Industrial contributions of Arsenic to the environment. Environ Health Perspect 19:31–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Németi B, Csanaky I, Gregus Z (2006) Effect of an inactivator of glyceraldehyde-3-phosphate dehydrogenase, a fortuitous arsenate reductase, on disposition of arsenate in rats. Toxicol Sci 90:49–60. doi:10.1093/toxsci/kfj058

    Article  PubMed  Google Scholar 

  • Németi B, Gregus Z (2005) Reduction of arsenate to arsenite by human erythrocyte lysate and rat liver cytosol characterization of a glutathione and NAD-dependent arsenate reduction linked to glycolysis. Toxicol Sci 85:847–858. doi:10.1093/toxsci/kfi157

    Article  PubMed  Google Scholar 

  • Newman D, Beveridge T, Morel F (1997) Precipitation of Arsenic trisulfide by Desulfotomaculum auripigmentum. Appl Environ Microbiol 63:2022–2028. doi:10.1007/s002030050512

    PubMed Central  CAS  PubMed  Google Scholar 

  • Newman DK, Ahmann D, Morel FMM (1998) A brief review of microbial arsenate respiration. Geomocrobiol J 15:255–268. doi:10.1080/01490459809378082

    Article  CAS  Google Scholar 

  • Niggemeyer A, Spring S, Stackenbrandt E, Rosenzweig RF (2001) Isolation and characterization of a novel Arsenic(V)-reducing bacterium: Implication for Arsenic mobilization and the genus Desulfitobacterium. Appl Environ Microbiol 67:5568–5580. doi:10.1128/AEM.67.12.5568-5580.2001

    Article  Google Scholar 

  • Nordstrom DK (2000) An overview of arsenic mass-poisoning in Bangladesh and West Bengal, India. In: Young C (ed) Minor elements, processing and environmental aspects of Arsenic, Sb, Se, Te, Bi. Proceedings, Society for Mining, Metallurgy and Exploration Meeting, Salt Lake City, pp 21–30

    Google Scholar 

  • Nordstrom DK (2002) Worldwide occurring of Arsenic in ground water. Science 296:2143. doi:10.1126/science. 1072375

    Article  CAS  PubMed  Google Scholar 

  • Oremland RS, Hoeft SE, Santini JM, Bano N, Hollibaugh RA, Hollibaugh JT (2002) Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68:s4795–4802. doi:10.1128/AEM.68.10.4795-4802.2002

    Article  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944. doi:10.1126/science.1081903

    Article  CAS  PubMed  Google Scholar 

  • Paez-Espino D, Tamames J, de Lorenzo V, Canovas D (2009) Microbial responses to environmental Arsenic. Biometals 22:117–130. doi:10.1007/s10534-008-9195-y

    Article  CAS  PubMed  Google Scholar 

  • Perez-Jimenez JR, DeFraia C, Young LY (2005) Arsenate respiratory reductase gene (arrA) for Desulfosporosinus sp. strain Y5. Biochem Biophys Res Commun 338:825–829. doi:10.1016/j.bbrc.2005.10.011

    Article  CAS  PubMed  Google Scholar 

  • Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Vasken Aposhian H (2000) Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol 163: 203–207. doi: 10.1006/taap.1999.8872

  • Pott WA, Benjamin SA, Yang RS (2001) Pharmacokinetics, metabolism, and carcinogenicity of Arsenic. Rev Environ Contam Toxicol 169:165–214. doi: 11330077

    Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A 103:2075–2080. doi:10.1073/pnas.0506836103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riethmiller S (2005) From Atoxyl to Salvarsan: searching for the magic bullet. Chemotherapy 51:235–242. doi:10.1159/000087453

    Article  Google Scholar 

  • Ritchie JA (1961) Arsenic and antimony in some New Zealand thermal waters. N Z J Sci Technol 4:218–29

    CAS  Google Scholar 

  • Rosen BR (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92. doi:10.1016/S0014-5793(02)03186-1

    Article  CAS  PubMed  Google Scholar 

  • Rosen P, Liu Z (2008) Transport pathways for arsenic and selenium. Environ Int 35: 512–515. doi: 10.1016/j.envint.2008.07.023

  • Rosenberg H, Gerdes RG, Chegwidden K (1977) Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 131:505–511

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roy P, Saha A (2002) Metabolism and toxicity of arsenic: a human carcinogen. Curr Sci 82:38–45

    CAS  Google Scholar 

  • Salmassi TM et al (2002) Oxidation of arsenite by Agrobacterium albertimagni, AOL15, sp. Nov., isolated from Hot Creek, California. Geomicrobiol J 19:53–66. doi: 10.1080/014904502317246165

  • Saltikov CW, Cifuentes A, Venkateswaren K, Newman DK (2003) The ars tem is advantageous but not required for Arsenic(V)-respiration by the genetically tractable Shewanella species, strain ANA-3. Appl Environ Microbiol 69:2800–2809. doi:10.1128/AEM.69.5.2800-2809.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saltikov CW, Newman DK (2003) Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci U S A 100:10983–10988. doi:10.1073/pnas.1834303100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanders OI, Rensing C, Kuroda M, Mitra B, Rosen BP (1997) Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol 179:3365–3367

    PubMed Central  CAS  PubMed  Google Scholar 

  • Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66:92–97. doi:10.1128/AEM.66.1.92-97.2000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santini JM, Sly LI, Wen A, Comrie DD, Wulf-Durand P, Macy JM (2002) New arsenite-oxidizing bacteria isolated from Australian gold mining environments phylogenetic relationships. Geomicrobiol J 19:67–76. doi:10.1080/014904502317246174

    Article  CAS  Google Scholar 

  • Scheindlin S (2005) The duplicitous nature of inorganic Arsenic. Mol Interv 5:60–64. doi:10.1124/mi.5.2.1

    Article  CAS  PubMed  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789. doi:10.1146/annurev.micro.50.1.753

    Article  CAS  PubMed  Google Scholar 

  • Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic Arsenic. Appl Environ Microbiol 71: 599–608. doi: 10.1128/AEM.71.2.599–608.2005

  • Slyemi D, Bonnefoy V (2012) How prokaryotes deal with Arsenic environmental microbiology reports 4, 571–586. doi: 10.1111/j.1758-2229.2011.00300.x

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of Arsenic in natural waters. Appl Geochem 17:517–568. doi:10.1016/S0883-2927(02)00018-5

    Article  CAS  Google Scholar 

  • Smith AH, Arroyo AP, Guha Mazumder DN, Kosnett MJ (2000) Environ Health Perspect :108–617

    Google Scholar 

  • Southwick JW, Western AE, Beck MM, Whitley T, Isaacs R, Petajan J, Hansen CD (1983). In: Leaderer WH, Robert J (eds) Arsenic: industrial, biomedical, environmental perspectives. Van Nostrand Reinhold Company, Fensterheim, pp 210–225

    Google Scholar 

  • Stolz JF, Basu P, Oremland RS (2010) Microbial arsenic metabolism: new twists on an old poison. Microbes 5(2):53–59. doi:10.1128/microbe.5.53.1

    Google Scholar 

  • Stolz JF, Oremland RS (1999) Bacterial respiration of Arsenic and selenium. FEMS Microbiol Rev 23:615–627. doi:10.1111/j.1574-6976.1999.tb00416.x

    Article  CAS  PubMed  Google Scholar 

  • Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130. doi:10.1146/annurev.micro.60.080805.142053

    Article  CAS  PubMed  Google Scholar 

  • Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA et al (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated Arsenicals in rat and human cells. Arch Toxicol 74(6):289–299. doi: 101.1007/s002040000134

    Google Scholar 

  • Takai K, Hirayama H, Sakihama Y, Inagaki F, Yamato Y, Horikoshi K (2002) Isolation and metabolic characteristics of previously uncultured members of the order Aquificales in a subsurface gold mine. Appl Environ Microbiol 68:3046–3054. doi:10.1128/AEM

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas DJ, Li J, Waters SB et al (2007) Arsenic (+3 oxidation state) methyltransferase and the methylation of Arsenicals. Exp Biol Med 232:3–13

    CAS  Google Scholar 

  • Thornton M, Farago M (1997) The geochemistry of arsenic. In: Abernathy CO, Calderon RL, Chappell WR (eds) Arsenic: exposure and health effects. Chapman and Hall, Kluwer Academic Publishers, London, pp 1–16

    Chapter  Google Scholar 

  • Vahter M (2000) Genetic polymorphism in the biotransformation of inorganic Arsenic and its role in toxicity. Toxicol Lett 112–113:209–217. doi:10.1016/S0378-4274(99)00271-4

    Article  PubMed  Google Scholar 

  • Wharton JC (2010) The arsenic century: how Victorian Britain was poisoned at home, work and play. Oxford University Press, Oxford, p 412

    Google Scholar 

  • Wilkie JA, Hering JG (1998) Rapid oxidation of geothermal Arsenic (III) in streamwaters of the eastern Sierra Nevada. Environ Sci Technol 32:657–662. doi:10.1021/es970637r

    Article  CAS  Google Scholar 

  • Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J, Stolz JF, Webb SM, Weber PK, Davies PCW, Anbar AD, Oremland RS (2010) A bacterium that can grow by using arsenic instead of phosphorous. Science 332:1149. doi:10.1126/science.1197258

    Article  Google Scholar 

  • Wu B, Song Beitz E (2010) Novel channel enzyme fusion proteins confer arsenate resistance. J Biol Chem 285:40081–40087. doi:10.1074/jbc.M110.184457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wyllie J (1937) An investigation of the source of Arsenic in a well water. Can Public Health J 28:128

    CAS  Google Scholar 

  • Yang HC, Cheng J, Finan TM, Rosen BP, Bhattacharjee H (2005) Noval pathway for Arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J Bacteriol 187:6991–6997. doi:10.1128/JB.187.20.6991-6997.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshinaga M, Cai Y, Rosen BP (2011) Demethylation of methylarsonic acid by a microbial community. Environ Microbial 13:1205–1215. doi:10.1111/j.1462-2920.2010.02420.x

    Article  CAS  Google Scholar 

  • Yuan C, Lu X, Qin J, Rosen BP, Le XC (2008) Volatile arsenic species released from Escherichia coli expressing the AsIII adenosylmethionine methyltransferase gene. Environ Sci Technol 42:3201–3206. doi:10.1021/es702910g

  • Zegers I, Martins JC, Willem R, Wyns L, Messens J (2001) Arsenate reductase from S. aureus plasmid pI258 is a phosphatase drafted for redox duty. Nat Struct Biol 8:843–847. doi:10.1038/nsb1001-843

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author would like to thank Prof. M. B. Khetmalas and Prof. B. P. Kapdnis for the initiative and support. The author is grateful to the editor of this book, Prof. V. C. Kalia, for the support in editing of the manuscript. The author is thankful to Dr. D.Y. Patil Vidyapeeth for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriya Kore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Kore, S. (2015). Biotransformation of Arsenic in Environment Mediated by Microorganisms. In: Kalia, V. (eds) Microbial Factories. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2598-0_18

Download citation

Publish with us

Policies and ethics