Advertisement

Microbes: Factories for Bioproducts

  • Vipin Chandra Kalia

Abstract

A quest for rapid progress has forced man to indiscriminately tap diverse natural resources. As a result, a scenario of rapid depletion of fossil fuels and unmanageable wastes have become major challenges. Fermentation of biological wastes and burning of fossil fuels release obnoxious gases, which are the major cause of worry for Environmentalists and Health departments. Efforts to meet these challenges have brought to the foreground certain innovative biological solutions especially the exploitation of microbial metabolisms. The advent of molecular biological techniques along with Bioinformatic tools have lead to the emergence of synthetic biology. These together have expanded the limits to which biological processes can be exploited for human welfare.

Keywords

Fossil Fuel Anaerobic Digestion Lignocellulosic Biomass Synthetic Biology Fatty Acid Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The author wishes to thank the Director of CSIR-Institute of Genomics and Integrative Biology (IGIB) and CSIR-WUM (ESC0108), Government of India, for providing the necessary funds and facilities.

References

  1. Kalia VC (2007) Microbial treatment of domestic and industrial wastes for bioenergy production. Appl Microbiol (e-Book). National Science Digital Library NISCAIR, New Delhi, India. http://nsdl.niscair.res.in/bitstream/123456789/650/1/DomesticWaste.pdf
  2. Kalia VC, Joshi AP (1995) Conversion of waste biomass (pea-shells) into hydrogen and methane through anaerobic digestion. Bioresour Technol 53:165–168. doi: 10.1016/0960-8524(95)00077-R CrossRefGoogle Scholar
  3. Kalia VC, Purohit HJ (2008) Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 35:403–419. doi: 10.1007/s10295-007-0300-y CrossRefPubMedGoogle Scholar
  4. Kalia VC, Kumar A, Jain SR, Joshi AP (1992a) Biomethanation of plant materials. Bioresour Technol 41:209–212. doi: 10.1016/0960-8524(92)90003-G CrossRefGoogle Scholar
  5. Kalia VC, Kumar A, Joshi AP, Jain SR (1992b) Methanogenesis of dumping wheat grains and recycling of the effluent. Resour Conserv Recycl 6:161–166. doi: 10.1016/0921-3449(92)90042-Z CrossRefGoogle Scholar
  6. Kalia VC, Jain SR, Kumar A, Joshi AP (1994) Fermentation of biowaste to H2 by Bacillus licheniformis. World J Microbiol Biotechnol 10:224–227. doi: 10.1007/BF00360893 CrossRefPubMedGoogle Scholar
  7. Kalia VC, Raizada N, Sonakya V (2000a) Bioplastics. J Sci Ind Res 59:433–445Google Scholar
  8. Kalia VC, Sonakya V, Raizada N (2000b) Anaerobic digestion of banana stem waste. Bioresour Technol 73:191–193. doi: 10.1016/S0960-8524(99)00172-8 CrossRefGoogle Scholar
  9. Kalia VC, Chauhan A, Bhattacharyya G, Rashmi (2003a) Genomic databases yield novel bioplastic producers. Nat Biotechnol 21:845–846. doi: 10.1038/nbt0803-845 CrossRefPubMedGoogle Scholar
  10. Kalia VC, Lal S, Ghai R, Mandal M, Chauhan A (2003b) Mining genomic databases to identify novel hydrogen producers. Trends Biotechnol 21:152–156. doi: 10.1016/S0167-7799(03)00028-3 CrossRefPubMedGoogle Scholar
  11. Kumar A, Jain SR, Sharma CB, Joshi AP, Kalia VC (1995) Increased H2 production by immobilized microorganisms. World J Microbiol Biotechnol 11:156–159. doi: 10.1007/BF00704638 CrossRefPubMedGoogle Scholar
  12. Kumar T, Singh M, Purohit HJ, Kalia VC (2009) Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste. J Appl Microbiol 106:2017–2023. doi: 10.1111/j.1365-2672.2009.04160.x CrossRefPubMedGoogle Scholar
  13. Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. doi: 10.1016/j.biotechadv.2013.08.007 CrossRefPubMedGoogle Scholar
  14. Kumar P, Pant DC, Mehariya S, Sharma R, Kansal A, Kalia VC (2014a) Ecobiotechnological strategy to enhance efficiency of bioconversion of wastes into hydrogen and methane. Indian J Microbiol 54:262–267. doi: 10.1007/s12088-014-0467-7 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Kumar P, Singh M, Mehariya S, Patel SKS, Lee JK, Kalia VC (2014b) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:151–157. doi: 10.1007/s12088-014-0457-9 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015a) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol 55:1–7. doi: 10.1007/s12088-014-0509-1 CrossRefGoogle Scholar
  17. Kumar P, Sharma R, Ray S, Mehariya S, Patel SKS, Lee JK, Kalia VC (2015b) Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour Technol 182:383–388. doi: 10.1016/j.biortech.2015.01.138 CrossRefPubMedGoogle Scholar
  18. Kumar P, Ray S, Patel SKS, Lee JK, Kalia VC (2015c) Bioconversion of crude glycerol to PHA by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol (in press). doi: 10.1016/j.ijbiomac.2015.03.046
  19. Patel SKS, Kalia VC (2013) Integrative biological hydrogen production: an overview. Indian J Microbiol 53:3–10. doi: 10.1007/s12088-012-0287-6 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Patel SKS, Purohit HJ, Kalia VC (2010) Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials. Int J Hydrog Energy 35:10674–10681. doi: 10.1016/j.ijhydene.2010.03.025 CrossRefGoogle Scholar
  21. Patel SKS, Singh M, Kalia VC (2011) Hydrogen and polyhydroxybutyrate producing abilities of Bacillus spp. from glucose in two stage system. Indian J Microbiol 51:418–423. doi: 10.1007/s12088-011-0236-9 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Patel SKS, Kumar P, Kalia VC (2012a) Enhancing biological hydrogen production through complementary microbial metabolisms. Int J Hydrog Energy 37:10590–10603. doi: 10.1016/j.ijhydene.2012.04.045 CrossRefGoogle Scholar
  23. Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC (2012b) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy 36:218–225. doi: 10.1016/j.biombioe.2011.10.027 CrossRefGoogle Scholar
  24. Patel SKS, Kumar P, Mehariya S, Purohit HJ, Lee JK, Kalia VC (2014) Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int J Hydrog Energy 39:14663–14668. doi: 10.1016/j.ijhydene.2014.07.084 CrossRefGoogle Scholar
  25. Patel SK, Kumar P, Singh M, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. doi: 10.1016/j.biortech.2014.11.029 CrossRefPubMedGoogle Scholar
  26. Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Patel SKS, Kalia VC (2008) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 99:5444–5451. doi: 10.1016/j.biortech.2007.11.011 CrossRefPubMedGoogle Scholar
  27. Porwal S, Lal S, Cheema S, Kalia VC (2009) Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus. PLoS ONE 4, e4438. doi: 10.1371/journal.pone.0004438 PubMedCentralCrossRefPubMedGoogle Scholar
  28. Raizada N, Sonakya V, Anand V, Kalia VC (2002) Waste management and production of future fuels. J Sci Ind Res (CSIR) 61:184–207Google Scholar
  29. Rani A, Porwal S, Sharma R, Kapley A, Purohit HJ, Kalia VC (2008) Assessment of microbial diversity in ETPs by culture dependent and culture independent approaches. Bioresour Technol 99:7098–7107. doi: 10.1016/j.biortech.2008.01.003 CrossRefPubMedGoogle Scholar
  30. Reddy SK, Ghai R, Rashmi KVC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146. doi: 10.1016/S0960-8524(02)00212-2 CrossRefPubMedGoogle Scholar
  31. Selvakumaran S, Kapley A, Kalia VC, Purohit HJ (2008) Phenotypic and phylogenic groups to evaluate the diversity of Citrobacter isolates from activated biomass of effluent treatment plants. Bioresour Technol 99:1189–1195. doi: 10.1016/j.biortech.2007.02.021 CrossRefPubMedGoogle Scholar
  32. Selvakumaran S, Kapley A, Kashyap SM, Daginawala HF, Kalia VC, Purohit HJ (2011) Diversity of aromatic ring-hydroxylating dioxygenase gene in Citrobacter. Bioresour Technol 102:4600–4609. doi: 10.1016/j.biortech.2011.01.011 CrossRefPubMedGoogle Scholar
  33. Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Factories 8:38. doi: 10.1186/1475-2859-8-38 CrossRefGoogle Scholar
  34. Singh M, Kumar P, Patel SKS, Kalia VC (2013) Production of polyhydroxyalkanoate co-polymer by Bacillus thuringiensis. Indian J Microbiol 53:77–83. doi: 10.1007/s12088-012-0294-7 PubMedCentralCrossRefPubMedGoogle Scholar
  35. Singh M, Kumar P, Ray S, Kalia VC (2015) Challenges and opportunities for customizing polyhydroxyalkanoates. Indian J Microbiol 55:235–249. doi: 10.1007/s12088-015-0528-6 CrossRefPubMedGoogle Scholar
  36. Sonakya V, Raizada N, Kalia VC (2001) Microbial and enzymatic improvement of anaerobic digestion of waste biomass. Biotechnol Lett 23:1463–1466. doi: 10.1023/A:1011664912970 CrossRefGoogle Scholar
  37. Verma V, Raju SC, Kapley A, Kalia VC, Daginawala HF, Purohit HJ (2010) Evaluation of genetic and functional diversity of Stenotrophomonas isolates from diverse effluent treatment plants. Bioresour Technol 101:7744–7753. doi: 10.1016/j.biortech.2010.05.014 CrossRefPubMedGoogle Scholar
  38. Verma V, Raju SC, Kapley A, Kalia VC, Kanade GS, Daginawala HF, Purohit HJ (2011) Degradative potential of Stenotrophomonas strain HPC383 having genes homologous to dmp operon. Bioresour Technol 102:3227–3233. doi: 10.1016/j.biortech.2010.11.016 CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Microbial Biotechnology and GenomicsCSIR-Institute of Genomics and Integrative BiologyDelhiIndia

Personalised recommendations