Advertisement

Biological Electricity Production from Wastes and Wastewaters

  • Jai Sankar Seelam
  • Deepak Pant
  • Sunil A. Patil
  • Balasaheb P. Kapadnis

Abstract

Attributed to their multifaceted abilities, microorganisms have been constantly explored for several applications ranging from product synthesis, energy recovery to waste treatment. Biological production of electricity has been an important area of research in the past decade and half. Bioelectrochemical systems (BESs) offer a promising solution in aiding the energy development sector due to its supplementing ability to generate electricity from wastes and wastewaters. This chapter lays focus on the mechanisms and applicability of microorganisms to tap the potential in the wastes and wastewaters to function as active substrates for bioelectricity generation. Simultaneous bioenergy recovery is an added advantage in the BESs along with waste treatment. The main emphasis is on the electron-transfer mechanisms across microorganisms and electrodes, reactor architecture, and operating conditions. A brief overview on the potential of various solid wastes and wastewaters from domestic, agricultural, and industrial sectors is also included. The advancements in the field of microbial electrocatalysis have been highlighted under various sections which shed some light on the possibilities of active integration of BESs with other existing bioprocesses. Further technical and technological advancements can supplement the capability of waste to bioenergy conversion concept of BESs to tackle the energy sustainability and waste management issues.

Keywords

Corn Stover Direct Electron Transfer Anode Chamber Cathode Chamber Biohydrogen Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The first author take this precious opportunity to thank University of Antwerp for providing financial support for his stay at VITO NV, Mol, Belgium. He also take this opportunity to extend his sincere thanks to Dr. Mohanakrishna Gunda and Dr. Srikanth Sandipam for their help and inspiration in the initial phase of writing this chapter.

References

  1. Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40(10):3388–3394. doi: 10.1021/es0525511 PubMedCrossRefGoogle Scholar
  2. Aelterman P, Versichele M, Marzorati M, Boon N, Verstraete W (2008) Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour Technol 99(18):8895–8902. doi: 10.1016/j.biortech.2008.04.061 PubMedCrossRefGoogle Scholar
  3. Aelterman P, Versichele M, Genettello E, Verbeken K, Verstraete W (2009) Microbial fuel cells operated with iron-chelated air cathodes. Electrochim Acta 54(24):5754–5760. doi: 10.1016/j.electacta.2009.05.023 CrossRefGoogle Scholar
  4. Ahmad A, Ghufran R, Wahid ZA (2011) Bioenergy from anaerobic degradation of lipids in palm oil mill effluent. Rev Environ Sci Technol 10(4):353–376. doi: 10.1007/s11157-011-9253-8 Google Scholar
  5. Ahn Y, Logan BE (2010) Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour Technol 101(2):469–475. doi: 10.1016/j.biortech.2009.07.039 PubMedCrossRefGoogle Scholar
  6. Angenent LT, Wrenn BA (2008) Optimizing mixed-culture bioprocessing to convert wastes into bioenergy. In: Wall JD, Harwood CS, Demain A (eds) Bioenergy. ASM Press, Herndon, pp 179–194. doi: 10.1128/9781555815547.ch15 CrossRefGoogle Scholar
  7. Aulenta F, Catervi A, Majone M, Panero S, Reale P, Rossetti S (2007) Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol 41:2554–2559. doi: 10.1021/es0624321 PubMedCrossRefGoogle Scholar
  8. Baron D, LaBelle E, Coursolle D, Gralnick JA, Bond DR (2009) Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J Biol Chem 284(42):28865–28873. doi: 10.1074/jbc.m109.043455 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bathe S, Schwarzenbeck N, Hausner M (2005) Plasmid‐mediated bioaugmentation of activated sludge bacteria in a sequencing batch moving bed reactor using pNB2. Lett Appl Microbiol 41(3):242–247. doi: 10.1111/j.1472-765x.2005.01754.x PubMedCrossRefGoogle Scholar
  10. Benko KL, Drewes JE (2008) Produced water in the Western United States: geographical distribution, occurrence, and composition. Environ Eng Sci 25(2):239–246. doi: 10.1089/ees.2007.0026 CrossRefGoogle Scholar
  11. Biffinger JC, Pietron J, Ray R, Little B, Ringeisen BR (2007) A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens Bioelectron 22(8):1672–1679. doi: 10.1016/j.bios.2006.07.027
  12. Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69(3):1548–1555. doi: 10.1128/aem.69.3.1548-1555.2003
  13. Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485. doi: 10.1126/science.1066771 PubMedCrossRefGoogle Scholar
  14. Borole AP, Reguera G, Ringeisen B, Wang ZW, Feng Y, Kim BH (2011) Electroactive biofilms: current status and future research needs. Energ Environ Sci 4:4813. doi: 10.1039/c1ee02511b CrossRefGoogle Scholar
  15. Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43(18):7148–7152. doi: 10.1021/es901950j PubMedCrossRefGoogle Scholar
  16. Catal T, Fan Y, Li K, Bermek H, Liu (2011) Utilization of mixed monosaccharides for power generation in microbial fuel cells. J Chem Technol Biotechnol 86(January):570–574. doi: 10.1002/jctb.2554 CrossRefGoogle Scholar
  17. Cercado-Quezada B, Delia ML, Bergel A (2010) Treatment of dairy wastes with a microbial anode formed from garden compost. J Appl Electrochem 40:225–232. doi: 10.1007/s10800-009-0001-5 CrossRefGoogle Scholar
  18. Chae KJ, Choi MJ, Lee JW, Kim KY, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100:3518–3525. doi: 10.1016/j.biortech.2009.02.065 PubMedCrossRefGoogle Scholar
  19. Chae KJ, Choi MJ, Kim KY, Ajayi FF, Park W, Kim CW, Kim IS (2010) Methanogenesis control by employing various environmental stress conditions in two-chambered microbial fuel cells. Bioresour Technol 101(14):5350–5357. doi: 10.1016/j.biortech.2010.02.035 PubMedCrossRefGoogle Scholar
  20. Chandrasekhar K, Venkata Mohan S (2012) Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: effect of substrate concentration. Bioresour Technol 110:517–525. doi: 10.1016/j.biortech.2012.01.128 PubMedCrossRefGoogle Scholar
  21. Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232. doi: 10.1038/nbt867 PubMedCrossRefGoogle Scholar
  22. Chen S, Hou H, Harnisch F, Patil SA, Carmona-Martinez AA, Agarwal S, Schröder U (2011) Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells. Energ Environ Sci 4(4):1417. doi: 10.1039/c0ee00446d CrossRefGoogle Scholar
  23. Cheng S, Logan BE (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. ElectroChem Commun 9(3):492–496. doi: 10.1016/j.elecom.2006.10.023 CrossRefGoogle Scholar
  24. Cheng S, Liu H, Logan BE (2006a) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40:2426–2432. doi: 10.1021/es051652w PubMedCrossRefGoogle Scholar
  25. Cheng S, Liu H, Logan BE (2006b) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40:364–369. doi: 10.1021/es0512071 PubMedCrossRefGoogle Scholar
  26. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43(10):3953–3958. doi: 10.1021/es803531g PubMedCrossRefGoogle Scholar
  27. Cheng J, Zhu X, Ni J, Borthwick A (2010) Palm oil mill effluent treatment using a two stage microbial fuel cells system integrated with immobilized biological aerated filters. Bioresour Technol 101(8):2729–2734. doi: 10.1016/j.biortech.2009.12.017 PubMedCrossRefGoogle Scholar
  28. Choi J, Chang HN, Han JI (2011) Performance of microbial fuel cell with volatile fatty acids from food wastes. Biotechnol Lett 33:705–714. doi: 10.1007/s10529-010-0507-2 PubMedCrossRefGoogle Scholar
  29. Chong NM, Pai SL, Chen CH (1997) Bioaugmentation of an activated sludge receiving pH shock loadings. Bioresour Technol 59(2):235–240. doi: 10.1016/s0960-8524(96)00138-1 CrossRefGoogle Scholar
  30. Clauwaert P, Verstraete W (2009) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82(5):829–836. doi: 10.1007/s00253-008-1796-4 PubMedCrossRefGoogle Scholar
  31. Clauwaert P, Rabaey K, Aelterman P, DeSchamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360. doi: 10.1021/es062580r PubMedCrossRefGoogle Scholar
  32. Clauwaert P, Aelterman P, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79(6):901–913. doi: 10.1007/s00253-008-1522-2 PubMedCrossRefGoogle Scholar
  33. Cusick RD, Kiely PD, Logan BE (2010) A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. Int J Hydrog Energy 35(17):8855–8861. doi: 10.1016/j.ijhydene.2010.06.077 CrossRefGoogle Scholar
  34. Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, Logan BE (2011) Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 89:2053–2063. doi: 10.1007/s00253-011-3130-9 PubMedCrossRefGoogle Scholar
  35. Digman B, Kim DS (2008) Review: alternative energy from food processing wastes. Environ Prog 27(4):524–537. doi: 10.1002/ep.10312 CrossRefGoogle Scholar
  36. Ding H, Li Y, Lu A, Jin S, Quan C, Wang C, Wang X, Zeng C, Yan Y (2010) Photo catalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode. Bioresour Technol 101:3500–3505. doi: 10.1016/j.biortech.2009.11.107 PubMedCrossRefGoogle Scholar
  37. Ditzig J, Liu H, Logan BE (2007) Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). Int J Hydrog Energy 32(13):2296–2304. doi: 10.1016/j.ijhydene.2007.02.035 CrossRefGoogle Scholar
  38. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482. doi: 10.1016/j.biotechadv.2007.05.004 PubMedCrossRefGoogle Scholar
  39. Dulon S, Parot S, Delia ML, Bergel A (2006) Electroactive biofilms: new means for electrochemistry. J Appl Electrochem 37(1):173–179. doi: 10.1007/s10800-006-9250-8 CrossRefGoogle Scholar
  40. Dumas C, Basseguy R, Bergel A (2008a) DSA to grow electrochemically active biofilms of Geobacter sulfurreducens. Electrochim Acta 53(7):3200–3209. doi: 10.1016/j.electacta.2007.10.066
  41. Dumas C, Basseguy R, Bergel A (2008b) Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes. Electrochim Acta 53(16):5235–5241. doi: 10.1016/j.electacta.2008.02.056
  42. Durruty I, Bonanni PS, González JF, Busalmen JP (2012) Evaluation of potato-processing wastewater treatment in a microbial fuel cell. Bioresour Technol 105:81–87. doi: 10.1016/j.biortech.2011.11.095 PubMedCrossRefGoogle Scholar
  43. ElMekawy A, Hegab HM, Pant D (2014a) The near-future integration of microbial desalination cells with reverse osmosis technology. Energ Environ Sci 7:3921–3933. doi: 10.1039/c4ee02208d CrossRefGoogle Scholar
  44. ElMekawy A, Srikanth S, Vanbroekhoven K, De Wever H, Pant D (2014b) Bioelectro-catalytic valorization of dark fermentation effluents by acetate oxidizing bacteria in bioelectrochemical system (BES). J Power Sources Elsevier BV 262:183–191. doi: 10.1016/j.jpowsour.2014.03.111 CrossRefGoogle Scholar
  45. ElMekawy A et al (2015) Food and agricultural wastes as substrates for bioelectrochemical system (BES): the synchronized recovery of sustainable energy and energy and waste treatment. Food Res Int. doi: 10.1016/j.foodres.2014.11.045 Google Scholar
  46. Erable B, Duţeanu NM, Ghangrekar MM, Dumas C, Scott K (2010) Application of electro-active biofilms. Biofouling Informa UK Limited 26(1):57–71. doi: 10.1080/08927010903161281 Google Scholar
  47. Fan Y, Hu H, Liu H (2007) Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171(2):348–354. doi: 10.1016/j.jpowsour.2007.06.220 CrossRefGoogle Scholar
  48. Feng Y, Yang Q, Wang X, Logan BE (2010) Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells. J Power Sources 195(7):1841–1844. doi: 10.1016/j.jpowsour.2009.10.030 CrossRefGoogle Scholar
  49. Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JLM, Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM (2008) Nat Rev Microbiol 6:592–603. doi: 10.1038/nrmicro1947 PubMedCrossRefGoogle Scholar
  50. Frijters CTMJ, Vos RH, Scheffer G, Mulder R (2006) Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system. Water Res 40(6):1249–1257. doi: 10.1016/j.watres.2006.01.013 PubMedCrossRefGoogle Scholar
  51. Fuentes-Albarrán C, Del Razo A, Juarez K, Alvarez-Gallegos A (2012) Influence of NaCl, Na 2 SO 4 and O 2 on power generation from microbial fuel cells with non-catalyzed carbon electrodes and natural inocula. Sol Energy 86(4):1099–1107. doi: 10.1016/j.solener.2011.12.011 CrossRefGoogle Scholar
  52. Gimkiewicz C, Harnisch F (2013) Waste water derived electroactive microbial biofilms: growth, maintenance, and basic characterization. J Vis Exp 82:50800. doi: 10.3791/50800 PubMedGoogle Scholar
  53. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Proc Natl Acad Sci U S A 103:11358–11363. doi: 10.1073/pnas.0604517103 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Gralnick JA, Newman DK (2007) Extracellular respiration. Mol Microbiol 65(1):1–11. doi: 10.1111/j.1365-2958.2007.05778.x PubMedCentralPubMedCrossRefGoogle Scholar
  55. Guo J, Yang C, Peng L (2014a) Preparation and characteristics of bacterial polymer using pre-treated sludge from swine wastewater treatment plant. Bioresour Technol 152:490–498. doi: 10.1016/j.biortech.2013.11.037 PubMedCrossRefGoogle Scholar
  56. Guo K, Donose BC, Soeriyadi AH, Prévoteau A, Patil SA, Freguia S, Gooding JJ, Rabaey K (2014b) Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems. Environ Sci Technol 48(12):7151–7156. doi: 10.1021/es500720g PubMedCrossRefGoogle Scholar
  57. Hasvold Ø, Henriksen H, Melv˦r E, Citi G, Johansen BØ, Kjønigsen T, Galetti R (1997) Sea-water battery for subsea control systems. J Power Sources 65(1–2):253–261. doi: 10.1016/s0378-7753(97)02477-4 CrossRefGoogle Scholar
  58. Hasvold Ø, Johansen KH, Mollestad O, Forseth S, Størkersen N (1999) The alkaline aluminium/hydrogen peroxide power source in the Hugin II unmanned underwater vehicle. J Power Sources 80(1–2):254–260. doi: 10.1016/s0378-7753(98)00266-3 CrossRefGoogle Scholar
  59. He Z, Minteer SD, Angenent LT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39:5262–5267. doi: 10.1021/es0502876 PubMedCrossRefGoogle Scholar
  60. Holzman DC (2005) Microbe power! Environ Health Perspect 113(11):A754–A757. doi: 10.1289/ehp.113-a754 PubMedCentralPubMedCrossRefGoogle Scholar
  61. Hou H, Li L, Cho Y, de Figueiredo P, Han A (2009) Microfabricated microbial fuel cell arrays reveal electrochemically active microbes. PLoS ONE 4(8), e6750. doi: 10.1371/journal.pone.0006570 CrossRefGoogle Scholar
  62. Hu X, Li A, Fan J, Deng C, Zhang Q (2008) Biotreatment of p-nitrophenol and nitrobenzene in mixed wastewater through selective bioaugmentation. Bioresour Technol 99(10):4529–4533. doi: 10.1016/j.biortech.2007.08.039 PubMedCrossRefGoogle Scholar
  63. Ieropoulos I, Greenman J, Melhuish C (2012) Urine utilisation by microbial fuel cells, energy fuel for the future. Phys Chem Chem Phys 14:94–98. doi: 10.1039/c1cp23213d PubMedCrossRefGoogle Scholar
  64. Ishii S, Watanabe K, Yabuki S, Logan BE, Sekiguchi Y (2008) Comparison of electrode reduction activities of geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell. Appl Environ Microbiol 74(23):7348–7355. doi: 10.1128/aem.01639-08 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS et al (2004) Construction and operation of a novel mediator-and membraneless microbial fuel cell. Process Biochem 39:1007–1012. doi: 10.1016/s0032-9592(03)00203-6 CrossRefGoogle Scholar
  66. Jiang D, Li B (2009) Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): a design suitable for large-scale wastewater treatment processes. Biochem Eng J 47:31–37. doi: 10.1016/j.bej.2009.06.013 CrossRefGoogle Scholar
  67. Jong BC, Liew PWY, Juri ML, Kim BH, Dzomir AZ, Mohd LKW, Awang MR (2011) Performance and microbial diversity of palm oil mill effluent microbial fuel cell. Lett Appl Microbiol 53:660–667. doi: 10.1111/j.1472-765X.2011.03159.x PubMedCrossRefGoogle Scholar
  68. Kannaiah Goud R, Venkata Mohan S (2011) Pre-fermentation of waste as a strategy to enhance the performance of single chambered microbial fuel cell (MFC). Int J Hydrog Energy 36(21):13753–13762. doi: 10.1016/j.ijhydene.2011.07.128 CrossRefGoogle Scholar
  69. Katuri KP, Enright AM, O’Flaherty V, Leech D (2012) Microbial analysis of anodic biofilm in a app microbial fuel cell using slaughterhouse wastewater. Bioelectrochem (Amsterdam, Netherlands) 87:164–171. doi: 10.1016/j.bioelechem.2011.12.002 CrossRefGoogle Scholar
  70. Ki D, Park J, Lee J, Yoo K (2008) Microbial diversity and population dynamics of activated sludge microbial communities participating in electricity generation in microbial fuel cells. Water Sci Technol 58(11):2195–2201. doi: 10.2166/wst.2008.577 PubMedCrossRefGoogle Scholar
  71. Kim BH, Kim HJ, Hyun MS, Park DH (1999a) Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechn 9(2):127–131Google Scholar
  72. Kim HJ, Hyun MS, Chang IS, Kim BH (1999b) A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9(3):365–367Google Scholar
  73. Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Tech 30(2):145–152. doi: 10.1016/s0141-0229(01)00478-1
  74. Kim BH, Park HS, Kim HJ, Kim GT, Chang IS, Lee J, Phung NT (2004) Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 63(6):672–681. doi: 10.1007/s00253-003-1412-6 PubMedCrossRefGoogle Scholar
  75. Kim D, An J, Kim B, Jang JK, Kim BH, Chang IS (2012) Scaling-up microbial fuel cells: configuration and potential drop phenomenon at series connection of unit cells in shared anolyte. ChemSusChem 5(6):1086–1091. doi: 10.1002/cssc.201100678 PubMedCrossRefGoogle Scholar
  76. Kiran Kumar A, Reddy MV, Chandrasekhar K, Srikanth S, Venkata Mohan S (2012) Endocrine disruptive estrogens role in electron transfer: bio-electrochemical remediation with microbial mediated electrogenesis. Bioresour Technol 104:547–556. doi: 10.1016/j.biortech.2011.10.037 PubMedCrossRefGoogle Scholar
  77. Kumar GG, Sarathi VGS, Nahm KS (2013) Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosens Bioelectron Elsevier 43:461–475. doi: 10.1016/j.bios.2012.12.048 CrossRefGoogle Scholar
  78. Larminie J, Dicks A (2000) Fuel cell systems explained. Wiley, Chichester. doi: 10.1002/9781118878330 Google Scholar
  79. Larrosa-Guerrero A, Scott K, Katuri KP, Godinez C, Head IM, Curtis T (2010) Open circuit versus closed circuit enrichment of anodic biofilms in MFC: effect on performance and anodic communities. Appl Microbiol Biotechnol 87(5):1699–1713. doi: 10.1007/s00253-010-2624-1 PubMedCrossRefGoogle Scholar
  80. Leang C, Coppi MV, Lovley DR (2003) OmcB, a c-type polyheme cytochrome, involved in Fe (III) reduction in Geobacter sulfurreducens. J Bacteriol 185(7):2096–2103. doi: 10.1128/jb.185.7.2096-2103.2003 PubMedCentralPubMedCrossRefGoogle Scholar
  81. Leaño EP, Anceno AJ, Babel S (2012) Ultrasonic pretreatment of palm oil mill effluent: impact on biohydrogen production, bioelectricity generation, and underlying microbial communities. Int J Hydrog Energy 37(17):12241–12249. doi: 10.1016/j.ijhydene.2012.06.007 CrossRefGoogle Scholar
  82. Lee HS, Rittman BE (2010) Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell. Int J Hydrog Energy 35:920–927. doi: 10.1016/j.ijhydene.2009.11.040 CrossRefGoogle Scholar
  83. Levine AD, Asano T (2004) Peer reviewed: recovering sustainable water from wastewater. Environ Sci Technol 38(11):201A–208A. doi: 10.1021/es040504n PubMedCrossRefGoogle Scholar
  84. Li XM, Cheng KY, Selvam A, Wong JWC (2013a) Bioelectricity production from acidic food waste leachate using microbial fuel cells: effect of microbial inocula. Process Biochem 48(2):283–288. doi: 10.1016/j.procbio.2012.10.001 CrossRefGoogle Scholar
  85. Li WW, Sheng GP, Yu HQ (2013b) Electricity generation from food industry wastewater using microbial fuel cell technology. In: Food industry wastes: assessment and recuperation of commodities, pp 249–261. doi: 10.1016/b978-0-12-391921-2.00014-7
  86. Liang P, Wang HY, Huang X, Cao XX, Mo YH (2009) Influence of environmental factors on electricity production by microbial fuel cell inoculation Shewanella putrefaciens. Environ Sci 30(7):2148–2152Google Scholar
  87. Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38(14):4040–4046. doi: 10.1021/es0499344 PubMedCrossRefGoogle Scholar
  88. Liu H, Ramanarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285. doi: 10.1021/es034923g PubMedCrossRefGoogle Scholar
  89. Liu H, Cheng SA, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:5488–5493. doi: 10.1021/es048927c PubMedCrossRefGoogle Scholar
  90. Liu JL, Lowy DA, Baumann RG, Tender LM (2007a) Influence of anode pretreatment on its microbial colonization. J Appl Microbiol 102:177–183. doi: 10.1111/j.1365-2672.2006.03051.x PubMedCrossRefGoogle Scholar
  91. Liu ZD, Du ZW, Lian J, Zhu XY, Li SH, Li HR (2007b) Improving energy accumulation of microbial fuel cells by metabolism regulation using Rhodoferax ferrireducens as biocatalyst. Lett Appl Microbiol 44(4):393–398. doi: 10.1111/j.1472-765x.2006.02088.x
  92. Liu Y, Harnisch F, Fricke K, Schröder U, Climent V, Feliu JM (2010) The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. Biosens Bioelectron 25(9):2167–2171. doi: 10.1016/j.bios.2010.01.016 PubMedCrossRefGoogle Scholar
  93. Liu G, Yates MD, Cheng S, Call DF, Sun D, Logan BE (2011a) Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments. Bioresour Technol 102(15):7301–7306. doi: 10.1016/j.biortech.2011.04.087 PubMedCrossRefGoogle Scholar
  94. Liu XW et al (2011b) Integration of a microbial fuel cell with activated sludge process for energy-saving wastewater treatment: taking a sequencing batch reactor as an example. Biotechnol Bioeng 108(6):1260–1267. doi: 10.1002/bit.23056 PubMedCrossRefGoogle Scholar
  95. Logan BE (2004a) Extracting hydrogen and electricity from renewable resources. Environ Sci Technol 38:160–167. doi: 10.1021/es040468s CrossRefGoogle Scholar
  96. Logan BE (2004b) Peer reviewed: extracting hydrogen and electricity from renewable resources. Environ Sci Technol 38(9):160A–167A. doi: 10.1021/es040468s PubMedCrossRefGoogle Scholar
  97. Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85(6):1665–1671. doi: 10.1007/s00253-009-2378-9 PubMedCrossRefGoogle Scholar
  98. Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192. doi: 10.1021/es0605016 PubMedCrossRefGoogle Scholar
  99. Logan BE, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41(9):3341–3346. doi: 10.1021/es062644y PubMedCrossRefGoogle Scholar
  100. Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal R (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42(23):8630–8640. doi: 10.1021/es801553z PubMedCrossRefGoogle Scholar
  101. Lorenzo MD, Scott K, Curtis TP, Katuri KP, Head IM (2009) Continuous feed microbial fuel cell using an air cathode and a disc anode stack for wastewater treatment. Energy Fuel 23(11):5707–5716. doi: 10.1021/ef9005934 CrossRefGoogle Scholar
  102. Lovley DR (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17(3):327–332. doi: 10.1016/j.copbio.2006.04.006 PubMedCrossRefGoogle Scholar
  103. Lower BH, Shi L, Yongsunthon R, Droubay TC, McCready DE, Lower SK (2007) Specific bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1. J Bacteriol 189(13):4944–4952. doi: 10.1128/jb.01518-06 PubMedCentralPubMedCrossRefGoogle Scholar
  104. Luo H, Xu P, Roane TM, Jenkins PE, Ren Z (2012) Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination. Bioresour Technol 105:60–66. doi: 10.1016/j.biortech.2011.11.098 PubMedCrossRefGoogle Scholar
  105. Marco A, Esplugas S, Saum G (1997) How and why combine chemical and biological processes for wastewater treatment. Water Sci Technol 35(4):321–327. doi: 10.1016/s0273-1223(97)00041-3 CrossRefGoogle Scholar
  106. Marcus AK, Torres CI, Rittmann BE (2007) Conduction‐based modeling of the biofilm anode of a microbial fuel cell. Biotechnol Bioeng 98(6):1171–1182. doi: 10.1002/bit.21533 CrossRefGoogle Scholar
  107. Marcus AK, Torres CI, Rittmann BE (2011) Analysis of a microbial electrochemical cell using the proton condition in biofilm (PCBIOFILM) model. Bioresour Technol 102(1):253–262. doi: 10.1016/j.biortech.2010.03.100 PubMedCrossRefGoogle Scholar
  108. Mehta T, Coppi MV, Childers SE, Lovley DR (2005) Outer membrane c-type cytochromes required for Fe (III) and Mn (IV) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol 71(12):8634–8641. doi: 10.1128/aem.71.12.8634-8641.2005
  109. Milliken CE, May HD (2007) Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2. Appl Microbiol Biotechnol 73(5):1180–1189. doi: 10.1007/s00253-006-0564-6 PubMedCrossRefGoogle Scholar
  110. Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38(21):5809–5814. doi: 10.1021/es0491026 PubMedCrossRefGoogle Scholar
  111. Min B, Cheng S, Logan BE (2005a) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39(9):1675–1686. doi: 10.1016/j.watres.2005.02.002 PubMedCrossRefGoogle Scholar
  112. Min B, Kim J, Oh S, Regan JM, Logan BE (2005b) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39(20):4961–4968. doi: 10.1016/j.watres.2005.09.039 PubMedCrossRefGoogle Scholar
  113. Mohan SV, Falkentoft C, Nancharaiah YV, Sturm BSM, Wattiau P, Wilderer PA, Wuertz S, Hausner M (2009a) Bioaugmentation of microbial communities in laboratory and pilot scale sequencing batch biofilm reactors using the TOL plasmid. Bioresour Technol 100(5):1746–1753. doi: 10.1016/j.biortech.2008.09.048 CrossRefGoogle Scholar
  114. Mohan SV, Reddy BP, Sarma PN (2009b) Ex situ slurry phase bioremediation of chrysene contaminated soil with the function of metabolic function: process evaluation by data enveloping analysis (DEA) and Taguchi design of experimental methodology (DOE). Bioresour Technol 100(1):164–172. doi: 10.1016/j.biortech.2008.06.020 CrossRefGoogle Scholar
  115. Mohan SV, Srikanth S, Sarma PN (2009c) Non-catalyzed microbial fuel cell (MFC) with open air cathode for bioelectricity generation during acidogenic wastewater treatment. Bioelectrochemistry 75(2):130–135. doi: 10.1016/j.bioelechem.2009.03.002 PubMedCrossRefGoogle Scholar
  116. Mohanakrishna G, Srikanth S, Pant D (2015) Bioelectrochemical systems (BES) for microbial electroremediation: an advanced wastewater treatment technology. In: Applied environmental biotechnology: present scenario and future trends. Springer India, pp 145–167. doi: 10.1007/978-81-322-2123-4_10
  117. Moon H, Chang IS, Kim BH (2006) Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresour Technol 97:621–627. doi: 10.1016/j.biortech.2005.03.027 PubMedCrossRefGoogle Scholar
  118. Mu Y, Rabaey K, Rozendal R, Yuan Z, Keller J (2009a) Decolorization of azo dyes in bioelectrochemical systems. Environ Sci Technol 43:5137–5143. doi: 10.1021/es900057f PubMedCrossRefGoogle Scholar
  119. Mu Y, Rozendal R, Rabaey K, Keller J (2009b) Nitrobenzene removal in bioelectrochemical systems. Environ Sci Technol 43(22):8690–8695. doi: 10.1021/es9020266 PubMedCrossRefGoogle Scholar
  120. Muga HE, Mihelcic JR (2008) Sustainability of wastewater treatment technologies. J Environ Manag 88(3):437–447. doi: 10.1016/j.jenvman.2007.03.008 CrossRefGoogle Scholar
  121. Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1(2):e00103–e00110. doi: 10.1128/mbio.00103-10 PubMedCentralPubMedCrossRefGoogle Scholar
  122. Nielsen K, Reimers CE, Stecher HAI (2007) Enhanced power from chambered benthic microbial fuel cells. Environ Sci Technol 41(22):7895–7900. doi: 10.1021/es071740b PubMedCrossRefGoogle Scholar
  123. Niessen J, Harnisch F, Rosenbaum M, Schroder U, Scholz F (2006) Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem Commun 8(5):869–873. doi: 10.1016/j.elecom.2006.03.025 CrossRefGoogle Scholar
  124. Nimje VR, Chen CY, Chen HR, Chen CC, Huang YM, Tseng MJ, Chang YF (2012) Comparative bioelectricity production from various wastewaters in microbial fuel cells using mixed cultures and a pure strain of Shewanella oneidensis. Bioresour Technol 104:315–323. doi: 10.1016/j.biortech.2011.09.129 PubMedCrossRefGoogle Scholar
  125. Oh S, Logan BE (2005) Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 39(19):4673–4682. doi: 10.1016/j.watres.2005.09.019 PubMedCrossRefGoogle Scholar
  126. Oh SE, Logan BE (2006) Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol 70(2):162–169. doi: 10.1007/s00253-005-0066-y PubMedCrossRefGoogle Scholar
  127. Oh SE, Logan BE (2007) Voltage reversal during microbial fuel cell stack operation. J Power Sources 167(1):11–17. doi: 10.1016/j.jpowsour.2007.02.016 CrossRefGoogle Scholar
  128. Olson ER (1993) Influence of pH on bacterial gene expression. Mol Microbiol 8(1):5–14. doi: 10.1111/j.1365-2958.1993.tb01198.x PubMedCrossRefGoogle Scholar
  129. Ouitrakul S, Sriyudthsak M, Charojrochkul S, Kakizono T (2007) Impedance analysis of bio-fuel cell electrodes. Biosens Bioelectron 23(5):721–727. doi: 10.1016/j.bios.2007.08.012 PubMedCrossRefGoogle Scholar
  130. Pant D, Van Bogaert G, De Smet M, Diels L, Vanbroekhoven K (2010a) Use of novel permeable membrane and air cathodes in acetate microbial fuel cells. Electrochim Acta 55(26):7710–7716. doi: 10.1016/j.electacta.2009.11.086 CrossRefGoogle Scholar
  131. Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010b) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543. doi: 10.1016/j.biortech.2009.10.017 PubMedCrossRefGoogle Scholar
  132. Pant D, Singh A, Van Bogaert G, Olsen SI, Nigam PS, Diels L, Vanbroekhoven K (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2(4):1248–1263. doi: 10.1039/c1ra00839k CrossRefGoogle Scholar
  133. Pant D, Arslan D, Van Bogaert G, Gallego YA, De Wever H, Diels L, Vanbroekhoven K (2013) Integrated conversion of food waste diluted with sewage into volatile fatty acids through fermentation and electricity through a fuel cell. Environ Technol 34(13–14):1935–1945. doi: 10.1080/09593330.2013.828763 PubMedCrossRefGoogle Scholar
  134. Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81(3):348–355. doi: 10.1002/bit.10501 PubMedCrossRefGoogle Scholar
  135. Park D, Lee DS, Kim YM, Park JM (2008) Bioaugmentation of cyanide-degrading microorganisms in a full-scale cokes wastewater treatment facility. Bioresour Technol 99(6):2092–2096. doi: 10.1016/j.biortech.2007.03.027 PubMedCrossRefGoogle Scholar
  136. Patil SA, Surakasi VP, Koul S, Ijmulwar S, Vivek A, Shouche YS, Kapadnis BP (2009) Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Bioresour Technol 100(21):5132–5139. doi: 10.1016/j.biortech.2009.05.041 PubMedCrossRefGoogle Scholar
  137. Patil SA, Harnisch F, Balasaheb Kapadnis US (2010) Electroactive mixed culture biofilms in microbial bioelectrochemical systems: The role of temperature for biofilm formation and performance. Biosens Bioelectron 26:803–808. doi: 10.1016/j.bios.2010.06.019 PubMedCrossRefGoogle Scholar
  138. Patil SA, Harnisch F, Koch C, Hübschmann T, Fetzer I, Carmona-Martínez AA, Müller S (2011) Schröder U Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: The role of pH on biofilm formation, performance and composition. Bioresour Technol 102(20):9683–9690. doi: 10.1016/j.biortech.2011.07.087 PubMedCrossRefGoogle Scholar
  139. Patil SA, Hägerhäll C, Gorton L (2012) Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanal Rev 4:159–192. doi: 10.1007/s12566-012-0033-x CrossRefGoogle Scholar
  140. Patil SA, Chigome S, Hägerhäll C, Torto N, Gorton L (2013) Electrospun carbon nanofibers from polyacrylonitrile blended with activated or graphitized carbonaceous materials for improving anodic bioelectrocatalysis. Bioresour Technol 132:121–126. doi: 10.1016/j.biortech.2012.12.180 PubMedCrossRefGoogle Scholar
  141. Pham H, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, De Maeyer K, Hofte M, Verstraete W, Rabaey K (2008) Appl Microbiol Biotechnol 77:1119–1129. doi: 10.1007/s00253-007-1248-6 PubMedCrossRefGoogle Scholar
  142. Picot M, Lapinsonniere L, Rothballer M, Barriere F (2011) Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output. Biosens Bioelectron 28(1):181–188. doi: 10.1016/j.bios.2011.07.017 PubMedCrossRefGoogle Scholar
  143. Puig S, Serra M, Coma M, Balaguer MD, Colprim J (2011) Simultaneous domestic wastewater treatment and renewable energy production using microbial fuel cells (MFCs). Water Sci Technol 64:904–909. doi: 10.2166/wst.2011.401 PubMedCrossRefGoogle Scholar
  144. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298. doi: 10.1016/j.tibtech.2005.04.008 PubMedCrossRefGoogle Scholar
  145. Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382. doi: 10.1128/aem.70.9.5373-5382.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  146. Rabaey K, Boon N, Höfte M, Verstraete W (2005a) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39(9):3401–3408. doi: 10.1021/es048563o PubMedCrossRefGoogle Scholar
  147. Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005b) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39:8077–8082. doi: 10.1021/es050986i PubMedCrossRefGoogle Scholar
  148. Rabaey K, VandeSompel K, Maignien L, Boon N, Aelterman P, Clauwaert P, DeSchamphelaire L, Pham HT, Vermeulen J, Verhaege M, Lens P, Verstraete W (2006) Microbial fuel cells for sulfide removal. Environ Sci Technol 40:5218–5224. doi: 10.1021/es060382u PubMedCrossRefGoogle Scholar
  149. Rabaey K, Butzer S, Brown S, Keller J, Rozendal RA (2010a) High current generation coupled to caustic production using a lamellar bioelectrochemical system. Environ Sci Technol 44(11):4315–4321. doi: 10.1021/es9037963 PubMedCrossRefGoogle Scholar
  150. Rabaey K, Johnstone A, Wise A, Read S, Rozendal RA (2010b) Microbial electrosynthesis: from electricity to biofuels and biochemicals. Bio Tech Int 22(3):6–8Google Scholar
  151. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101. doi: 10.1038/nature03661 PubMedCrossRefGoogle Scholar
  152. Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72(11):7345–7348. doi: 10.1128/aem.01444-06
  153. Ren Z, Ward TE, Regan JM (2007) Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 41:4781–4786. doi: 10.1021/es070577h PubMedCrossRefGoogle Scholar
  154. Rengasamy K, Berchmans S (2012) Simultaneous degradation of bad wine and electricity generation with the aid of the coexisting biocatalysts Acetobacter aceti and Gluconobacter roseus. Bioresour Technol 104:388–393. doi: 10.1016/j.biortech.2011.10.092
  155. Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75(11):3673–3678. doi: 10.1128/aem.02600-08
  156. Richter H, Lanthier M, Nevin KP, Lovley DR (2007) Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe (III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes. Appl Environ Microbiol 73(16):5347–5353. doi: 10.1128/aem.00804-07
  157. Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40(8):2629–2634. doi: 10.1021/es052254w
  158. Rosenbaum M, Zhao F, Quaas M, Wulff H, Schroder U, Scholz F (2007) Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells. Appl Catal B Environ 74:261–269. doi: 10.1016/j.apcatb.2007.02.013
  159. Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40:5206–5211. doi: 10.1021/es060387r PubMedCrossRefGoogle Scholar
  160. Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN (2008a) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26(8):450–459. doi: 10.1016/j.tibtech.2008.04.008 PubMedCrossRefGoogle Scholar
  161. Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008b) Hydrogen production with a microbial biocathode. Environ Sci Technol 42(2):629–634. doi: 10.1021/es071720+ PubMedCrossRefGoogle Scholar
  162. Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11(9):1752–1755. doi: 10.1016/j.elecom.2009.07.008 CrossRefGoogle Scholar
  163. Sevda S, Dominguez-Benetton X, Vanbroekhoven K, Sreekrishnan TR (2013a) Characterization and comparison of the performance of two different separator types in air–cathode microbial fuel cell treating synthetic wastewater. Chem Eng J 228:1–11. doi: 10.1016/j.cej.2013.05.014 CrossRefGoogle Scholar
  164. Sevda S, Dominguez-Benetton X, Vanbroekhoven K, De Wever H, Sreekrishnan TR, Pant D (2013b) High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Appl Energy 105:194–206. doi: 10.1016/j.apenergy.2012.12.037 CrossRefGoogle Scholar
  165. Sharma T, Reddy LMA, Chandra TS, Ramaprabhu S (2008) Development of carbon nanotubes and nanofluids based microbial fuel cell. Int J Hydrog Energy 33:6749–6754. doi: 10.1016/j.ijhydene.2008.05.112 CrossRefGoogle Scholar
  166. Sharma M, Aryal N, Sarma PM, Vanbroekhoven K, Lal B, Benetton XD, Pant D (2013) Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone. Chem Commun 49(58):6495–6497. doi: 10.1039/c3cc42570c CrossRefGoogle Scholar
  167. Shi L, Richardson DJ, Wang Z, Kerisit SN, Rosso KM, Zachara JM, Fredrickson JK (2009) The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environ Microbiol Rep 1(4):220–227. doi: 10.1111/j.1758-2229.2009.00035.x PubMedCrossRefGoogle Scholar
  168. Srikanth S, Pavani T, Sarma PN, Venkata Mohan S (2011) Synergistic interaction of biocatalyst with bio-anode as a function of electrode materials. Int J Hydrog Energy 36:2271–2280. doi: 10.1016/j.ijhydene.2010.11.031 CrossRefGoogle Scholar
  169. Stephenson D, Stephenson T (1992) Bioaugmentation for enhancing biological wastewater treatment. Biotechnol Adv 10(4):549–559. doi: 10.1016/0734-9750(92)91452-k PubMedCrossRefGoogle Scholar
  170. Sukkasem C, Xu S, Park S, Boonsawang P, Liu H (2008) Effect of nitrate on the performance of single chamber air cathode microbial fuel cells. Water Res 42(19):4743–4750. doi: 10.1016/j.watres.2008.08.029 PubMedCrossRefGoogle Scholar
  171. Teng S-X, Tong Z-H, Li W-W, Wang S-G, Sheng G-P, Shi X-Y, Liu XW, Yu H-Q (2010) Electricity generation from mixed volatile fatty acids using microbial fuel cells. Appl Microbiol Biotechnol 87:2365–2372. doi: 10.1007/s00253-010-2746-5 PubMedCrossRefGoogle Scholar
  172. Ter Heijne A, Hamelers HVM, De Wilde V, Rozendal RA, Buisman CJN (2006) A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ Sci Technol 40(17):5200–5205. doi: 10.1021/es0608545 PubMedCrossRefGoogle Scholar
  173. Thrash JC, Van Trump JI, Weber KA, Miller E, Achenbach LA, Coates JD (2007) Electrochemical stimulation of microbial perchlorate reduction. Environ Sci Technol 41:1740–1746. doi: 10.1021/es062772m PubMedCrossRefGoogle Scholar
  174. Torres AK, Marcus HS, Lee P, Parameswaran RK-B, Rittmann BE (2010) FEMS Microbiol Rev 34:3–17. doi: 10.1111/j.1574-6976.2009.00191.x PubMedCrossRefGoogle Scholar
  175. Tugtas AE, Cavdar P, Calli B (2011) Continuous flow membrane-less air cathode microbial fuel cell with spunbonded olefin diffusion layer. Bioresour Technol 102(22):10425–10430. doi: 10.1016/j.biortech.2011.08.082 PubMedCrossRefGoogle Scholar
  176. Veer Raghavulu S, Venkata Mohan S, Venkateswar Reddy M, Mohanakrishna G, Sarma PN (2009) Behavior of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment. Int J Hydrog Energy 34(17):7547–7554. doi: 10.1016/j.ijhydene.2009.05.071 CrossRefGoogle Scholar
  177. Veer Raghavulu S, Suresh Babu P, Kannaiah Goud R, Venkata Subhash G, Srikanth S, Venkata Mohan S (2012) Bioaugmentation of an electrochemically active strain to enhance the electron discharge of mixed culture: process evaluation through electro-kinetic analysis. RSC Adv 2:677–688. doi: 10.1039/c1ra00540e CrossRefGoogle Scholar
  178. Venkata Mohan S, Veer Raghuvulu S, Srikanth S, Sarma PN (2007) Bioelectricity production by meditorless microbial fuel cell (MFC) under acidophilic condition using wastewater as substrate: influence of substrate loading rate. Curr Sci 92:1720–1726Google Scholar
  179. Venkata Mohan S, Falkentoff C, Nacharaiah VV, McSwain BS, Wattiau P, Wilderer PA, Wuertz S, Hausner M (2009a) Bioresour Technol 100(5):1746–1753. doi: 10.1016/j.biortech.2008.09.048 PubMedCrossRefGoogle Scholar
  180. Venkata Mohan S, Veer Raghavulu S, Dinakar P, Sarma PN (2009b) Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load. Biosens Bioelectron 24:2021–2027. doi: 10.1016/j.bios.2008.10.011 PubMedCrossRefGoogle Scholar
  181. Venkata Mohan S, Mohanakrishna G, Sarma PN (2010) Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell. Bioresour Technol 101(3):970–976. doi: 10.1016/j.biortech.2009.09.005 PubMedCrossRefGoogle Scholar
  182. Virdis B, Rabaey K, Yuan Z, Keller J (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42:3013–3024. doi: 10.1016/j.watres.2008.03.017 PubMedCrossRefGoogle Scholar
  183. Wagner RC, Regan JM, Oh SE, Zuo Y, Logan BE (2009) Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res 43(5):1480–1488. doi: 10.1016/j.watres.2008.12.037 PubMedCrossRefGoogle Scholar
  184. Wang X, Cheng S, Feng Y, Merrill MD, Saito T, Logan BE (2009a) The use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ Sci Technol 43(17):6870–6874. doi: 10.1021/es900997w PubMedCrossRefGoogle Scholar
  185. Wang X, Feng Y, Wang H, Qu Y, Yu Y, Ren N et al (2009b) Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells. Environ Sci Technol 43(15):6088–6093. doi: 10.1021/es900391b PubMedCrossRefGoogle Scholar
  186. WEF (2007) Operation of municipal wastewater treatment plants, 6th edn. McGraw-Hill Professional, New York, pp 310–320Google Scholar
  187. Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102(20):9335–9344. doi: 10.1016/j.biortech.2011.07.019 PubMedCrossRefGoogle Scholar
  188. Wen Q, Wu Y, Cao D, Zhao L, Sun Q (2009) Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Bioresour Technol 100(18):4171–4175. doi: 10.1016/j.biortech.2009.02.058 PubMedCrossRefGoogle Scholar
  189. Wilderer PA, Rubio MA, Davids L (1991) Impact of the addition of pure cultures on the performance of mixed culture reactors. Water Res 25(11):1307–1313. doi: 10.1016/0043-1354(91)90108-3 CrossRefGoogle Scholar
  190. Wrighton KC, Agbo P, Warnecke F, Weber KA, Brodie EL, DeSantis TZ, Hugenholtz P, Andersen GL, Coates JD (2008) A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J 2(11):1146–1156. doi: 10.1038/ismej.2008.48 PubMedCrossRefGoogle Scholar
  191. Xie M, Nghiem LD, Price WE, Elimelech M (2014) Toward resource recovery from wastewater: extraction of phosphorus from digested sludge using a hybrid forward osmosis–membrane distillation process. Environ Sci Technol Lett 1:191–195. doi: 10.1021/ez400189z CrossRefGoogle Scholar
  192. Yang Y, Sun G, Guo J, Xu M (2011a) Differential biofilms characteristics of Shewanella decolorationis microbial fuel cells under open and closed circuit conditions. Bioresour Technol 102(14):7093–7098. doi: 10.1016/j.biortech.2011.04.073
  193. Yang Y, Sun G, Xu M (2011b) Microbial fuel cells come of age. J Chem Technol Biotechnol 86:625–632. doi: 10.1002/jctb.2570 CrossRefGoogle Scholar
  194. Yuan Y, Chen Q, Zhou S, Zhuang L, Hu P (2011) Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell. J Hazard Mater 187(1–3):591–595. doi: 10.1016/j.jhazmat.2011.01.042 PubMedCrossRefGoogle Scholar
  195. Zhang F, He Z (2012) Simultaneous nitrification and denitrification with electricity generation in dual-cathode microbial fuel cells. J Chem Technol Biotechnol 87:153–159. doi: 10.1002/jctb.2700 CrossRefGoogle Scholar
  196. Zhang E, Xu W, Diao G, Shuang C (2006) Electricity generation from acetate and glucose by sedimentary bacterium attached to electrode in microbial-anode fuel cells. J Power Sources 161(2):820–825. doi: 10.1016/j.jpowsour.2006.05.004 CrossRefGoogle Scholar
  197. Zhang B, Zhao H, Zhou S, Shi C, Wang C, Ni J (2009a) A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. Bioresour Technol 100(23):5687–5693. doi: 10.1016/j.biortech.2009.06.045 PubMedCrossRefGoogle Scholar
  198. Zhang F, Cheng S, Pant D, Bogaert GV, Logan BE (2009b) Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. ElectroChem Commun 11:2177–2179. doi: 10.1016/j.elecom.2009.09.024 CrossRefGoogle Scholar
  199. Zhang Y, Min B, Huang L, Angelidaki I (2009c) Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells. Appl Environ Microbiol 75(11):3389–3395. doi: 10.1128/AEM.02240-08 PubMedCentralPubMedCrossRefGoogle Scholar
  200. Zhang X, Cheng S, Liang P, Huang X, Logan BE (2011a) Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes. Bioresour Technol 102(1):372–375. doi: 10.1016/j.biortech.2010.05.090 PubMedCrossRefGoogle Scholar
  201. Zhang F, Brastad KS, He Z (2011b) Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation. Environ Sci Technol 45:6690–6696. doi: 10.1021/es201505t PubMedCrossRefGoogle Scholar
  202. Zhang F, Pant D, Logan BE (2011c) Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosens Bioelectron 30(1):49–55. doi: 10.1016/j.bios.2011.08.025 PubMedGoogle Scholar
  203. Zhang F, Ge Z, Grimaud J, Hurst J, He Z (2013a) Long-term performance of liter scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility. Environ Sci Technol 47(9):4941–4948. doi: 10.1021/es400631r PubMedCrossRefGoogle Scholar
  204. Zhang X, Zhu F, Chen L, Zhao Q, Tao G (2013b) Removal of ammonia nitrogen from wastewater using an aerobic cathode microbial fuel cell. Bioresour Technol 146:161–168. doi: 10.1016/j.biortech.2013.07.024 PubMedCrossRefGoogle Scholar
  205. Zhang X, Pant D, Zhang F, Liu J, He W, Logan BE (2014) Long‐term performance of chemically and physically modified activated carbons in air cathodes of microbial fuel cells. ChemElectroChem 1(11):1859–1866. doi: 10.1002/celc.201402123 CrossRefGoogle Scholar
  206. Zhao F et al (2005) Application of Pyrolysed Iron(II) Phthalocyanine and CoTMPP Based Oxygen Reduction Catalysts as Cathode Materials in Microbial Fuel Cells. ElectroChem Commun 7:1405–1410. doi:  10.1016/j.elecom.2005.09.032
  207. Zheng X, Nirmalakhandan N (2010) Cattle wastes as substrates for bioelectricity production via microbial fuel cells. Biotechnol Lett 32:1809–1814. doi: 10.1007/s10529-010-0360-3 PubMedCrossRefGoogle Scholar
  208. Zhuang L, Yuan Y, Wang Y, Zhou S (2012) Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater. Bioresour Technol 123:406–412. doi: 10.1016/j.biortech.2012.07.038 PubMedCrossRefGoogle Scholar
  209. Zou Y, Pisciotta J, Baskakov IV (2010) Nanostructured polypyrrole-coated anode for sun-powered microbial fuel cells. Bioelectrochem 79:50–56. doi: 10.1016/j.bioelechem.2009.11.001 CrossRefGoogle Scholar
  210. Zuo Y, Maness PC, Logan BE (2006) Electricity production from steam-exploded corn stover biomass. Energy Fuel 20(4):1716–1721. doi: 10.1021/ef060033l CrossRefGoogle Scholar
  211. Zuo Y, Cheng S, Logan BE (2008) Ion exchange membrane cathodes for scalable microbial fuel cells. Environ Sci Technol 42(18):6967–6972. doi: 10.1021/es801055r PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Jai Sankar Seelam
    • 1
    • 2
  • Deepak Pant
    • 2
  • Sunil A. Patil
    • 3
  • Balasaheb P. Kapadnis
    • 4
  1. 1.Department of BiotechnologyIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Separation and Conversion TechnologiesFlemish Institute for Technological Research (VITO)MolBelgium
  3. 3.Laboratory of Microbial Ecology and TechnologyGhent UniversityGhentBelgium
  4. 4.Department of MicrobiologySavitribai Phule Pune UniversityPuneIndia

Personalised recommendations