Microbial Cellulose Synthesis

  • Nivedita Nagachar
  • John McManus


Cellulose, the most abundant biopolymer on earth, has served mankind in countless applications from crude building resources to feedstock for advanced synthetic materials. As interest grows in alternative fuel resources, cellulose is among the primary contenders as a feedstock for generating these fuels. In recent years, interest in plant-derived, photosynthetically fixed cellulose has intensified, as this remains the major untapped natural source of stored solar energy in the form of carbon-carbon bonds. Although not usually considered in the biofuel sector, the ubiquity of microbial cellulose and the engineering of photosynthetic microbes for cellulose production make microbial cellulose a viable candidate. Not only does the remarkable versatility of microbial cellulose make its study worthwhile, but the microbes responsible for its synthesis serve as a simpler model for understanding the complex biological processes underlying plant cellulose synthesis.


Bacterial Cellulose Cellulose Synthesis Cellulose Production Cellulose Biosynthesis Bacterial Cellulose Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001090. John McManus is thankful to have his graduate studies supported by this grant.


  1. Bae S, Shoda M (2004) Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog 20:1366–1371. doi: 10.1021/bp0498490 CrossRefPubMedGoogle Scholar
  2. Bae S, Sugano Y, Shoda M (2004) Improvement of bacterial cellulose production by addition of agar in a jar fermentor. J Biosci Bioeng 97:33–38. doi: 10.1016/S1389-1723(04)70162-0 CrossRefPubMedGoogle Scholar
  3. Brown RM (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polymer Sci Part a-Polymer Chem 42:487–495. doi: 10.1002/Pola.10877 CrossRefGoogle Scholar
  4. Carpita NC (2011) Update on mechanisms of plant cell wall biosynthesis: how plants make cellulose and other (1->4)-beta-D-Glycans. Plant Physiol 155:171–184. doi: 10.1104/pp. 110.163360 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Chao Y, Ishida T, Sugano Y, Shoda M (2000) Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Biotechnol Bioeng 68:345–352. doi: 10.1002/(SICI)1097-0290(20000505)68:3<345::AID-BIT13>3.0.CO;2-M CrossRefPubMedGoogle Scholar
  6. Chao Y, Mitarai M, Sugano Y, Shoda M (2001) Effect of addition of water-soluble polysaccharides on bacterial cellulose production in a 50-L airlift reactor. Biotechnol Prog 17:781–785. doi: 10.1021/bp010046b CrossRefPubMedGoogle Scholar
  7. Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124Google Scholar
  8. Czaja WK, Young DJ, Kawecki M, Brown RM Jr (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12. doi: 10.1021/bm060620d CrossRefPubMedGoogle Scholar
  9. Deng Y, Nagachar N, Xiao CW, Tien M, Kao TH (2013) Identification and characterization of non-cellulose-producing mutants of Gluconacetobacter hansenii generated by Tn5 Transposon mutagenesis. J Bacteriol 195:5072–5083. doi: 10.1128/Jb.00767-13 PubMedCentralCrossRefPubMedGoogle Scholar
  10. Deng Y, Nagachar N, Fang L, Luan X, Tien M, T-h K (2015) Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity. PLoS One 10:e0119504. doi: 10.1371/journal.pone.0119504 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Harris D, DeBolt S (2008) Relative crystallinity of plant biomass: studies on assembly, adaptation and acclimation. PLoS One 3:e2897. doi: 10.1371/journal.pone.0002897 PubMedCentralCrossRefPubMedGoogle Scholar
  12. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi: 10.1126/science.1137016 CrossRefPubMedGoogle Scholar
  13. Hu SQ, Gao YG, Tajima K, Sunagawa N, Zhou Y, Kawano S, Yao M (2010) Structure of bacterial cellulose synthase subunit D octamer with four inner passageways. Proc Natl Acad Sci U S A 107:17957–17961. doi: 10.1073/pnas.1000601107 PubMedCentralCrossRefPubMedGoogle Scholar
  14. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose – a masterpiece of nature’s arts. J Mater Sci 35:261–270. doi: 10.1023/A:1004775229149 CrossRefGoogle Scholar
  15. Iyer PR, Liu YA, Deng Y, McManus JB, Kao TH, Tien M (2013) Processing of cellulose synthase (AcsAB) from Gluconacetobacter hansenii 23769. Arch Biochem Biophys 529(2):92–98. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  16. Jarvis MC (2013) Cellulose biosynthesis: counting the chains. Plant Physiol 163(4):1485–1486. doi: 10.1104/pp. 113.231092 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Jung JY, Park JK, Chang HN (2005) Bacterial cellulose production by Gluconacetobacter hansenii in an agitated culture without living non-cellulose producing cells. Enzym Microb Technol 37(3):347–354. doi: 10.1016/j.enzmictec.2005.02.019 CrossRefGoogle Scholar
  18. Kawano S, Tajima K, Uemori Y, Yamashita H, Erata T, Munekata M et al (2002) Cloning of cellulose synthesis related genes from Acetobacter xylinum ATCC23769 and ATCC53582: comparison of cellulose synthetic ability between strains. DNA Res 9(5):149–156. doi:
  19. Keshk SM (2014) Bacterial cellulose production and its industrial applications. Bioprocess Biotech 4:2. doi: 10.4172/2155-9821.1000150
  20. Kim YJ, Kim JN, Wee YJ, Park DH, Ryu HW (2007) Bacterial cellulose production by Gluconacetobacter sp RKY5 in a rotary biofilm contactor. Appl Biochem Biotechnol 137:529–537. doi: 10.1007/s12010-007-9077-8 PubMedGoogle Scholar
  21. Kimura S, Chen HP, Saxena IM, Brown RM Jr, Itoh T (2001) Localization of c-di-GMP-binding protein with the linear terminal complexes of Acetobacter xylinum. J Bacteriol 183(19):5668–5674. doi: 10.1128/JB.183.19.5668-5674.2001 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Goncalves-Miskiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29(4):189–195. doi: 10.1038/sj.jim.7000303 CrossRefPubMedGoogle Scholar
  23. Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555. doi: 10.1146/annurev.biochem.76.061005.092322 CrossRefPubMedGoogle Scholar
  24. Laus MC, van Brussel AAN, Kijne JW (2005) Role of cellulose fibrils and exopolysaccharides of Rhizobium leguminosarum in attachment to and infection of Vicia sativa root hairs. Mol Plant Microbe Interact 18:533–538. doi:
  25. Matthysse AG, Marry M, Krall L, Kaye M, Ramey BE, Fuqua C (2005) The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. Mol Plant Microbe Interact 18:1002–1010. doi:
  26. McManus JB, Deng Y, Nagachar N, Kao T-H, Tien M (2015) AcsA–AcsB: the core of the cellulose synthase complex from Gluconacetobacter hansenii ATCC23769. Enzym Microb Technol. doi: 10.1016/j.enzmictec.2015.08.015
  27. Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem 61(2):101–110. doi: 10.1002/bab.1148 CrossRefPubMedGoogle Scholar
  28. Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493(7431):181–186. doi: 10.1038/nature11744 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Morgan JL, McNamara JT, Zimmer J (2014) Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol 21(5):489–496. doi: 10.1038/nsmb.2803 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Nakai T, Sugano Y, Shoda M, Sakakibara H, Oiwa K, Tuzi S, Imai T, Sugiyama J, Takeuchi M, Yamauchi D, Mineyuki Y (2013) Formation of highly twisted ribbons in a carboxymethylcellulase gene-disrupted strain of a cellulose-producing bacterium. J Bacteriol 195(5):958–964. doi: 10.1128/Jb.01473-12 PubMedCentralCrossRefPubMedGoogle Scholar
  31. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose 1(alpha), from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306. doi: 10.1021/Ja037055w CrossRefPubMedGoogle Scholar
  32. Nobles DR, Romanovicz DK, Brown RM Jr (2001) Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase? Plant Physiol 127(2):529–542. doi:
  33. Omadjela O, Narahari A, Strumillo J, Melida H, Mazur O, Bulone V, Zimmer J (2013) BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proc Natl Acad Sci U S A 110(44):17856–17861. doi: 10.1073/pnas.1314063110 PubMedCentralCrossRefPubMedGoogle Scholar
  34. Park JK, Jung JY, Park YH (2003) Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol Lett 25(24):2055–2059. doi: 10.1023/B:BILE.0000007065.63682.18 CrossRefPubMedGoogle Scholar
  35. Park S, Baker JO, Himmel ME, Parila PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. doi: 10.1186/1754-6834-3-10PMID:20497524
  36. Peng LC, Kawagoe Y, Hogan P, Delmer D (2002) Sitosterol-beta-glucoside as primer for cellulose synthesis in plants. Science 295(5552):147–150. doi: 10.1126/science.1064281 CrossRefPubMedGoogle Scholar
  37. Romling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153(4):205–212. doi: 10.1016/S0923-2508(02)01316-5 CrossRefPubMedGoogle Scholar
  38. Romling U, Lunsdorf H (2004) Characterization of cellulose produced by Salmonella enterica serovar Typhimurium. Cellulose 11:413–418. doi: 10.1023/B:CELL.0000046411.74345.8f CrossRefGoogle Scholar
  39. Sadhu S, Saha P, Sen SK, Mayilraj S, Maiti TK (2013) Production, purification and characterization of a novel thermotolerant endoglucanase (CMCase) from Bacillus strain isolated from cow dung. Springerplus 2(1):10. doi: 10.1186/2193-1801-2-10 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Saxena IM, Brown RM Jr (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96(1):9–21. doi: 10.1093/aob/mci155 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8. doi: 10.1007/BF02931175 CrossRefGoogle Scholar
  42. Son HJ, Heo MS, Kim YG, Lee SJ (2001) Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnol Appl Biochem 33(Pt 1):1–5. doi: 10.1042/BA20000065 CrossRefPubMedGoogle Scholar
  43. Sunagawa N, Fujiwara T, Yoda T, Kawano S, Satoh Y, Yao M, Dairi T (2013) Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal complex) in Acetobacter xylinum. J Biosci Bioeng 115(6):607–612. doi: 10.1016/j.jbiosc.2012.12.021 CrossRefPubMedGoogle Scholar
  44. Sutherland IW (2001) The biofilm matrix–an immobilized but dynamic microbial environment. Trends Microbiol 9(5):222–227. doi:
  45. Tajima K, Nakajima K, Yamashita H, Shiba T, Munekata M, Takai M (2001) Cloning and sequencing of the beta-glucosidase gene from Acetobacter xylinum ATCC 23769. DNA Res 8(6):263–269. doi:10.1093/dnares/8.6.263CrossRefPubMedGoogle Scholar
  46. Valla S, Ertesvåg H, Tonouchi N, Fjærvik E (2009) Bacterial cellulose production: biosynthesis and applications. In: Rehm BHA (ed) Microbial production of biopolymers and polymer precursors: applications and perspective. Caister Academic Press, Norfolk, UK, pp 43–77Google Scholar
  47. Wiedemeier AM, Judy-March JE, Hocart CH, Wasteneys GO, Williamson RE, Baskin TI (2002) Mutant alleles of Arabidopsis RADIALLY SWOLLEN 4 and 7 reduce growth anisotropy without altering the transverse orientation of cortical microtubules or cellulose microfibrils. Development 129(20):4821–4830PubMedGoogle Scholar
  48. Yano H, Sugiyama J, MNakagaito AN, Nogi M, Matsuura T, Hikita M et al (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155. doi: 10.1002/adma.200400597 CrossRefGoogle Scholar
  49. Yasutake Y, Kawano S, Tajima K, Yao M, Satoh Y, Munekata M, Tanaka I (2006) Structural characterization of the Acetobacter xylinum endo-beta-1,4-glucanase CmcAx required for cellulose biosynthesis. Proteins Struct Funct Bioinf 64(4):1069–1077. doi: 10.1002/Prot.21052
  50. Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39(6):1452–1463. doi: 10.1046/j.1365-2958.2001.02337 CrossRefPubMedGoogle Scholar
  51. Zuo JR, Niu QW, Nishizawa N, Wu Y, Kost B, Chua NH (2000) KORRIGAN, an arabidopsis endo-1,4-beta-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant Cell 12(7):1137–1152. doi: 10.1105/tpc.12.7.1137 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations